|
|
|
// Copyright (c) 1994-2006 Sun Microsystems Inc.
|
|
|
|
// All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// - Redistributions of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// - Redistribution in binary form must reproduce the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
|
|
// documentation and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// - Neither the name of Sun Microsystems or the names of contributors may
|
|
|
|
// be used to endorse or promote products derived from this software without
|
|
|
|
// specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
|
|
|
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
// The original source code covered by the above license above has been
|
|
|
|
// modified significantly by Google Inc.
|
|
|
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
|
|
|
|
|
|
#include "src/assembler.h"
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include "src/api.h"
|
|
|
|
#include "src/base/cpu.h"
|
|
|
|
#include "src/base/functional.h"
|
|
|
|
#include "src/base/lazy-instance.h"
|
|
|
|
#include "src/base/platform/platform.h"
|
|
|
|
#include "src/base/utils/random-number-generator.h"
|
|
|
|
#include "src/builtins.h"
|
|
|
|
#include "src/codegen.h"
|
|
|
|
#include "src/counters.h"
|
|
|
|
#include "src/debug/debug.h"
|
|
|
|
#include "src/deoptimizer.h"
|
|
|
|
#include "src/execution.h"
|
|
|
|
#include "src/ic/ic.h"
|
|
|
|
#include "src/ic/stub-cache.h"
|
|
|
|
#include "src/profiler/cpu-profiler.h"
|
|
|
|
#include "src/regexp/jsregexp.h"
|
|
|
|
#include "src/regexp/regexp-macro-assembler.h"
|
|
|
|
#include "src/regexp/regexp-stack.h"
|
|
|
|
#include "src/runtime/runtime.h"
|
|
|
|
#include "src/simulator.h" // For flushing instruction cache.
|
|
|
|
#include "src/snapshot/serialize.h"
|
|
|
|
#include "src/token.h"
|
|
|
|
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
|
|
#include "src/ia32/assembler-ia32-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_X64
|
|
|
|
#include "src/x64/assembler-x64-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
|
|
#include "src/arm64/assembler-arm64-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_ARM
|
|
|
|
#include "src/arm/assembler-arm-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_PPC
|
|
|
|
#include "src/ppc/assembler-ppc-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
|
|
#include "src/mips/assembler-mips-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
|
|
#include "src/mips64/assembler-mips64-inl.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_X87
|
|
|
|
#include "src/x87/assembler-x87-inl.h" // NOLINT
|
|
|
|
#else
|
|
|
|
#error "Unknown architecture."
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Include native regexp-macro-assembler.
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
|
|
#if V8_TARGET_ARCH_IA32
|
|
|
|
#include "src/regexp/ia32/regexp-macro-assembler-ia32.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_X64
|
|
|
|
#include "src/regexp/x64/regexp-macro-assembler-x64.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
|
|
#include "src/regexp/arm64/regexp-macro-assembler-arm64.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_ARM
|
|
|
|
#include "src/regexp/arm/regexp-macro-assembler-arm.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_PPC
|
|
|
|
#include "src/regexp/ppc/regexp-macro-assembler-ppc.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
|
|
#include "src/regexp/mips/regexp-macro-assembler-mips.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
|
|
#include "src/regexp/mips64/regexp-macro-assembler-mips64.h" // NOLINT
|
|
|
|
#elif V8_TARGET_ARCH_X87
|
|
|
|
#include "src/regexp/x87/regexp-macro-assembler-x87.h" // NOLINT
|
|
|
|
#else // Unknown architecture.
|
|
|
|
#error "Unknown architecture."
|
|
|
|
#endif // Target architecture.
|
|
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Common double constants.
|
|
|
|
|
|
|
|
struct DoubleConstant BASE_EMBEDDED {
|
|
|
|
double min_int;
|
|
|
|
double one_half;
|
|
|
|
double minus_one_half;
|
|
|
|
double negative_infinity;
|
|
|
|
double the_hole_nan;
|
|
|
|
double uint32_bias;
|
|
|
|
};
|
|
|
|
|
|
|
|
static DoubleConstant double_constants;
|
|
|
|
|
|
|
|
const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING";
|
|
|
|
|
|
|
|
static bool math_exp_data_initialized = false;
|
|
|
|
static base::Mutex* math_exp_data_mutex = NULL;
|
|
|
|
static double* math_exp_constants_array = NULL;
|
|
|
|
static double* math_exp_log_table_array = NULL;
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of AssemblerBase
|
|
|
|
|
|
|
|
AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size)
|
|
|
|
: isolate_(isolate),
|
|
|
|
jit_cookie_(0),
|
|
|
|
enabled_cpu_features_(0),
|
|
|
|
emit_debug_code_(FLAG_debug_code),
|
|
|
|
predictable_code_size_(false),
|
|
|
|
// We may use the assembler without an isolate.
|
|
|
|
serializer_enabled_(isolate && isolate->serializer_enabled()),
|
|
|
|
constant_pool_available_(false) {
|
|
|
|
if (FLAG_mask_constants_with_cookie && isolate != NULL) {
|
|
|
|
jit_cookie_ = isolate->random_number_generator()->NextInt();
|
|
|
|
}
|
|
|
|
own_buffer_ = buffer == NULL;
|
|
|
|
if (buffer_size == 0) buffer_size = kMinimalBufferSize;
|
|
|
|
DCHECK(buffer_size > 0);
|
|
|
|
if (own_buffer_) buffer = NewArray<byte>(buffer_size);
|
|
|
|
buffer_ = static_cast<byte*>(buffer);
|
|
|
|
buffer_size_ = buffer_size;
|
|
|
|
|
|
|
|
pc_ = buffer_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
AssemblerBase::~AssemblerBase() {
|
|
|
|
if (own_buffer_) DeleteArray(buffer_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssemblerBase::FlushICache(Isolate* isolate, void* start, size_t size) {
|
|
|
|
if (size == 0) return;
|
|
|
|
if (CpuFeatures::IsSupported(COHERENT_CACHE)) return;
|
|
|
|
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
|
|
Simulator::FlushICache(isolate->simulator_i_cache(), start, size);
|
|
|
|
#else
|
|
|
|
CpuFeatures::FlushICache(start, size);
|
|
|
|
#endif // USE_SIMULATOR
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AssemblerBase::FlushICacheWithoutIsolate(void* start, size_t size) {
|
|
|
|
// Ideally we would just call Isolate::Current() here. However, this flushes
|
|
|
|
// out issues because we usually only need the isolate when in the simulator.
|
|
|
|
Isolate* isolate;
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
|
|
isolate = Isolate::Current();
|
|
|
|
#else
|
|
|
|
isolate = nullptr;
|
|
|
|
#endif // USE_SIMULATOR
|
|
|
|
FlushICache(isolate, start, size);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of PredictableCodeSizeScope
|
|
|
|
|
|
|
|
PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler)
|
|
|
|
: PredictableCodeSizeScope(assembler, -1) {}
|
|
|
|
|
|
|
|
|
|
|
|
PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler,
|
|
|
|
int expected_size)
|
|
|
|
: assembler_(assembler),
|
|
|
|
expected_size_(expected_size),
|
|
|
|
start_offset_(assembler->pc_offset()),
|
|
|
|
old_value_(assembler->predictable_code_size()) {
|
|
|
|
assembler_->set_predictable_code_size(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
PredictableCodeSizeScope::~PredictableCodeSizeScope() {
|
|
|
|
// TODO(svenpanne) Remove the 'if' when everything works.
|
|
|
|
if (expected_size_ >= 0) {
|
|
|
|
CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_);
|
|
|
|
}
|
|
|
|
assembler_->set_predictable_code_size(old_value_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of CpuFeatureScope
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f)
|
|
|
|
: assembler_(assembler) {
|
|
|
|
DCHECK(CpuFeatures::IsSupported(f));
|
|
|
|
old_enabled_ = assembler_->enabled_cpu_features();
|
|
|
|
uint64_t mask = static_cast<uint64_t>(1) << f;
|
|
|
|
// TODO(svenpanne) This special case below doesn't belong here!
|
|
|
|
#if V8_TARGET_ARCH_ARM
|
|
|
|
// ARMv7 is implied by VFP3.
