You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1598 lines
56 KiB

// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#if V8_TARGET_ARCH_MIPS64
#include "src/codegen.h"
#include "src/debug.h"
#include "src/deoptimizer.h"
#include "src/full-codegen.h"
#include "src/runtime.h"
#include "src/stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
// ----------- S t a t e -------------
// -- a0 : number of arguments excluding receiver
// -- a1 : called function (only guaranteed when
// -- extra_args requires it)
// -- cp : context
// -- sp[0] : last argument
// -- ...
// -- sp[8 * (argc - 1)] : first argument
// -- sp[8 * agrc] : receiver
// -----------------------------------
// Insert extra arguments.
int num_extra_args = 0;
if (extra_args == NEEDS_CALLED_FUNCTION) {
num_extra_args = 1;
__ push(a1);
} else {
DCHECK(extra_args == NO_EXTRA_ARGUMENTS);
}
// JumpToExternalReference expects s0 to contain the number of arguments
// including the receiver and the extra arguments.
__ Daddu(s0, a0, num_extra_args + 1);
__ dsll(s1, s0, kPointerSizeLog2);
__ Dsubu(s1, s1, kPointerSize);
__ JumpToExternalReference(ExternalReference(id, masm->isolate()));
}
// Load the built-in InternalArray function from the current context.
static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
Register result) {
// Load the native context.
__ ld(result,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ld(result,
FieldMemOperand(result, GlobalObject::kNativeContextOffset));
// Load the InternalArray function from the native context.
__ ld(result,
MemOperand(result,
Context::SlotOffset(
Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
}
// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
// Load the native context.
__ ld(result,
MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
__ ld(result,
FieldMemOperand(result, GlobalObject::kNativeContextOffset));
// Load the Array function from the native context.
__ ld(result,
MemOperand(result,
Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}
void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
// Get the InternalArray function.
GenerateLoadInternalArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin InternalArray functions should be maps.
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
a4, Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
a4, Operand(MAP_TYPE));
}
// Run the native code for the InternalArray function called as a normal
// function.
// Tail call a stub.
InternalArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
Label generic_array_code;
// Get the Array function.
GenerateLoadArrayFunction(masm, a1);
if (FLAG_debug_code) {
// Initial map for the builtin Array functions should be maps.
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ SmiTst(a2, a4);
__ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
a4, Operand(zero_reg));
__ GetObjectType(a2, a3, a4);
__ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
a4, Operand(MAP_TYPE));
}
// Run the native code for the Array function called as a normal function.
// Tail call a stub.
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
ArrayConstructorStub stub(masm->isolate());
__ TailCallStub(&stub);
}
void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[(argc - n - 1) * 8] : arg[n] (zero based)
// -- sp[argc * 8] : receiver
// -----------------------------------
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
Register function = a1;
if (FLAG_debug_code) {
__ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
__ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
}
// Load the first arguments in a0 and get rid of the rest.
Label no_arguments;
__ Branch(&no_arguments, eq, a0, Operand(zero_reg));
// First args = sp[(argc - 1) * 8].
__ Dsubu(a0, a0, Operand(1));
__ dsll(a0, a0, kPointerSizeLog2);
__ Daddu(sp, a0, sp);
__ ld(a0, MemOperand(sp));
// sp now point to args[0], drop args[0] + receiver.
__ Drop(2);
Register argument = a2;
Label not_cached, argument_is_string;
__ LookupNumberStringCache(a0, // Input.
argument, // Result.
a3, // Scratch.
a4, // Scratch.
a5, // Scratch.
&not_cached);
__ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, a4);
__ bind(&argument_is_string);
// ----------- S t a t e -------------
// -- a2 : argument converted to string
// -- a1 : constructor function
// -- ra : return address
// -----------------------------------
Label gc_required;
__ Allocate(JSValue::kSize,
v0, // Result.
a3, // Scratch.
a4, // Scratch.
&gc_required,
TAG_OBJECT);
// Initialising the String Object.
Register map = a3;
__ LoadGlobalFunctionInitialMap(function, map, a4);
if (FLAG_debug_code) {
__ lbu(a4, FieldMemOperand(map, Map::kInstanceSizeOffset));
__ Assert(eq, kUnexpectedStringWrapperInstanceSize,
a4, Operand(JSValue::kSize >> kPointerSizeLog2));
__ lbu(a4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
__ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
a4, Operand(zero_reg));
}
__ sd(map, FieldMemOperand(v0, HeapObject::kMapOffset));
__ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
__ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
__ sd(argument, FieldMemOperand(v0, JSValue::kValueOffset));
// Ensure the object is fully initialized.
STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
__ Ret();
// The argument was not found in the number to string cache. Check
// if it's a string already before calling the conversion builtin.
Label convert_argument;
__ bind(&not_cached);
__ JumpIfSmi(a0, &convert_argument);
// Is it a String?
__ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ And(a4, a3, Operand(kIsNotStringMask));
__ Branch(&convert_argument, ne, a4, Operand(zero_reg));
__ mov(argument, a0);
__ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
__ Branch(&argument_is_string);
// Invoke the conversion builtin and put the result into a2.