|
|
|
|
if (f == VFP3) {
|
|
|
|
mask |= static_cast<uint64_t>(1) << ARMv7;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
assembler_->set_enabled_cpu_features(old_enabled_ | mask);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CpuFeatureScope::~CpuFeatureScope() {
|
|
|
|
assembler_->set_enabled_cpu_features(old_enabled_);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
bool CpuFeatures::initialized_ = false;
|
|
|
|
unsigned CpuFeatures::supported_ = 0;
|
|
|
|
unsigned CpuFeatures::cache_line_size_ = 0;
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of Label
|
|
|
|
|
|
|
|
int Label::pos() const {
|
|
|
|
if (pos_ < 0) return -pos_ - 1;
|
|
|
|
if (pos_ > 0) return pos_ - 1;
|
|
|
|
UNREACHABLE();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of RelocInfoWriter and RelocIterator
|
|
|
|
//
|
|
|
|
// Relocation information is written backwards in memory, from high addresses
|
|
|
|
// towards low addresses, byte by byte. Therefore, in the encodings listed
|
|
|
|
// below, the first byte listed it at the highest address, and successive
|
|
|
|
// bytes in the record are at progressively lower addresses.
|
|
|
|
//
|
|
|
|
// Encoding
|
|
|
|
//
|
|
|
|
// The most common modes are given single-byte encodings. Also, it is
|
|
|
|
// easy to identify the type of reloc info and skip unwanted modes in
|
|
|
|
// an iteration.
|
|
|
|
//
|
|
|
|
// The encoding relies on the fact that there are fewer than 14
|
|
|
|
// different relocation modes using standard non-compact encoding.
|
|
|
|
//
|
|
|
|
// The first byte of a relocation record has a tag in its low 2 bits:
|
|
|
|
// Here are the record schemes, depending on the low tag and optional higher
|
|
|
|
// tags.
|
|
|
|
//
|
|
|
|
// Low tag:
|
|
|
|
// 00: embedded_object: [6-bit pc delta] 00
|
|
|
|
//
|
|
|
|
// 01: code_target: [6-bit pc delta] 01
|
|
|
|
//
|
|
|
|
// 10: short_data_record: [6-bit pc delta] 10 followed by
|
|
|
|
// [6-bit data delta] [2-bit data type tag]
|
|
|
|
//
|
|
|
|
// 11: long_record [6 bit reloc mode] 11
|
|
|
|
// followed by pc delta
|
|
|
|
// followed by optional data depending on type.
|
|
|
|
//
|
|
|
|
// 2-bit data type tags, used in short_data_record and data_jump long_record:
|
|
|
|
// code_target_with_id: 00
|
|
|
|
// position: 01
|
|
|
|
// statement_position: 10
|
|
|
|
// deopt_reason: 11
|
|
|
|
//
|
|
|
|
// If a pc delta exceeds 6 bits, it is split into a remainder that fits into
|
|
|
|
// 6 bits and a part that does not. The latter is encoded as a long record
|
|
|
|
// with PC_JUMP as pseudo reloc info mode. The former is encoded as part of
|
|
|
|
// the following record in the usual way. The long pc jump record has variable
|
|
|
|
// length:
|
|
|
|
// pc-jump: [PC_JUMP] 11
|
|
|
|
// [7 bits data] 0
|
|
|
|
// ...
|
|
|
|
// [7 bits data] 1
|
|
|
|
// (Bits 6..31 of pc delta, with leading zeroes
|
|
|
|
// dropped, and last non-zero chunk tagged with 1.)
|
|
|
|
|
|
|
|
const int kTagBits = 2;
|
|
|
|
const int kTagMask = (1 << kTagBits) - 1;
|
|
|
|
const int kLongTagBits = 6;
|
|
|
|
const int kShortDataTypeTagBits = 2;
|
|
|
|
const int kShortDataBits = kBitsPerByte - kShortDataTypeTagBits;
|
|
|
|
|
|
|
|
const int kEmbeddedObjectTag = 0;
|
|
|
|
const int kCodeTargetTag = 1;
|
|
|
|
const int kLocatableTag = 2;
|
|
|
|
const int kDefaultTag = 3;
|
|
|
|
|
|
|
|
const int kSmallPCDeltaBits = kBitsPerByte - kTagBits;
|
|
|
|
const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1;
|
|
|
|
const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask;
|
|
|
|
|
|
|
|
const int kChunkBits = 7;
|
|
|
|
const int kChunkMask = (1 << kChunkBits) - 1;
|
|
|
|
const int kLastChunkTagBits = 1;
|
|
|
|
const int kLastChunkTagMask = 1;
|
|
|
|
const int kLastChunkTag = 1;
|
|
|
|
|
|
|
|
const int kCodeWithIdTag = 0;
|
|
|
|
const int kNonstatementPositionTag = 1;
|
|
|
|
const int kStatementPositionTag = 2;
|
|
|
|
const int kDeoptReasonTag = 3;
|
|
|
|
|
|
|
|
|
|
|
|
uint32_t RelocInfoWriter::WriteLongPCJump(uint32_t pc_delta) {
|
|
|
|
// Return if the pc_delta can fit in kSmallPCDeltaBits bits.
|
|
|
|
// Otherwise write a variable length PC jump for the bits that do
|
|
|
|
// not fit in the kSmallPCDeltaBits bits.
|
|
|
|
if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta;
|
|
|
|
WriteMode(RelocInfo::PC_JUMP);
|
|
|
|
uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits;
|
|
|
|
DCHECK(pc_jump > 0);
|
|
|
|
// Write kChunkBits size chunks of the pc_jump.
|
|
|
|
for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) {
|
|
|
|
byte b = pc_jump & kChunkMask;
|
|
|
|
*--pos_ = b << kLastChunkTagBits;
|
|
|
|
}
|
|
|
|
// Tag the last chunk so it can be identified.
|
|
|
|
*pos_ = *pos_ | kLastChunkTag;
|
|
|
|
// Return the remaining kSmallPCDeltaBits of the pc_delta.
|
|
|
|
return pc_delta & kSmallPCDeltaMask;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WriteShortTaggedPC(uint32_t pc_delta, int tag) {
|
|
|
|
// Write a byte of tagged pc-delta, possibly preceded by an explicit pc-jump.
|
|
|
|
pc_delta = WriteLongPCJump(pc_delta);
|
|
|
|
*--pos_ = pc_delta << kTagBits | tag;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WriteShortTaggedData(intptr_t data_delta, int tag) {
|
|
|
|
*--pos_ = static_cast<byte>(data_delta << kShortDataTypeTagBits | tag);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WriteMode(RelocInfo::Mode rmode) {
|
|
|
|
STATIC_ASSERT(RelocInfo::NUMBER_OF_MODES <= (1 << kLongTagBits));
|
|
|
|
*--pos_ = static_cast<int>((rmode << kTagBits) | kDefaultTag);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode) {
|
|
|
|
// Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump.
|
|
|
|
pc_delta = WriteLongPCJump(pc_delta);
|
|
|
|
WriteMode(rmode);
|
|
|
|
*--pos_ = pc_delta;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WriteIntData(int number) {
|
|
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
|
|
*--pos_ = static_cast<byte>(number);
|
|
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
|
|
number = number >> kBitsPerByte;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WriteData(intptr_t data_delta) {
|
|
|
|
for (int i = 0; i < kIntptrSize; i++) {
|
|
|
|
*--pos_ = static_cast<byte>(data_delta);
|
|
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
|
|
data_delta = data_delta >> kBitsPerByte;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::WritePosition(int pc_delta, int pos_delta,
|
|
|
|
RelocInfo::Mode rmode) {
|
|
|
|
int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag
|
|
|
|
: kStatementPositionTag;
|
|
|
|
// Check if delta is small enough to fit in a tagged byte.
|
|
|
|
if (is_intn(pos_delta, kShortDataBits)) {
|
|
|
|
WriteShortTaggedPC(pc_delta, kLocatableTag);
|
|
|
|
WriteShortTaggedData(pos_delta, pos_type_tag);
|
|
|
|
} else {
|
|
|
|
// Otherwise, use costly encoding.
|
|
|
|
WriteModeAndPC(pc_delta, rmode);
|
|
|
|
WriteIntData(pos_delta);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::FlushPosition() {
|
|
|
|
if (!next_position_candidate_flushed_) {
|
|
|
|
WritePosition(next_position_candidate_pc_delta_,
|
|
|
|
next_position_candidate_pos_delta_, RelocInfo::POSITION);
|
|
|
|
next_position_candidate_pos_delta_ = 0;
|
|
|
|
next_position_candidate_pc_delta_ = 0;
|
|
|
|
next_position_candidate_flushed_ = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfoWriter::Write(const RelocInfo* rinfo) {
|
|
|
|
RelocInfo::Mode rmode = rinfo->rmode();
|
|
|
|
if (rmode != RelocInfo::POSITION) {
|
|
|
|
FlushPosition();
|
|
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
|
|
byte* begin_pos = pos_;
|
|
|
|
#endif
|
|
|
|
DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES);
|
|
|
|
DCHECK(rinfo->pc() - last_pc_ >= 0);
|
|
|
|
// Use unsigned delta-encoding for pc.
|
|
|
|
uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_);
|
|
|
|
|
|
|
|
// The two most common modes are given small tags, and usually fit in a byte.
|
|
|
|
if (rmode == RelocInfo::EMBEDDED_OBJECT) {
|
|
|
|
WriteShortTaggedPC(pc_delta, kEmbeddedObjectTag);
|
|
|
|
} else if (rmode == RelocInfo::CODE_TARGET) {
|
|
|
|
WriteShortTaggedPC(pc_delta, kCodeTargetTag);
|
|
|
|
DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize);
|
|
|
|
} else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
|
|
|
|
// Use signed delta-encoding for id.
|
|
|
|
DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
|
|
|
|
int id_delta = static_cast<int>(rinfo->data()) - last_id_;
|
|
|
|
// Check if delta is small enough to fit in a tagged byte.
|
|
|
|
if (is_intn(id_delta, kShortDataBits)) {
|
|
|
|
WriteShortTaggedPC(pc_delta, kLocatableTag);
|
|
|
|
WriteShortTaggedData(id_delta, kCodeWithIdTag);
|
|
|
|
} else {
|
|
|
|
// Otherwise, use costly encoding.
|
|
|
|
WriteModeAndPC(pc_delta, rmode);
|
|
|
|
WriteIntData(id_delta);
|
|
|
|
}
|
|
|
|
last_id_ = static_cast<int>(rinfo->data());
|
|
|
|
} else if (rmode == RelocInfo::DEOPT_REASON) {
|
|
|
|
DCHECK(rinfo->data() < (1 << kShortDataBits));
|
|
|
|
WriteShortTaggedPC(pc_delta, kLocatableTag);
|
|
|
|
WriteShortTaggedData(rinfo->data(), kDeoptReasonTag);
|
|
|
|
} else if (RelocInfo::IsPosition(rmode)) {
|
|
|
|
// Use signed delta-encoding for position.
|
|
|
|
DCHECK_EQ(static_cast<int>(rinfo->data()), rinfo->data());
|
|
|
|
int pos_delta = static_cast<int>(rinfo->data()) - last_position_;
|
|
|
|
if (rmode == RelocInfo::STATEMENT_POSITION) {
|
|
|
|
WritePosition(pc_delta, pos_delta, rmode);
|
|
|
|
} else {
|
|
|
|
DCHECK_EQ(rmode, RelocInfo::POSITION);
|
|
|
|
if (pc_delta != 0 || last_mode_ != RelocInfo::POSITION) {
|
|
|
|
FlushPosition();
|
|
|
|
next_position_candidate_pc_delta_ = pc_delta;
|
|
|
|
next_position_candidate_pos_delta_ = pos_delta;
|
|
|
|
} else {
|
|
|
|
next_position_candidate_pos_delta_ += pos_delta;
|
|
|
|
}
|
|
|
|
next_position_candidate_flushed_ = false;
|
|
|
|
}
|
|
|
|
last_position_ = static_cast<int>(rinfo->data());
|
|
|
|
} else {
|
|
|
|
WriteModeAndPC(pc_delta, rmode);
|
|
|
|
if (RelocInfo::IsComment(rmode)) {
|
|
|
|
WriteData(rinfo->data());
|
|
|
|
} else if (RelocInfo::IsConstPool(rmode) ||
|
|
|
|
RelocInfo::IsVeneerPool(rmode) ||
|
|
|
|
RelocInfo::IsDebugBreakSlotAtCall(rmode)) {
|
|
|
|
WriteIntData(static_cast<int>(rinfo->data()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
last_pc_ = rinfo->pc();
|
|
|
|
last_mode_ = rmode;
|
|
|
|
#ifdef DEBUG
|
|
|
|
DCHECK(begin_pos - pos_ <= kMaxSize);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline int RelocIterator::AdvanceGetTag() {
|
|
|
|
return *--pos_ & kTagMask;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline RelocInfo::Mode RelocIterator::GetMode() {
|
|
|
|
return static_cast<RelocInfo::Mode>((*pos_ >> kTagBits) &
|
|
|
|
((1 << kLongTagBits) - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedPC() {
|
|
|
|
rinfo_.pc_ += *pos_ >> kTagBits;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void RelocIterator::AdvanceReadPC() {
|
|
|
|
rinfo_.pc_ += *--pos_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocIterator::AdvanceReadId() {
|
|
|
|
int x = 0;
|
|
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
|
|
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
|
|
|
|
}
|
|
|
|
last_id_ += x;
|
|
|
|
rinfo_.data_ = last_id_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocIterator::AdvanceReadInt() {
|
|
|
|
int x = 0;
|
|
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
|
|
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
|
|
|
|
}
|
|
|
|
rinfo_.data_ = x;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocIterator::AdvanceReadPosition() {
|
|
|
|
int x = 0;
|
|
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
|
|
x |= static_cast<int>(*--pos_) << i * kBitsPerByte;
|
|
|
|
}
|
|
|
|
last_position_ += x;
|
|
|
|
rinfo_.data_ = last_position_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocIterator::AdvanceReadData() {
|
|
|
|
intptr_t x = 0;
|
|
|
|
for (int i = 0; i < kIntptrSize; i++) {
|
|
|
|
x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte;
|
|
|
|
}
|
|
|
|
rinfo_.data_ = x;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocIterator::AdvanceReadLongPCJump() {
|
|
|
|
// Read the 32-kSmallPCDeltaBits most significant bits of the
|
|
|
|
// pc jump in kChunkBits bit chunks and shift them into place.
|
|
|
|
// Stop when the last chunk is encountered.
|
|
|
|
uint32_t pc_jump = 0;
|
|
|
|
for (int i = 0; i < kIntSize; i++) {
|
|
|
|
byte pc_jump_part = *--pos_;
|
|
|
|
pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits;
|
|
|
|
if ((pc_jump_part & kLastChunkTagMask) == 1) break;
|
|
|
|
}
|
|
|
|
// The least significant kSmallPCDeltaBits bits will be added
|
|
|
|
// later.
|
|
|
|
rinfo_.pc_ += pc_jump << kSmallPCDeltaBits;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline int RelocIterator::GetShortDataTypeTag() {
|
|
|
|
return *pos_ & ((1 << kShortDataTypeTagBits) - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedId() {
|
|
|
|
int8_t signed_b = *pos_;
|
|
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
|
|
last_id_ += signed_b >> kShortDataTypeTagBits;
|
|
|
|
rinfo_.data_ = last_id_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedPosition() {
|
|
|
|
int8_t signed_b = *pos_;
|
|
|
|
// Signed right shift is arithmetic shift. Tested in test-utils.cc.
|
|
|
|
last_position_ += signed_b >> kShortDataTypeTagBits;
|
|
|
|
rinfo_.data_ = last_position_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline void RelocIterator::ReadShortTaggedData() {
|
|
|
|
uint8_t unsigned_b = *pos_;
|
|
|
|
rinfo_.data_ = unsigned_b >> kTagBits;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline RelocInfo::Mode GetPositionModeFromTag(int tag) {
|
|
|
|
DCHECK(tag == kNonstatementPositionTag ||
|
|
|
|
tag == kStatementPositionTag);
|
|
|
|
return (tag == kNonstatementPositionTag) ?