__ bind(&convert_argument);
__ push(function); // Preserve the function.
__ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(a0);
__ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
}
__ pop(function);
__ mov(argument, v0);
__ Branch(&argument_is_string);
// Load the empty string into a2, remove the receiver from the
// stack, and jump back to the case where the argument is a string.
__ bind(&no_arguments);
__ LoadRoot(argument, Heap::kempty_stringRootIndex);
__ Drop(1);
__ Branch(&argument_is_string);
// At this point the argument is already a string. Call runtime to
// create a string wrapper.
__ bind(&gc_required);
__ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, a4);
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ push(argument);
__ CallRuntime(Runtime::kNewStringWrapper, 1);
}
__ Ret();
}
static void CallRuntimePassFunction(
MacroAssembler* masm, Runtime::FunctionId function_id) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
// Push call kind information and function as parameter to the runtime call.
__ Push(a1, a1);
__ CallRuntime(function_id, 1);
// Restore call kind information and receiver.
__ Pop(a1);
}
static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
__ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
__ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
}
void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
// Checking whether the queued function is ready for install is optional,
// since we come across interrupts and stack checks elsewhere. However,
// not checking may delay installing ready functions, and always checking
// would be quite expensive. A good compromise is to first check against
// stack limit as a cue for an interrupt signal.
Label ok;
__ LoadRoot(a4, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(a4));
CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode);
GenerateTailCallToReturnedCode(masm);
__ bind(&ok);
GenerateTailCallToSharedCode(masm);
}
static void Generate_JSConstructStubHelper(MacroAssembler* masm,
bool is_api_function,
bool create_memento) {
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- a2 : allocation site or undefined
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Should never create mementos for api functions.
DCHECK(!is_api_function || !create_memento);
Isolate* isolate = masm->isolate();
// ----------- S t a t e -------------
// -- a0 : number of arguments
// -- a1 : constructor function
// -- ra : return address
// -- sp[...]: constructor arguments
// -----------------------------------
// Enter a construct frame.
{
FrameScope scope(masm, StackFrame::CONSTRUCT);
if (create_memento) {
__ AssertUndefinedOrAllocationSite(a2, a3);
__ push(a2);
}
// Preserve the two incoming parameters on the stack.
// Tag arguments count.
__ dsll32(a0, a0, 0);
__ MultiPushReversed(a0.bit() | a1.bit());
Label rt_call, allocated;
// Try to allocate the object without transitioning into C code. If any of
// the preconditions is not met, the code bails out to the runtime call.
if (FLAG_inline_new) {
Label undo_allocation;
ExternalReference debug_step_in_fp =
ExternalReference::debug_step_in_fp_address(isolate);
__ li(a2, Operand(debug_step_in_fp));
__ ld(a2, MemOperand(a2));
__ Branch(&rt_call, ne, a2, Operand(zero_reg));
// Load the initial map and verify that it is in fact a map.
// a1: constructor function
__ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
__ JumpIfSmi(a2, &rt_call);
__ GetObjectType(a2, a3, t0);
__ Branch(&rt_call, ne, t0, Operand(MAP_TYPE));
// Check that the constructor is not constructing a JSFunction (see
// comments in Runtime_NewObject in runtime.cc). In which case the
// initial map's instance type would be JS_FUNCTION_TYPE.
// a1: constructor function
// a2: initial map
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
__ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
if (!is_api_function) {
Label allocate;
MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
// Check if slack tracking is enabled.
__ lwu(a4, bit_field3);
__ DecodeField<Map::ConstructionCount>(a6, a4);
__ Branch(&allocate,
eq,
a6,
Operand(static_cast<int64_t>(JSFunction::kNoSlackTracking)));
// Decrease generous allocation count.
__ Dsubu(a4, a4, Operand(1 << Map::ConstructionCount::kShift));
__ Branch(USE_DELAY_SLOT,
&allocate, ne, a6, Operand(JSFunction::kFinishSlackTracking));
__ sw(a4, bit_field3); // In delay slot.
__ Push(a1, a2, a1); // a1 = Constructor.
__ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
__ Pop(a1, a2);
// Slack tracking counter is kNoSlackTracking after runtime call.
DCHECK(JSFunction::kNoSlackTracking == 0);
__ mov(a6, zero_reg);
__ bind(&allocate);
}
// Now allocate the JSObject on the heap.
// a1: constructor function
// a2: initial map
__ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
if (create_memento) {
__ Daddu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
}
__ Allocate(a3, t0, t1, t2, &rt_call, SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to
// initial map and properties and elements are set to empty fixed array.
// a1: constructor function
// a2: initial map
// a3: object size (not including memento if create_memento)
// t0: JSObject (not tagged)
__ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex);
__ mov(t1, t0);
__ sd(a2, MemOperand(t1, JSObject::kMapOffset));
__ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset));
__ sd(t2, MemOperand(t1, JSObject::kElementsOffset));
__ Daddu(t1, t1, Operand(3*kPointerSize));
DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset);
// Fill all the in-object properties with appropriate filler.