|
|
|
|
RelocInfo::POSITION :
|
|
|
|
RelocInfo::STATEMENT_POSITION;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocIterator::next() {
|
|
|
|
DCHECK(!done());
|
|
|
|
// Basically, do the opposite of RelocInfoWriter::Write.
|
|
|
|
// Reading of data is as far as possible avoided for unwanted modes,
|
|
|
|
// but we must always update the pc.
|
|
|
|
//
|
|
|
|
// We exit this loop by returning when we find a mode we want.
|
|
|
|
while (pos_ > end_) {
|
|
|
|
int tag = AdvanceGetTag();
|
|
|
|
if (tag == kEmbeddedObjectTag) {
|
|
|
|
ReadShortTaggedPC();
|
|
|
|
if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return;
|
|
|
|
} else if (tag == kCodeTargetTag) {
|
|
|
|
ReadShortTaggedPC();
|
|
|
|
if (SetMode(RelocInfo::CODE_TARGET)) return;
|
|
|
|
} else if (tag == kLocatableTag) {
|
|
|
|
ReadShortTaggedPC();
|
|
|
|
Advance();
|
|
|
|
int data_type_tag = GetShortDataTypeTag();
|
|
|
|
if (data_type_tag == kCodeWithIdTag) {
|
|
|
|
if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) {
|
|
|
|
ReadShortTaggedId();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else if (data_type_tag == kDeoptReasonTag) {
|
|
|
|
if (SetMode(RelocInfo::DEOPT_REASON)) {
|
|
|
|
ReadShortTaggedData();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
DCHECK(data_type_tag == kNonstatementPositionTag ||
|
|
|
|
data_type_tag == kStatementPositionTag);
|
|
|
|
if (mode_mask_ & RelocInfo::kPositionMask) {
|
|
|
|
// Always update the position if we are interested in either
|
|
|
|
// statement positions or non-statement positions.
|
|
|
|
ReadShortTaggedPosition();
|
|
|
|
if (SetMode(GetPositionModeFromTag(data_type_tag))) return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
DCHECK(tag == kDefaultTag);
|
|
|
|
RelocInfo::Mode rmode = GetMode();
|
|
|
|
if (rmode == RelocInfo::PC_JUMP) {
|
|
|
|
AdvanceReadLongPCJump();
|
|
|
|
} else {
|
|
|
|
AdvanceReadPC();
|
|
|
|
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
|
|
|
|
if (SetMode(rmode)) {
|
|
|
|
AdvanceReadId();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Advance(kIntSize);
|
|
|
|
} else if (RelocInfo::IsComment(rmode)) {
|
|
|
|
if (SetMode(rmode)) {
|
|
|
|
AdvanceReadData();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Advance(kIntptrSize);
|
|
|
|
} else if (RelocInfo::IsPosition(rmode)) {
|
|
|
|
if (mode_mask_ & RelocInfo::kPositionMask) {
|
|
|
|
// Always update the position if we are interested in either
|
|
|
|
// statement positions or non-statement positions.
|
|
|
|
AdvanceReadPosition();
|
|
|
|
if (SetMode(rmode)) return;
|
|
|
|
} else {
|
|
|
|
Advance(kIntSize);
|
|
|
|
}
|
|
|
|
} else if (RelocInfo::IsConstPool(rmode) ||
|
|
|
|
RelocInfo::IsVeneerPool(rmode) ||
|
|
|
|
RelocInfo::IsDebugBreakSlotAtCall(rmode)) {
|
|
|
|
if (SetMode(rmode)) {
|
|
|
|
AdvanceReadInt();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Advance(kIntSize);
|
|
|
|
} else if (SetMode(static_cast<RelocInfo::Mode>(rmode))) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (code_age_sequence_ != NULL) {
|
|
|
|
byte* old_code_age_sequence = code_age_sequence_;
|
|
|
|
code_age_sequence_ = NULL;
|
|
|
|
if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) {
|
|
|
|
rinfo_.data_ = 0;
|
|
|
|
rinfo_.pc_ = old_code_age_sequence;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
done_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
RelocIterator::RelocIterator(Code* code, int mode_mask) {
|
|
|
|
rinfo_.host_ = code;
|
|
|
|
rinfo_.pc_ = code->instruction_start();
|
|
|
|
rinfo_.data_ = 0;
|
|
|
|
// Relocation info is read backwards.
|
|
|
|
pos_ = code->relocation_start() + code->relocation_size();
|
|
|
|
end_ = code->relocation_start();
|
|
|
|
done_ = false;
|
|
|
|
mode_mask_ = mode_mask;
|
|
|
|
last_id_ = 0;
|
|
|
|
last_position_ = 0;
|
|
|
|
byte* sequence = code->FindCodeAgeSequence();
|
|
|
|
// We get the isolate from the map, because at serialization time
|
|
|
|
// the code pointer has been cloned and isn't really in heap space.
|
|
|
|
Isolate* isolate = code->map()->GetIsolate();
|
|
|
|
if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) {
|
|
|
|
code_age_sequence_ = sequence;
|
|
|
|
} else {
|
|
|
|
code_age_sequence_ = NULL;
|
|
|
|
}
|
|
|
|
if (mode_mask_ == 0) pos_ = end_;
|
|
|
|
next();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) {
|
|
|
|
rinfo_.pc_ = desc.buffer;
|
|
|
|
rinfo_.data_ = 0;
|
|
|
|
// Relocation info is read backwards.
|
|
|
|
pos_ = desc.buffer + desc.buffer_size;
|
|
|
|
end_ = pos_ - desc.reloc_size;
|
|
|
|
done_ = false;
|
|
|
|
mode_mask_ = mode_mask;
|
|
|
|
last_id_ = 0;
|
|
|
|
last_position_ = 0;
|
|
|
|
code_age_sequence_ = NULL;
|
|
|
|
if (mode_mask_ == 0) pos_ = end_;
|
|
|
|
next();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of RelocInfo
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
bool RelocInfo::RequiresRelocation(const CodeDesc& desc) {
|
|
|
|
// Ensure there are no code targets or embedded objects present in the
|
|
|
|
// deoptimization entries, they would require relocation after code
|
|
|
|
// generation.
|
|
|
|
int mode_mask = RelocInfo::kCodeTargetMask |
|
|
|
|
RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
|
|
|
|
RelocInfo::ModeMask(RelocInfo::CELL) |
|
|
|
|
RelocInfo::kApplyMask;
|
|
|
|
RelocIterator it(desc, mode_mask);
|
|
|
|
return !it.done();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef ENABLE_DISASSEMBLER
|
|
|
|
const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) {
|
|
|
|
switch (rmode) {
|
|
|
|
case NONE32:
|
|
|
|
return "no reloc 32";
|
|
|
|
case NONE64:
|
|
|
|
return "no reloc 64";
|
|
|
|
case EMBEDDED_OBJECT:
|
|
|
|
return "embedded object";
|
|
|
|
case CONSTRUCT_CALL:
|
|
|
|
return "code target (js construct call)";
|
|
|
|
case DEBUGGER_STATEMENT:
|
|
|
|
return "debugger statement";
|
|
|
|
case CODE_TARGET:
|
|
|
|
return "code target";
|
|
|
|
case CODE_TARGET_WITH_ID:
|
|
|
|
return "code target with id";
|
|
|
|
case CELL:
|
|
|
|
return "property cell";
|
|
|
|
case RUNTIME_ENTRY:
|
|
|
|
return "runtime entry";
|
|
|
|
case COMMENT:
|
|
|
|
return "comment";
|
|
|
|
case POSITION:
|
|
|
|
return "position";
|
|
|
|
case STATEMENT_POSITION:
|
|
|
|
return "statement position";
|
|
|
|
case EXTERNAL_REFERENCE:
|
|
|
|
return "external reference";
|
|
|
|
case INTERNAL_REFERENCE:
|
|
|
|
return "internal reference";
|
|
|
|
case INTERNAL_REFERENCE_ENCODED:
|
|
|
|
return "encoded internal reference";
|
|
|
|
case DEOPT_REASON:
|
|
|
|
return "deopt reason";
|
|
|
|
case CONST_POOL:
|
|
|
|
return "constant pool";
|
|
|
|
case VENEER_POOL:
|
|
|
|
return "veneer pool";
|
|
|
|
case DEBUG_BREAK_SLOT_AT_POSITION:
|
|
|
|
return "debug break slot at position";
|
|
|
|
case DEBUG_BREAK_SLOT_AT_RETURN:
|
|
|
|
return "debug break slot at return";
|
|
|
|
case DEBUG_BREAK_SLOT_AT_CALL:
|
|
|
|
return "debug break slot at call";
|
|
|
|
case DEBUG_BREAK_SLOT_AT_CONSTRUCT_CALL:
|
|
|
|
return "debug break slot at construct call";
|
|
|
|
case CODE_AGE_SEQUENCE:
|
|
|
|
return "code age sequence";
|
|
|
|
case GENERATOR_CONTINUATION:
|
|
|
|
return "generator continuation";
|
|
|
|
case NUMBER_OF_MODES:
|
|
|
|
case PC_JUMP:
|
|
|
|
UNREACHABLE();
|
|
|
|
return "number_of_modes";
|
|
|
|
}
|
|
|
|
return "unknown relocation type";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::Print(Isolate* isolate, std::ostream& os) { // NOLINT
|
|
|
|
os << static_cast<const void*>(pc_) << " " << RelocModeName(rmode_);
|
|
|
|
if (IsComment(rmode_)) {
|
|
|
|
os << " (" << reinterpret_cast<char*>(data_) << ")";
|
|
|
|
} else if (rmode_ == DEOPT_REASON) {
|
|
|
|
os << " (" << Deoptimizer::GetDeoptReason(
|
|
|
|
static_cast<Deoptimizer::DeoptReason>(data_)) << ")";
|
|
|
|
} else if (rmode_ == EMBEDDED_OBJECT) {
|
|
|
|
os << " (" << Brief(target_object()) << ")";
|
|
|
|
} else if (rmode_ == EXTERNAL_REFERENCE) {
|
|
|
|
ExternalReferenceEncoder ref_encoder(isolate);
|
|
|
|
os << " ("
|
|
|
|
<< ref_encoder.NameOfAddress(isolate, target_external_reference())
|
|
|
|
<< ") (" << static_cast<const void*>(target_external_reference())
|
|
|
|
<< ")";
|
|
|
|
} else if (IsCodeTarget(rmode_)) {
|
|
|
|
Code* code = Code::GetCodeFromTargetAddress(target_address());
|
|
|
|
os << " (" << Code::Kind2String(code->kind()) << ") ("
|
|
|
|
<< static_cast<const void*>(target_address()) << ")";
|
|
|
|
if (rmode_ == CODE_TARGET_WITH_ID) {
|
|
|
|
os << " (id=" << static_cast<int>(data_) << ")";
|
|
|
|
}
|
|
|
|
} else if (IsPosition(rmode_)) {
|
|
|
|
os << " (" << data() << ")";
|
|
|
|
} else if (IsRuntimeEntry(rmode_) &&
|
|
|
|
isolate->deoptimizer_data() != NULL) {
|
|
|
|
// Depotimization bailouts are stored as runtime entries.
|
|
|
|
int id = Deoptimizer::GetDeoptimizationId(
|
|
|
|
isolate, target_address(), Deoptimizer::EAGER);
|
|
|
|
if (id != Deoptimizer::kNotDeoptimizationEntry) {
|
|
|
|
os << " (deoptimization bailout " << id << ")";
|
|
|
|
}
|
|
|
|
} else if (IsConstPool(rmode_)) {
|
|
|
|
os << " (size " << static_cast<int>(data_) << ")";
|
|
|
|
}
|
|
|
|
|
|
|
|
os << "\n";
|
|
|
|
}
|
|
|
|
#endif // ENABLE_DISASSEMBLER
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef VERIFY_HEAP
|
|
|
|
void RelocInfo::Verify(Isolate* isolate) {
|
|
|
|
switch (rmode_) {
|
|
|
|
case EMBEDDED_OBJECT:
|
|
|
|
Object::VerifyPointer(target_object());
|
|
|
|
break;
|
|
|
|
case CELL:
|
|
|
|
Object::VerifyPointer(target_cell());
|
|
|
|
break;
|
|
|
|
case DEBUGGER_STATEMENT:
|
|
|
|
case CONSTRUCT_CALL:
|
|
|
|
case CODE_TARGET_WITH_ID:
|
|
|
|
case CODE_TARGET: {
|
|
|
|
// convert inline target address to code object
|
|
|
|
Address addr = target_address();
|
|
|
|
CHECK(addr != NULL);
|
|
|
|
// Check that we can find the right code object.
|
|
|
|
Code* code = Code::GetCodeFromTargetAddress(addr);
|
|
|
|
Object* found = isolate->FindCodeObject(addr);
|
|
|
|
CHECK(found->IsCode());
|
|
|
|
CHECK(code->address() == HeapObject::cast(found)->address());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case INTERNAL_REFERENCE:
|
|
|
|
case INTERNAL_REFERENCE_ENCODED: {
|
|
|
|
Address target = target_internal_reference();
|
|
|
|
Address pc = target_internal_reference_address();
|
|
|
|
Code* code = Code::cast(isolate->FindCodeObject(pc));
|
|
|
|
CHECK(target >= code->instruction_start());
|
|
|
|
CHECK(target <= code->instruction_end());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RUNTIME_ENTRY:
|
|
|
|
case COMMENT:
|
|
|
|
case POSITION:
|
|
|
|
case STATEMENT_POSITION:
|
|
|
|
case EXTERNAL_REFERENCE:
|
|
|
|
case DEOPT_REASON:
|
|
|
|
case CONST_POOL:
|
|
|
|
case VENEER_POOL:
|
|
|
|
case DEBUG_BREAK_SLOT_AT_POSITION:
|
|
|
|
case DEBUG_BREAK_SLOT_AT_RETURN:
|
|
|
|
case DEBUG_BREAK_SLOT_AT_CALL:
|
|
|
|
case DEBUG_BREAK_SLOT_AT_CONSTRUCT_CALL:
|
|
|
|
case GENERATOR_CONTINUATION:
|
|
|
|
case NONE32:
|
|
|
|
case NONE64:
|
|
|
|
break;
|
|
|
|
case NUMBER_OF_MODES:
|
|
|
|
case PC_JUMP:
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
case CODE_AGE_SEQUENCE:
|
|
|
|
DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif // VERIFY_HEAP
|
|
|
|
|
|
|
|
|
|
|
|
int RelocInfo::DebugBreakCallArgumentsCount(intptr_t data) {
|
|
|
|
return static_cast<int>(data);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of ExternalReference
|
|
|
|
|
|
|
|
void ExternalReference::SetUp() {
|
|
|
|
double_constants.min_int = kMinInt;
|
|
|
|
double_constants.one_half = 0.5;
|
|
|
|
double_constants.minus_one_half = -0.5;
|
|
|
|
double_constants.the_hole_nan = bit_cast<double>(kHoleNanInt64);
|
|
|
|
double_constants.negative_infinity = -V8_INFINITY;
|
|
|
|
double_constants.uint32_bias =
|
|
|
|
static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1;
|
|
|
|
|
|
|
|
math_exp_data_mutex = new base::Mutex();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ExternalReference::InitializeMathExpData() {
|
|
|
|
// Early return?
|
|
|
|
if (math_exp_data_initialized) return;
|
|
|
|
|
|
|
|
base::LockGuard<base::Mutex> lock_guard(math_exp_data_mutex);
|
|
|
|
if (!math_exp_data_initialized) {
|
|
|
|
// If this is changed, generated code must be adapted too.
|
|
|
|
const int kTableSizeBits = 11;
|
|
|
|
const int kTableSize = 1 << kTableSizeBits;
|
|
|
|
const double kTableSizeDouble = static_cast<double>(kTableSize);
|
|
|
|
|
|
|
|
math_exp_constants_array = new double[9];
|
|
|
|
// Input values smaller than this always return 0.
|
|
|
|
math_exp_constants_array[0] = -708.39641853226408;
|
|
|
|
// Input values larger than this always return +Infinity.