// a1: constructor function
// a2: initial map
// a3: object size (in words, including memento if create_memento)
// t0: JSObject (not tagged)
// t1: First in-object property of JSObject (not tagged)
// a6: slack tracking counter (non-API function case)
DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize);
// Use t3 to hold undefined, which is used in several places below.
__ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
if (!is_api_function) {
Label no_inobject_slack_tracking;
// Check if slack tracking is enabled.
__ Branch(&no_inobject_slack_tracking,
eq,
a6,
Operand(static_cast<int64_t>(JSFunction::kNoSlackTracking)));
// Allocate object with a slack.
__ lwu(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
__ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a0, t1, at);
// a0: offset of first field after pre-allocated fields
if (FLAG_debug_code) {
__ dsll(at, a3, kPointerSizeLog2);
__ Daddu(t2, t0, Operand(at)); // End of object.
__ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
a0, Operand(t2));
}
__ InitializeFieldsWithFiller(t1, a0, t3);
// To allow for truncation.
__ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex);
// Fill the remaining fields with one pointer filler map.
__ bind(&no_inobject_slack_tracking);
}
if (create_memento) {
__ Dsubu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
__ dsll(a0, a0, kPointerSizeLog2);
__ Daddu(a0, t0, Operand(a0)); // End of object.
__ InitializeFieldsWithFiller(t1, a0, t3);
// Fill in memento fields.
// t1: points to the allocated but uninitialized memento.
__ LoadRoot(t3, Heap::kAllocationMementoMapRootIndex);
DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
__ sd(t3, MemOperand(t1));
__ Daddu(t1, t1, kPointerSize);
// Load the AllocationSite.
__ ld(t3, MemOperand(sp, 2 * kPointerSize));
DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
__ sd(t3, MemOperand(t1));
__ Daddu(t1, t1, kPointerSize);
} else {
__ dsll(at, a3, kPointerSizeLog2);
__ Daddu(a0, t0, Operand(at)); // End of object.
__ InitializeFieldsWithFiller(t1, a0, t3);
}
// Add the object tag to make the JSObject real, so that we can continue
// and jump into the continuation code at any time from now on. Any
// failures need to undo the allocation, so that the heap is in a
// consistent state and verifiable.
__ Daddu(t0, t0, Operand(kHeapObjectTag));
// Check if a non-empty properties array is needed. Continue with
// allocated object if not fall through to runtime call if it is.
// a1: constructor function
// t0: JSObject
// t1: start of next object (not tagged)
__ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
// The field instance sizes contains both pre-allocated property fields
// and in-object properties.
__ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
__ Ext(t2, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte,
kBitsPerByte);
__ Daddu(a3, a3, Operand(t2));
__ Ext(t2, a0, Map::kInObjectPropertiesByte * kBitsPerByte,
kBitsPerByte);
__ dsubu(a3, a3, t2);
// Done if no extra properties are to be allocated.
__ Branch(&allocated, eq, a3, Operand(zero_reg));
__ Assert(greater_equal, kPropertyAllocationCountFailed,
a3, Operand(zero_reg));
// Scale the number of elements by pointer size and add the header for
// FixedArrays to the start of the next object calculation from above.
// a1: constructor
// a3: number of elements in properties array
// t0: JSObject
// t1: start of next object
__ Daddu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
__ Allocate(
a0,
t1,
t2,
a2,
&undo_allocation,
static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
// Initialize the FixedArray.
// a1: constructor
// a3: number of elements in properties array (untagged)
// t0: JSObject
// t1: start of next object
__ LoadRoot(t2, Heap::kFixedArrayMapRootIndex);
__ mov(a2, t1);
__ sd(t2, MemOperand(a2, JSObject::kMapOffset));
// Tag number of elements.
__ dsll32(a0, a3, 0);
__ sd(a0, MemOperand(a2, FixedArray::kLengthOffset));
__ Daddu(a2, a2, Operand(2 * kPointerSize));
DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset);
DCHECK_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
// Initialize the fields to undefined.
// a1: constructor
// a2: First element of FixedArray (not tagged)
// a3: number of elements in properties array
// t0: JSObject
// t1: FixedArray (not tagged)
__ dsll(a7, a3, kPointerSizeLog2);
__ daddu(t2, a2, a7); // End of object.
DCHECK_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
{ Label loop, entry;
if (!is_api_function || create_memento) {
__ LoadRoot(t3, Heap::kUndefinedValueRootIndex);
} else if (FLAG_debug_code) {
__ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
__ Assert(eq, kUndefinedValueNotLoaded, t3, Operand(a6));
}
__ jmp(&entry);
__ bind(&loop);
__ sd(t3, MemOperand(a2));
__ daddiu(a2, a2, kPointerSize);
__ bind(&entry);
__ Branch(&loop, less, a2, Operand(t2));
}
// Store the initialized FixedArray into the properties field of
// the JSObject.
// a1: constructor function
// t0: JSObject
// t1: FixedArray (not tagged)
__ Daddu(t1, t1, Operand(kHeapObjectTag)); // Add the heap tag.
__ sd(t1, FieldMemOperand(t0, JSObject::kPropertiesOffset));
// Continue with JSObject being successfully allocated.