|
|
|
|
math_exp_constants_array[1] = 709.78271289338397;
|
|
|
|
math_exp_constants_array[2] = V8_INFINITY;
|
|
|
|
// The rest is black magic. Do not attempt to understand it. It is
|
|
|
|
// loosely based on the "expd" function published at:
|
|
|
|
// http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html
|
|
|
|
const double constant3 = (1 << kTableSizeBits) / std::log(2.0);
|
|
|
|
math_exp_constants_array[3] = constant3;
|
|
|
|
math_exp_constants_array[4] =
|
|
|
|
static_cast<double>(static_cast<int64_t>(3) << 51);
|
|
|
|
math_exp_constants_array[5] = 1 / constant3;
|
|
|
|
math_exp_constants_array[6] = 3.0000000027955394;
|
|
|
|
math_exp_constants_array[7] = 0.16666666685227835;
|
|
|
|
math_exp_constants_array[8] = 1;
|
|
|
|
|
|
|
|
math_exp_log_table_array = new double[kTableSize];
|
|
|
|
for (int i = 0; i < kTableSize; i++) {
|
|
|
|
double value = std::pow(2, i / kTableSizeDouble);
|
|
|
|
uint64_t bits = bit_cast<uint64_t, double>(value);
|
|
|
|
bits &= (static_cast<uint64_t>(1) << 52) - 1;
|
|
|
|
double mantissa = bit_cast<double, uint64_t>(bits);
|
|
|
|
math_exp_log_table_array[i] = mantissa;
|
|
|
|
}
|
|
|
|
|
|
|
|
math_exp_data_initialized = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ExternalReference::TearDownMathExpData() {
|
|
|
|
delete[] math_exp_constants_array;
|
|
|
|
math_exp_constants_array = NULL;
|
|
|
|
delete[] math_exp_log_table_array;
|
|
|
|
math_exp_log_table_array = NULL;
|
|
|
|
delete math_exp_data_mutex;
|
|
|
|
math_exp_data_mutex = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate)
|
|
|
|
: address_(Redirect(isolate, Builtins::c_function_address(id))) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(
|
|
|
|
ApiFunction* fun,
|
|
|
|
Type type = ExternalReference::BUILTIN_CALL,
|
|
|
|
Isolate* isolate = NULL)
|
|
|
|
: address_(Redirect(isolate, fun->address(), type)) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate)
|
|
|
|
: address_(isolate->builtins()->builtin_address(name)) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(Runtime::FunctionId id, Isolate* isolate)
|
|
|
|
: address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(const Runtime::Function* f,
|
|
|
|
Isolate* isolate)
|
|
|
|
: address_(Redirect(isolate, f->entry)) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::isolate_address(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(StatsCounter* counter)
|
|
|
|
: address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate)
|
|
|
|
: address_(isolate->get_address_from_id(id)) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference::ExternalReference(const SCTableReference& table_ref)
|
|
|
|
: address_(table_ref.address()) {}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::
|
|
|
|
incremental_marking_record_write_function(Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(
|
|
|
|
isolate,
|
|
|
|
FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::
|
|
|
|
store_buffer_overflow_function(Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(
|
|
|
|
isolate,
|
|
|
|
FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::delete_handle_scope_extensions(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(
|
|
|
|
isolate,
|
|
|
|
FUNCTION_ADDR(HandleScope::DeleteExtensions)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::get_date_field_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::get_make_code_young_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(
|
|
|
|
isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::get_mark_code_as_executed_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(
|
|
|
|
isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->date_cache()->stamp_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->stress_deopt_count_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::new_deoptimizer_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::compute_output_frames_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::log_enter_external_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::log_leave_external_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->keyed_lookup_cache()->keys_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::keyed_lookup_cache_field_offsets(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
isolate->keyed_lookup_cache()->field_offsets_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::roots_array_start(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->roots_array_start());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::allocation_sites_list_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->allocation_sites_list_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->stack_guard()->address_of_jslimit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_real_stack_limit(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->stack_guard()->address_of_real_jslimit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_limit(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->regexp_stack()->limit_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_start(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->NewSpaceStart());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->store_buffer_top_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_mask(Isolate* isolate) {
|
|
|
|
return ExternalReference(reinterpret_cast<Address>(
|
|
|
|
isolate->heap()->NewSpaceMask()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_allocation_top_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::new_space_allocation_limit_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::old_space_allocation_top_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->OldSpaceAllocationTopAddress());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::old_space_allocation_limit_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->heap()->OldSpaceAllocationLimitAddress());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_level_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(HandleScope::current_level_address(isolate));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_next_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(HandleScope::current_next_address(isolate));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::handle_scope_limit_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(HandleScope::current_limit_address(isolate));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::scheduled_exception_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->scheduled_exception_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_pending_message_obj(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->pending_message_obj_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_min_int() {
|
|
|
|
return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_one_half() {
|
|
|
|
return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_minus_one_half() {
|
|
|
|
return ExternalReference(
|
|
|
|
reinterpret_cast<void*>(&double_constants.minus_one_half));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_negative_infinity() {
|
|
|
|
return ExternalReference(
|
|
|
|
reinterpret_cast<void*>(&double_constants.negative_infinity));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_the_hole_nan() {
|
|
|
|
return ExternalReference(
|
|
|
|
reinterpret_cast<void*>(&double_constants.the_hole_nan));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_uint32_bias() {
|
|
|
|
return ExternalReference(
|
|
|
|
reinterpret_cast<void*>(&double_constants.uint32_bias));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->cpu_profiler()->is_profiling_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::invoke_function_callback(
|
|
|
|
Isolate* isolate) {
|
|
|
|
Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback);
|
|
|
|
ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL;
|
|
|
|
ApiFunction thunk_fun(thunk_address);
|
|
|
|
return ExternalReference(&thunk_fun, thunk_type, isolate);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::invoke_accessor_getter_callback(
|
|
|
|
Isolate* isolate) {
|
|
|
|
Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback);
|
|
|
|
ExternalReference::Type thunk_type =
|
|
|
|
ExternalReference::PROFILING_GETTER_CALL;
|
|
|
|
ApiFunction thunk_fun(thunk_address);
|
|
|
|
return ExternalReference(&thunk_fun, thunk_type, isolate);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef V8_INTERPRETED_REGEXP
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::re_check_stack_guard_state(
|
|
|
|
Isolate* isolate) {
|
|
|
|
Address function;
|
|
|
|
#if V8_TARGET_ARCH_X64
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_IA32
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_ARM64
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_ARM
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_PPC
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerPPC::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_MIPS
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_MIPS64
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState);
|
|
|
|
#elif V8_TARGET_ARCH_X87
|
|
|
|
function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState);
|
|
|
|
#else
|
|
|
|
UNREACHABLE();
|
|
|
|
#endif
|
|
|
|
return ExternalReference(Redirect(isolate, function));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack)));
|
|
|
|
}
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::re_case_insensitive_compare_uc16(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(
|
|
|
|
isolate,
|
|
|
|
FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16)));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::re_word_character_map() {
|
|
|
|
return ExternalReference(
|
|
|
|
NativeRegExpMacroAssembler::word_character_map_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_static_offsets_vector(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector()));
|
|
|
|
}
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_memory_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
isolate->regexp_stack()->memory_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::address_of_regexp_stack_memory_size(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->regexp_stack()->memory_size_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::math_log_double_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
typedef double (*d2d)(double x);
|
|
|
|
return ExternalReference(Redirect(isolate,
|
|
|
|
FUNCTION_ADDR(static_cast<d2d>(std::log)),
|
|
|
|
BUILTIN_FP_CALL));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::math_exp_constants(int constant_index) {
|
|
|
|
DCHECK(math_exp_data_initialized);
|
|
|
|
return ExternalReference(
|
|
|
|
reinterpret_cast<void*>(math_exp_constants_array + constant_index));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::math_exp_log_table() {
|
|
|
|
DCHECK(math_exp_data_initialized);
|
|
|
|
return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::page_flags(Page* page) {
|
|
|
|
return ExternalReference(reinterpret_cast<Address>(page) +
|
|
|
|
MemoryChunk::kFlagsOffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::ForDeoptEntry(Address entry) {
|
|
|
|
return ExternalReference(entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::cpu_features() {
|
|
|
|
DCHECK(CpuFeatures::initialized_);
|
|
|
|
return ExternalReference(&CpuFeatures::supported_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::debug_is_active_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->debug()->is_active_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::debug_after_break_target_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->debug()->after_break_target_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference
|
|
|
|
ExternalReference::debug_restarter_frame_function_pointer_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(
|
|
|
|
isolate->debug()->restarter_frame_function_pointer_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::vector_store_virtual_register(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->vector_store_virtual_register_address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double power_helper(double x, double y) {
|
|
|
|
int y_int = static_cast<int>(y);
|
|
|
|
if (y == y_int) {
|
|
|
|
return power_double_int(x, y_int); // Returns 1 if exponent is 0.
|
|
|
|
}
|
|
|
|
if (y == 0.5) {
|
|
|
|
return (std::isinf(x)) ? V8_INFINITY
|
|
|
|
: fast_sqrt(x + 0.0); // Convert -0 to +0.
|
|
|
|
}
|
|
|
|
if (y == -0.5) {
|
|
|
|
return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0.
|
|
|
|
}
|
|
|
|
return power_double_double(x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Helper function to compute x^y, where y is known to be an
|
|
|
|
// integer. Uses binary decomposition to limit the number of
|
|
|
|
// multiplications; see the discussion in "Hacker's Delight" by Henry
|
|
|
|
// S. Warren, Jr., figure 11-6, page 213.
|
|
|
|
double power_double_int(double x, int y) {
|
|
|
|
double m = (y < 0) ? 1 / x : x;
|
|
|
|
unsigned n = (y < 0) ? -y : y;
|
|
|
|
double p = 1;
|
|
|
|
while (n != 0) {
|
|
|
|
if ((n & 1) != 0) p *= m;
|
|
|
|
m *= m;
|
|
|
|
if ((n & 2) != 0) p *= m;
|
|
|
|
m *= m;
|
|
|
|
n >>= 2;
|
|
|
|
}
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double power_double_double(double x, double y) {
|
|
|
|
#if (defined(__MINGW64_VERSION_MAJOR) && \
|
|
|
|
(!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1)) || \
|
|
|
|
defined(V8_OS_AIX)
|
|
|
|
// MinGW64 and AIX have a custom implementation for pow. This handles certain
|
|
|
|
// special cases that are different.
|
|
|
|
if ((x == 0.0 || std::isinf(x)) && y != 0.0 && std::isfinite(y)) {
|
|
|
|
double f;
|
|
|
|
double result = ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0;
|
|
|
|
/* retain sign if odd integer exponent */
|
|
|
|
return ((std::modf(y, &f) == 0.0) && (static_cast<int64_t>(y) & 1))
|
|
|
|
? copysign(result, x)
|
|
|
|
: result;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (x == 2.0) {
|
|
|
|
int y_int = static_cast<int>(y);
|
|
|
|
if (y == y_int) {
|
|
|
|
return std::ldexp(1.0, y_int);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// The checks for special cases can be dropped in ia32 because it has already
|
|
|
|
// been done in generated code before bailing out here.
|
|
|
|
if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) {
|
|
|
|
return std::numeric_limits<double>::quiet_NaN();
|
|
|
|
}
|
|
|
|
return std::pow(x, y);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::power_double_double_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(isolate,
|
|
|
|
FUNCTION_ADDR(power_double_double),
|
|
|
|
BUILTIN_FP_FP_CALL));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::power_double_int_function(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(isolate,
|
|
|
|
FUNCTION_ADDR(power_double_int),
|
|
|
|
BUILTIN_FP_INT_CALL));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool EvalComparison(Token::Value op, double op1, double op2) {
|
|
|
|
DCHECK(Token::IsCompareOp(op));
|
|
|
|
switch (op) {
|
|
|
|
case Token::EQ:
|
|
|
|
case Token::EQ_STRICT: return (op1 == op2);
|
|
|
|
case Token::NE: return (op1 != op2);
|
|
|
|
case Token::LT: return (op1 < op2);
|
|
|
|
case Token::GT: return (op1 > op2);
|
|
|
|
case Token::LTE: return (op1 <= op2);
|
|
|
|
case Token::GTE: return (op1 >= op2);
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::mod_two_doubles_operation(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(Redirect(isolate,
|
|
|
|
FUNCTION_ADDR(modulo),
|
|
|
|
BUILTIN_FP_FP_CALL));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::debug_step_in_fp_address(
|
|
|
|
Isolate* isolate) {
|
|
|
|
return ExternalReference(isolate->debug()->step_in_fp_addr());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExternalReference ExternalReference::fixed_typed_array_base_data_offset() {
|
|
|
|
return ExternalReference(reinterpret_cast<void*>(
|
|
|
|
FixedTypedArrayBase::kDataOffset - kHeapObjectTag));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool operator==(ExternalReference lhs, ExternalReference rhs) {
|
|
|
|
return lhs.address() == rhs.address();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool operator!=(ExternalReference lhs, ExternalReference rhs) {
|
|
|
|
return !(lhs == rhs);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
size_t hash_value(ExternalReference reference) {
|
|
|
|
return base::hash<Address>()(reference.address());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::ostream& operator<<(std::ostream& os, ExternalReference reference) {
|
|
|
|
os << static_cast<const void*>(reference.address());
|
|
|
|
const Runtime::Function* fn = Runtime::FunctionForEntry(reference.address());
|
|
|
|
if (fn) os << "<" << fn->name << ".entry>";
|
|
|
|
return os;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PositionsRecorder::RecordPosition(int pos) {
|
|
|
|
DCHECK(pos != RelocInfo::kNoPosition);
|
|
|
|
DCHECK(pos >= 0);
|
|
|
|
state_.current_position = pos;
|
|
|
|
LOG_CODE_EVENT(assembler_->isolate(),
|
|
|
|
CodeLinePosInfoAddPositionEvent(jit_handler_data_,
|
|
|
|
assembler_->pc_offset(),
|
|
|
|
pos));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void PositionsRecorder::RecordStatementPosition(int pos) {
|
|
|
|
DCHECK(pos != RelocInfo::kNoPosition);
|
|
|
|
DCHECK(pos >= 0);
|
|
|
|
state_.current_statement_position = pos;
|
|
|
|
LOG_CODE_EVENT(assembler_->isolate(),
|
|
|
|
CodeLinePosInfoAddStatementPositionEvent(
|
|
|
|
jit_handler_data_,
|
|
|
|
assembler_->pc_offset(),
|
|
|
|
pos));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PositionsRecorder::WriteRecordedPositions() {
|
|
|
|
bool written = false;
|
|
|
|
|
|
|
|
// Write the statement position if it is different from what was written last
|
|
|
|
// time.
|
|
|
|
if (state_.current_statement_position != state_.written_statement_position) {
|
|
|
|
EnsureSpace ensure_space(assembler_);
|
|
|
|
assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION,
|
|
|
|
state_.current_statement_position);
|
|
|
|
state_.written_position = state_.current_statement_position;
|
|
|
|
state_.written_statement_position = state_.current_statement_position;
|
|
|
|
written = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Write the position if it is different from what was written last time and
|
|
|
|
// also different from the statement position that was just written.
|
|
|
|
if (state_.current_position != state_.written_position) {
|
|
|
|
EnsureSpace ensure_space(assembler_);
|
|
|
|
assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position);
|
|
|
|
state_.written_position = state_.current_position;
|
|
|
|
written = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return whether something was written.