// a1: constructor function
// a4: JSObject
__ jmp(&allocated);
// Undo the setting of the new top so that the heap is verifiable. For
// example, the map's unused properties potentially do not match the
// allocated objects unused properties.
// t0: JSObject (previous new top)
__ bind(&undo_allocation);
__ UndoAllocationInNewSpace(t0, t1);
}
// Allocate the new receiver object using the runtime call.
// a1: constructor function
__ bind(&rt_call);
if (create_memento) {
// Get the cell or allocation site.
__ ld(a2, MemOperand(sp, 2 * kPointerSize));
__ push(a2);
}
__ push(a1); // Argument for Runtime_NewObject.
if (create_memento) {
__ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2);
} else {
__ CallRuntime(Runtime::kNewObject, 1);
}
__ mov(t0, v0);
// If we ended up using the runtime, and we want a memento, then the
// runtime call made it for us, and we shouldn't do create count
// increment.
Label count_incremented;
if (create_memento) {
__ jmp(&count_incremented);
}
// Receiver for constructor call allocated.
// t0: JSObject
__ bind(&allocated);
if (create_memento) {
__ ld(a2, MemOperand(sp, kPointerSize * 2));
__ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
__ Branch(&count_incremented, eq, a2, Operand(t1));
// a2 is an AllocationSite. We are creating a memento from it, so we
// need to increment the memento create count.
__ ld(a3, FieldMemOperand(a2,
AllocationSite::kPretenureCreateCountOffset));
__ Daddu(a3, a3, Operand(Smi::FromInt(1)));
__ sd(a3, FieldMemOperand(a2,
AllocationSite::kPretenureCreateCountOffset));
__ bind(&count_incremented);
}
__ Push(t0, t0);
// Reload the number of arguments from the stack.
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: constructor function
// sp[3]: number of arguments (smi-tagged)
__ ld(a1, MemOperand(sp, 2 * kPointerSize));
__ ld(a3, MemOperand(sp, 3 * kPointerSize));
// Set up pointer to last argument.
__ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
// Set up number of arguments for function call below.
__ SmiUntag(a0, a3);
// Copy arguments and receiver to the expression stack.
// a0: number of arguments
// a1: constructor function
// a2: address of last argument (caller sp)
// a3: number of arguments (smi-tagged)
// sp[0]: receiver
// sp[1]: receiver
// sp[2]: constructor function
// sp[3]: number of arguments (smi-tagged)
Label loop, entry;
__ SmiUntag(a3);
__ jmp(&entry);
__ bind(&loop);
__ dsll(a4, a3, kPointerSizeLog2);
__ Daddu(a4, a2, Operand(a4));
__ ld(a5, MemOperand(a4));
__ push(a5);
__ bind(&entry);
__ Daddu(a3, a3, Operand(-1));
__ Branch(&loop, greater_equal, a3, Operand(zero_reg));
// Call the function.
// a0: number of arguments
// a1: constructor function
if (is_api_function) {
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
Handle<Code> code =
masm->isolate()->builtins()->HandleApiCallConstruct();
__ Call(code, RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(a0);
__ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
}
// Store offset of return address for deoptimizer.
if (!is_api_function) {
masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
}
// Restore context from the frame.
__ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// If the result is an object (in the ECMA sense), we should get rid
// of the receiver and use the result; see ECMA-262 section 13.2.2-7
// on page 74.
Label use_receiver, exit;
// If the result is a smi, it is *not* an object in the ECMA sense.
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ JumpIfSmi(v0, &use_receiver);
// If the type of the result (stored in its map) is less than
// FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
__ GetObjectType(v0, a1, a3);
__ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
// Throw away the result of the constructor invocation and use the
// on-stack receiver as the result.
__ bind(&use_receiver);
__ ld(v0, MemOperand(sp));
// Remove receiver from the stack, remove caller arguments, and
// return.
__ bind(&exit);
// v0: result
// sp[0]: receiver (newly allocated object)
// sp[1]: constructor function
// sp[2]: number of arguments (smi-tagged)
__ ld(a1, MemOperand(sp, 2 * kPointerSize));
// Leave construct frame.
}
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
__ Daddu(sp, sp, kPointerSize);
__ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
__ Ret();
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
Generate_JSConstructStubHelper(masm, true, false);
}
static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody
// ----------- S t a t e -------------
// -- a0: code entry
// -- a1: function
// -- a2: receiver_pointer
// -- a3: argc
// -- s0: argv
// -----------------------------------
ProfileEntryHookStub::MaybeCallEntryHook(masm);
// Clear the context before we push it when entering the JS frame.
__ mov(cp, zero_reg);
// Enter an internal frame.
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Set up the context from the function argument.
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Push the function and the receiver onto the stack.
__ Push(a1, a2);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, i.e. points to first arg
Label loop, entry;
// TODO(plind): At least on simulator, argc in a3 is an int32_t with junk
// in upper bits. Should fix the root cause, rather than use below
// workaround to clear upper bits.
__ dsll32(a3, a3, 0); // int32_t -> int64_t.
__ dsrl32(a3, a3, 0);
__ dsll(a4, a3, kPointerSizeLog2);
__ daddu(a6, s0, a4);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// a6 points past last arg.
__ bind(&loop);
__ ld(a4, MemOperand(s0)); // Read next parameter.
__ daddiu(s0, s0, kPointerSize);
__ ld(a4, MemOperand(a4)); // Dereference handle.
__ push(a4); // Push parameter.
__ bind(&entry);
__ Branch(&loop, ne, s0, Operand(a6));
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
__ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
__ mov(s1, a4);
__ mov(s2, a4);
__ mov(s3, a4);
__ mov(s4, a4);
__ mov(s5, a4);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code and pass argc as a0.
__ mov(a0, a3);
if (is_construct) {
// No type feedback cell is available
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
__ CallStub(&stub);
} else {
ParameterCount actual(a0);
__ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
}
// Leave internal frame.
}
__ Jump(ra);
}
void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, false);
}
void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
Generate_JSEntryTrampolineHelper(masm, true);
}
void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) {
CallRuntimePassFunction(masm, Runtime::kCompileUnoptimized);
GenerateTailCallToReturnedCode(masm);
}
static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
FrameScope scope(masm, StackFrame::INTERNAL);
// Push a copy of the function onto the stack.
// Push function as parameter to the runtime call.
__ Push(a1, a1);
// Whether to compile in a background thread.
__ Push(masm->isolate()->factory()->ToBoolean(concurrent));
__ CallRuntime(Runtime::kCompileOptimized, 2);
// Restore receiver.
__ Pop(a1);
}
void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
CallCompileOptimized(masm, false);
GenerateTailCallToReturnedCode(masm);
}
void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
CallCompileOptimized(masm, true);
GenerateTailCallToReturnedCode(masm);
}
static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
// For now, we are relying on the fact that make_code_young doesn't do any
// garbage collection which allows us to save/restore the registers without
// worrying about which of them contain pointers. We also don't build an
// internal frame to make the code faster, since we shouldn't have to do stack
// crawls in MakeCodeYoung. This seems a bit fragile.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Dsubu(a0, a0,
Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
RegList saved_regs =
(a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_make_code_young_function(masm->isolate()), 2);
__ MultiPop(saved_regs);
__ Jump(a0);
}
#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \
void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
} \
void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \
MacroAssembler* masm) { \
GenerateMakeCodeYoungAgainCommon(masm); \
}
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
// For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
// that make_code_young doesn't do any garbage collection which allows us to
// save/restore the registers without worrying about which of them contain
// pointers.
// Set a0 to point to the head of the PlatformCodeAge sequence.
__ Dsubu(a0, a0,
Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
// The following registers must be saved and restored when calling through to
// the runtime:
// a0 - contains return address (beginning of patch sequence)
// a1 - isolate
RegList saved_regs =
(a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
FrameScope scope(masm, StackFrame::MANUAL);
__ MultiPush(saved_regs);
__ PrepareCallCFunction(2, 0, a2);
__ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
__ CallCFunction(
ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
2);
__ MultiPop(saved_regs);
// Perform prologue operations usually performed by the young code stub.
__ Push(ra, fp, cp, a1);
__ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
// Jump to point after the code-age stub.
__ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength)));
__ Jump(a0);
}
void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
GenerateMakeCodeYoungAgainCommon(masm);
}
static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
SaveFPRegsMode save_doubles) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Preserve registers across notification, this is important for compiled
// stubs that tail call the runtime on deopts passing their parameters in
// registers.
__ MultiPush(kJSCallerSaved | kCalleeSaved);
// Pass the function and deoptimization type to the runtime system.
__ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
__ MultiPop(kJSCallerSaved | kCalleeSaved);
}
__ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state
__ Jump(ra); // Jump to miss handler
}
void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
}
void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
}
static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
Deoptimizer::BailoutType type) {
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass the function and deoptimization type to the runtime system.
__ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
__ push(a0);
__ CallRuntime(Runtime::kNotifyDeoptimized, 1);
}
// Get the full codegen state from the stack and untag it -> a6.
__ ld(a6, MemOperand(sp, 0 * kPointerSize));
__ SmiUntag(a6);
// Switch on the state.
Label with_tos_register, unknown_state;
__ Branch(&with_tos_register,
ne, a6, Operand(FullCodeGenerator::NO_REGISTERS));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state.
__ bind(&with_tos_register);
__ ld(v0, MemOperand(sp, 1 * kPointerSize));
__ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG));
__ Ret(USE_DELAY_SLOT);
// Safe to fill delay slot Addu will emit one instruction.
__ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state.
__ bind(&unknown_state);
__ stop("no cases left");
}
void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
}
void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
}
void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
}
void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
// Lookup the function in the JavaScript frame.
__ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
{
FrameScope scope(masm, StackFrame::INTERNAL);
// Pass function as argument.
__ push(a0);
__ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
}
// If the code object is null, just return to the unoptimized code.
__ Ret(eq, v0, Operand(Smi::FromInt(0)));
// Load deoptimization data from the code object.