|
|
|
|
return written;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ConstantPoolBuilder::ConstantPoolBuilder(int ptr_reach_bits,
|
|
|
|
int double_reach_bits) {
|
|
|
|
info_[ConstantPoolEntry::INTPTR].entries.reserve(64);
|
|
|
|
info_[ConstantPoolEntry::INTPTR].regular_reach_bits = ptr_reach_bits;
|
|
|
|
info_[ConstantPoolEntry::DOUBLE].regular_reach_bits = double_reach_bits;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ConstantPoolEntry::Access ConstantPoolBuilder::NextAccess(
|
|
|
|
ConstantPoolEntry::Type type) const {
|
|
|
|
const PerTypeEntryInfo& info = info_[type];
|
|
|
|
|
|
|
|
if (info.overflow()) return ConstantPoolEntry::OVERFLOWED;
|
|
|
|
|
|
|
|
int dbl_count = info_[ConstantPoolEntry::DOUBLE].regular_count;
|
|
|
|
int dbl_offset = dbl_count * kDoubleSize;
|
|
|
|
int ptr_count = info_[ConstantPoolEntry::INTPTR].regular_count;
|
|
|
|
int ptr_offset = ptr_count * kPointerSize + dbl_offset;
|
|
|
|
|
|
|
|
if (type == ConstantPoolEntry::DOUBLE) {
|
|
|
|
// Double overflow detection must take into account the reach for both types
|
|
|
|
int ptr_reach_bits = info_[ConstantPoolEntry::INTPTR].regular_reach_bits;
|
|
|
|
if (!is_uintn(dbl_offset, info.regular_reach_bits) ||
|
|
|
|
(ptr_count > 0 &&
|
|
|
|
!is_uintn(ptr_offset + kDoubleSize - kPointerSize, ptr_reach_bits))) {
|
|
|
|
return ConstantPoolEntry::OVERFLOWED;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
DCHECK(type == ConstantPoolEntry::INTPTR);
|
|
|
|
if (!is_uintn(ptr_offset, info.regular_reach_bits)) {
|
|
|
|
return ConstantPoolEntry::OVERFLOWED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return ConstantPoolEntry::REGULAR;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ConstantPoolEntry::Access ConstantPoolBuilder::AddEntry(
|
|
|
|
ConstantPoolEntry& entry, ConstantPoolEntry::Type type) {
|
|
|
|
DCHECK(!emitted_label_.is_bound());
|
|
|
|
PerTypeEntryInfo& info = info_[type];
|
|
|
|
const int entry_size = ConstantPoolEntry::size(type);
|
|
|
|
bool merged = false;
|
|
|
|
|
|
|
|
if (entry.sharing_ok()) {
|
|
|
|
// Try to merge entries
|
|
|
|
std::vector<ConstantPoolEntry>::iterator it = info.shared_entries.begin();
|
|
|
|
int end = static_cast<int>(info.shared_entries.size());
|
|
|
|
for (int i = 0; i < end; i++, it++) {
|
|
|
|
if ((entry_size == kPointerSize) ? entry.value() == it->value()
|
|
|
|
: entry.value64() == it->value64()) {
|
|
|
|
// Merge with found entry.
|
|
|
|
entry.set_merged_index(i);
|
|
|
|
merged = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// By definition, merged entries have regular access.
|
|
|
|
DCHECK(!merged || entry.merged_index() < info.regular_count);
|
|
|
|
ConstantPoolEntry::Access access =
|
|
|
|
(merged ? ConstantPoolEntry::REGULAR : NextAccess(type));
|
|
|
|
|
|
|
|
// Enforce an upper bound on search time by limiting the search to
|
|
|
|
// unique sharable entries which fit in the regular section.
|
|
|
|
if (entry.sharing_ok() && !merged && access == ConstantPoolEntry::REGULAR) {
|
|
|
|
info.shared_entries.push_back(entry);
|
|
|
|
} else {
|
|
|
|
info.entries.push_back(entry);
|
|
|
|
}
|
|
|
|
|
|
|
|
// We're done if we found a match or have already triggered the
|
|
|
|
// overflow state.
|
|
|
|
if (merged || info.overflow()) return access;
|
|
|
|
|
|
|
|
if (access == ConstantPoolEntry::REGULAR) {
|
|
|
|
info.regular_count++;
|
|
|
|
} else {
|
|
|
|
info.overflow_start = static_cast<int>(info.entries.size()) - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return access;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ConstantPoolBuilder::EmitSharedEntries(Assembler* assm,
|
|
|
|
ConstantPoolEntry::Type type) {
|
|
|
|
PerTypeEntryInfo& info = info_[type];
|
|
|
|
std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
|
|
|
|
const int entry_size = ConstantPoolEntry::size(type);
|
|
|
|
int base = emitted_label_.pos();
|
|
|
|
DCHECK(base > 0);
|
|
|
|
int shared_end = static_cast<int>(shared_entries.size());
|
|
|
|
std::vector<ConstantPoolEntry>::iterator shared_it = shared_entries.begin();
|
|
|
|
for (int i = 0; i < shared_end; i++, shared_it++) {
|
|
|
|
int offset = assm->pc_offset() - base;
|
|
|
|
shared_it->set_offset(offset); // Save offset for merged entries.
|
|
|
|
if (entry_size == kPointerSize) {
|
|
|
|
assm->dp(shared_it->value());
|
|
|
|
} else {
|
|
|
|
assm->dq(shared_it->value64());
|
|
|
|
}
|
|
|
|
DCHECK(is_uintn(offset, info.regular_reach_bits));
|
|
|
|
|
|
|
|
// Patch load sequence with correct offset.
|
|
|
|
assm->PatchConstantPoolAccessInstruction(shared_it->position(), offset,
|
|
|
|
ConstantPoolEntry::REGULAR, type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ConstantPoolBuilder::EmitGroup(Assembler* assm,
|
|
|
|
ConstantPoolEntry::Access access,
|
|
|
|
ConstantPoolEntry::Type type) {
|
|
|
|
PerTypeEntryInfo& info = info_[type];
|
|
|
|
const bool overflow = info.overflow();
|
|
|
|
std::vector<ConstantPoolEntry>& entries = info.entries;
|
|
|
|
std::vector<ConstantPoolEntry>& shared_entries = info.shared_entries;
|
|
|
|
const int entry_size = ConstantPoolEntry::size(type);
|
|
|
|
int base = emitted_label_.pos();
|
|
|
|
DCHECK(base > 0);
|
|
|
|
int begin;
|
|
|
|
int end;
|
|
|
|
|
|
|
|
if (access == ConstantPoolEntry::REGULAR) {
|
|
|
|
// Emit any shared entries first
|
|
|
|
EmitSharedEntries(assm, type);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (access == ConstantPoolEntry::REGULAR) {
|
|
|
|
begin = 0;
|
|
|
|
end = overflow ? info.overflow_start : static_cast<int>(entries.size());
|
|
|
|
} else {
|
|
|
|
DCHECK(access == ConstantPoolEntry::OVERFLOWED);
|
|
|
|
if (!overflow) return;
|
|
|
|
begin = info.overflow_start;
|
|
|
|
end = static_cast<int>(entries.size());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<ConstantPoolEntry>::iterator it = entries.begin();
|
|
|
|
if (begin > 0) std::advance(it, begin);
|
|
|
|
for (int i = begin; i < end; i++, it++) {
|
|
|
|
// Update constant pool if necessary and get the entry's offset.
|
|
|
|
int offset;
|
|
|
|
ConstantPoolEntry::Access entry_access;
|
|
|
|
if (!it->is_merged()) {
|
|
|
|
// Emit new entry
|
|
|
|
offset = assm->pc_offset() - base;
|
|
|
|
entry_access = access;
|
|
|
|
if (entry_size == kPointerSize) {
|
|
|
|
assm->dp(it->value());
|
|
|
|
} else {
|
|
|
|
assm->dq(it->value64());
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// Retrieve offset from shared entry.
|
|
|
|
offset = shared_entries[it->merged_index()].offset();
|
|
|
|
entry_access = ConstantPoolEntry::REGULAR;
|
|
|
|
}
|
|
|
|
|
|
|
|
DCHECK(entry_access == ConstantPoolEntry::OVERFLOWED ||
|
|
|
|
is_uintn(offset, info.regular_reach_bits));
|
|
|
|
|
|
|
|
// Patch load sequence with correct offset.
|
|
|
|
assm->PatchConstantPoolAccessInstruction(it->position(), offset,
|
|
|
|
entry_access, type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Emit and return position of pool. Zero implies no constant pool.
|
|
|
|
int ConstantPoolBuilder::Emit(Assembler* assm) {
|
|
|
|
bool emitted = emitted_label_.is_bound();
|
|
|
|
bool empty = IsEmpty();
|
|
|
|
|
|
|
|
if (!emitted) {
|
|
|
|
// Mark start of constant pool. Align