// <deopt_data> = <code>[#deoptimization_data_offset]
__ Uld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
// Load the OSR entrypoint offset from the deoptimization data.
// <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
__ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
__ SmiUntag(a1);
// Compute the target address = code_obj + header_size + osr_offset
// <entry_addr> = <code_obj> + #header_size + <osr_offset>
__ daddu(v0, v0, a1);
__ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
// And "return" to the OSR entry point of the function.
__ Ret();
}
void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
// We check the stack limit as indicator that recompilation might be done.
Label ok;
__ LoadRoot(at, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(at));
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ CallRuntime(Runtime::kStackGuard, 0);
}
__ Jump(masm->isolate()->builtins()->OnStackReplacement(),
RelocInfo::CODE_TARGET);
__ bind(&ok);
__ Ret();
}
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
// 1. Make sure we have at least one argument.
// a0: actual number of arguments
{ Label done;
__ Branch(&done, ne, a0, Operand(zero_reg));
__ LoadRoot(a6, Heap::kUndefinedValueRootIndex);
__ push(a6);
__ Daddu(a0, a0, Operand(1));
__ bind(&done);
}
// 2. Get the function to call (passed as receiver) from the stack, check
// if it is a function.
// a0: actual number of arguments
Label slow, non_function;
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ ld(a1, MemOperand(at));
__ JumpIfSmi(a1, &non_function);
__ GetObjectType(a1, a2, a2);
__ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
// 3a. Patch the first argument if necessary when calling a function.
// a0: actual number of arguments
// a1: function
Label shift_arguments;
__ li(a4, Operand(0, RelocInfo::NONE32)); // Indicate regular JS_FUNCTION.
{ Label convert_to_object, use_global_proxy, patch_receiver;
// Change context eagerly in case we need the global receiver.
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Do not transform the receiver for strict mode functions.
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
__ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
__ And(a7, a3, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
// Do not transform the receiver for native (Compilerhints already in a3).
__ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
__ And(a7, a3, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ Branch(&shift_arguments, ne, a7, Operand(zero_reg));
// Compute the receiver in sloppy mode.
// Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a2, sp, at);
__ ld(a2, MemOperand(a2, -kPointerSize));
// a0: actual number of arguments
// a1: function
// a2: first argument
__ JumpIfSmi(a2, &convert_to_object, a6);
__ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
__ Branch(&use_global_proxy, eq, a2, Operand(a3));
__ LoadRoot(a3, Heap::kNullValueRootIndex);
__ Branch(&use_global_proxy, eq, a2, Operand(a3));
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ GetObjectType(a2, a3, a3);
__ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
__ bind(&convert_to_object);
// Enter an internal frame in order to preserve argument count.
{
FrameScope scope(masm, StackFrame::INTERNAL);
__ SmiTag(a0);
__ Push(a0, a2);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(a2, v0);
__ pop(a0);
__ SmiUntag(a0);
// Leave internal frame.
}
// Restore the function to a1, and the flag to a4.
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(at, sp, at);
__ ld(a1, MemOperand(at));
__ Branch(USE_DELAY_SLOT, &patch_receiver);
__ li(a4, Operand(0, RelocInfo::NONE32));
__ bind(&use_global_proxy);
__ ld(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset));
__ bind(&patch_receiver);
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a3, sp, at);
__ sd(a2, MemOperand(a3, -kPointerSize));
__ Branch(&shift_arguments);
}
// 3b. Check for function proxy.
__ bind(&slow);
__ li(a4, Operand(1, RelocInfo::NONE32)); // Indicate function proxy.
__ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
__ bind(&non_function);
__ li(a4, Operand(2, RelocInfo::NONE32)); // Indicate non-function.
// 3c. Patch the first argument when calling a non-function. The
// CALL_NON_FUNCTION builtin expects the non-function callee as
// receiver, so overwrite the first argument which will ultimately
// become the receiver.
// a0: actual number of arguments
// a1: function
// a4: call type (0: JS function, 1: function proxy, 2: non-function)
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a2, sp, at);
__ sd(a1, MemOperand(a2, -kPointerSize));
// 4. Shift arguments and return address one slot down on the stack
// (overwriting the original receiver). Adjust argument count to make
// the original first argument the new receiver.
// a0: actual number of arguments
// a1: function
// a4: call type (0: JS function, 1: function proxy, 2: non-function)
__ bind(&shift_arguments);
{ Label loop;
// Calculate the copy start address (destination). Copy end address is sp.
__ dsll(at, a0, kPointerSizeLog2);
__ daddu(a2, sp, at);
__ bind(&loop);
__ ld(at, MemOperand(a2, -kPointerSize));
__ sd(at, MemOperand(a2));
__ Dsubu(a2, a2, Operand(kPointerSize));
__ Branch(&loop, ne, a2, Operand(sp));
// Adjust the actual number of arguments and remove the top element
// (which is a copy of the last argument).
__ Dsubu(a0, a0, Operand(1));
__ Pop();
}
// 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
// or a function proxy via CALL_FUNCTION_PROXY.
// a0: actual number of arguments
// a1: function
// a4: call type (0: JS function, 1: function proxy, 2: non-function)
{ Label function, non_proxy;
__ Branch(&function, eq, a4, Operand(zero_reg));
// Expected number of arguments is 0 for CALL_NON_FUNCTION.
__ mov(a2, zero_reg);
__ Branch(&non_proxy, ne, a4, Operand(1));
__ push(a1); // Re-add proxy object as additional argument.
__ Daddu(a0, a0, Operand(1));
__ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&non_proxy);
__ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
__ bind(&function);
}
// 5b. Get the code to call from the function and check that the number of
// expected arguments matches what we're providing. If so, jump
// (tail-call) to the code in register edx without checking arguments.
// a0: actual number of arguments
// a1: function
__ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
// The argument count is stored as int32_t on 64-bit platforms.
// TODO(plind): Smi on 32-bit platforms.
__ lw(a2,
FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
// Check formal and actual parameter counts.
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
__ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
ParameterCount expected(0);
__ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
const int kIndexOffset =
StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
const int kLimitOffset =
StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
const int kArgsOffset = 2 * kPointerSize;
const int kRecvOffset = 3 * kPointerSize;
const int kFunctionOffset = 4 * kPointerSize;
{
FrameScope frame_scope(masm, StackFrame::INTERNAL);
__ ld(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
__ push(a0);
__ ld(a0, MemOperand(fp, kArgsOffset)); // Get the args array.
__ push(a0);
// Returns (in v0) number of arguments to copy to stack as Smi.
__ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
Label okay;
__ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
// Make a2 the space we have left. The stack might already be overflowed
// here which will cause a2 to become negative.
__ dsubu(a2, sp, a2);
// Check if the arguments will overflow the stack.
__ SmiScale(a7, v0, kPointerSizeLog2);
__ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison.
// Out of stack space.
__ ld(a1, MemOperand(fp, kFunctionOffset));
__ Push(a1, v0);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
// End of stack check.
// Push current limit and index.
__ bind(&okay);
__ mov(a1, zero_reg);
__ Push(v0, a1); // Limit and initial index.
// Get the receiver.
__ ld(a0, MemOperand(fp, kRecvOffset));
// Check that the function is a JS function (otherwise it must be a proxy).
Label push_receiver;
__ ld(a1, MemOperand(fp, kFunctionOffset));
__ GetObjectType(a1, a2, a2);
__ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
// Change context eagerly to get the right global object if necessary.
__ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Load the shared function info while the function is still in a1.
__ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
// Compute the receiver.
// Do not transform the receiver for strict mode functions.
Label call_to_object, use_global_proxy;
__ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset));
__ And(a7, a7, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
__ Branch(&push_receiver, ne, a7, Operand(zero_reg));
// Do not transform the receiver for native (Compilerhints already in a2).
__ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset));
__ And(a7, a7, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte));
__ Branch(&push_receiver, ne, a7, Operand(zero_reg));
// Compute the receiver in sloppy mode.
__ JumpIfSmi(a0, &call_to_object);
__ LoadRoot(a1, Heap::kNullValueRootIndex);
__ Branch(&use_global_proxy, eq, a0, Operand(a1));
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ Branch(&use_global_proxy, eq, a0, Operand(a2));
// Check if the receiver is already a JavaScript object.
// a0: receiver
STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
__ GetObjectType(a0, a1, a1);
__ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
// Convert the receiver to a regular object.
// a0: receiver
__ bind(&call_to_object);
__ push(a0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(a0, v0); // Put object in a0 to match other paths to push_receiver.
__ Branch(&push_receiver);
__ bind(&use_global_proxy);
__ ld(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
__ ld(a0, FieldMemOperand(a0, GlobalObject::kGlobalProxyOffset));
// Push the receiver.
// a0: receiver
__ bind(&push_receiver);
__ push(a0);
// Copy all arguments from the array to the stack.
Label entry, loop;
__ ld(a0, MemOperand(fp, kIndexOffset));
__ Branch(&entry);
// Load the current argument from the arguments array and push it to the
// stack.
// a0: current argument index
__ bind(&loop);
__ ld(a1, MemOperand(fp, kArgsOffset));
__ Push(a1, a0);
// Call the runtime to access the property in the arguments array.
__ CallRuntime(Runtime::kGetProperty, 2);
__ push(v0);
// Use inline caching to access the arguments.
__ ld(a0, MemOperand(fp, kIndexOffset));
__ Daddu(a0, a0, Operand(Smi::FromInt(1)));
__ sd(a0, MemOperand(fp, kIndexOffset));
// Test if the copy loop has finished copying all the elements from the
// arguments object.
__ bind(&entry);
__ ld(a1, MemOperand(fp, kLimitOffset));
__ Branch(&loop, ne, a0, Operand(a1));
// Call the function.
Label call_proxy;
ParameterCount actual(a0);
__ SmiUntag(a0);
__ ld(a1, MemOperand(fp, kFunctionOffset));
__ GetObjectType(a1, a2, a2);
__ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
__ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
frame_scope.GenerateLeaveFrame();
__ Ret(USE_DELAY_SLOT);
__ Daddu(sp, sp, Operand(3 * kPointerSize)); // In delay slot.
// Call the function proxy.
__ bind(&call_proxy);
__ push(a1); // Add function proxy as last argument.
__ Daddu(a0, a0, Operand(1));
__ li(a2, Operand(0, RelocInfo::NONE32));
__ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
__ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
RelocInfo::CODE_TARGET);
// Tear down the internal frame and remove function, receiver and args.
}
__ Ret(USE_DELAY_SLOT);
__ Daddu(sp, sp, Operand(3 * kPointerSize)); // In delay slot.
}
static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
Label* stack_overflow) {
// ----------- S t a t e -------------
// -- a0 : actual number of arguments
// -- a1 : function (passed through to callee)
// -- a2 : expected number of arguments
// -----------------------------------
// Check the stack for overflow. We are not trying to catch
// interruptions (e.g. debug break and preemption) here, so the "real stack
// limit" is checked.
__ LoadRoot(a5, Heap::kRealStackLimitRootIndex);
// Make a5 the space we have left. The stack might already be overflowed
// here which will cause a5 to become negative.
__ dsubu(a5, sp, a5);
// Check if the arguments will overflow the stack.
__ dsll(at, a2, kPointerSizeLog2);
// Signed comparison.
__ Branch(stack_overflow, le, a5, Operand(at));
}
static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
// __ sll(a0, a0, kSmiTagSize);
__ dsll32(a0, a0, 0);
__ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit());
__ Daddu(fp, sp,
Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
}
static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- v0 : result being passed through
// -----------------------------------
// Get the number of arguments passed (as a smi), tear down the frame and
// then tear down the parameters.
__ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
kPointerSize)));
__ mov(sp, fp);
__ MultiPop(fp.bit() | ra.bit());
__ SmiScale(a4, a1, kPointerSizeLog2);
__ Daddu(sp, sp, a4);
// Adjust for the receiver.
__ Daddu(sp, sp, Operand(kPointerSize));
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
// State setup as expected by MacroAssembler::InvokePrologue.
// ----------- S t a t e -------------
// -- a0: actual arguments count
// -- a1: function (passed through to callee)
// -- a2: expected arguments count
// -----------------------------------
Label stack_overflow;
ArgumentAdaptorStackCheck(masm, &stack_overflow);
Label invoke, dont_adapt_arguments;
Label enough, too_few;
__ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
__ Branch(&dont_adapt_arguments, eq,
a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
// We use Uless as the number of argument should always be greater than 0.
__ Branch(&too_few, Uless, a0, Operand(a2));
{ // Enough parameters: actual >= expected.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ bind(&enough);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into a0 and copy end address into a2.
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address.
__ dsll(a2, a2, kPointerSizeLog2);
__ dsubu(a2, a0, a2);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: copy end address
// a3: code entry to call
Label copy;
__ bind(&copy);
__ ld(a4, MemOperand(a0));
__ push(a4);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
__ daddiu(a0, a0, -kPointerSize); // In delay slot.
__ jmp(&invoke);
}
{ // Too few parameters: Actual < expected.
__ bind(&too_few);
EnterArgumentsAdaptorFrame(masm);
// Calculate copy start address into a0 and copy end address is fp.
// a0: actual number of arguments as a smi
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ SmiScale(a0, a0, kPointerSizeLog2);
__ Daddu(a0, fp, a0);
// Adjust for return address and receiver.
__ Daddu(a0, a0, Operand(2 * kPointerSize));
// Compute copy end address. Also adjust for return address.
__ Daddu(a7, fp, kPointerSize);
// Copy the arguments (including the receiver) to the new stack frame.
// a0: copy start address
// a1: function
// a2: expected number of arguments
// a3: code entry to call
// a7: copy end address
Label copy;
__ bind(&copy);
__ ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver.
__ Dsubu(sp, sp, kPointerSize);
__ Dsubu(a0, a0, kPointerSize);
__ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a7));
__ sd(a4, MemOperand(sp)); // In the delay slot.
// Fill the remaining expected arguments with undefined.
// a1: function
// a2: expected number of arguments
// a3: code entry to call
__ LoadRoot(a4, Heap::kUndefinedValueRootIndex);
__ dsll(a6, a2, kPointerSizeLog2);
__ Dsubu(a2, fp, Operand(a6));
// Adjust for frame.
__ Dsubu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
2 * kPointerSize));
Label fill;
__ bind(&fill);
__ Dsubu(sp, sp, kPointerSize);
__ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
__ sd(a4, MemOperand(sp));
}
// Call the entry point.
__ bind(&invoke);
__ Call(a3);
// Store offset of return address for deoptimizer.
masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
// Exit frame and return.
LeaveArgumentsAdaptorFrame(masm);
__ Ret();
// -------------------------------------------
// Don't adapt arguments.
// -------------------------------------------
__ bind(&dont_adapt_arguments);
__ Jump(a3);
__ bind(&stack_overflow);
{
FrameScope frame(masm, StackFrame::MANUAL);
EnterArgumentsAdaptorFrame(masm);
__ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
__ break_(0xCC);
}
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS64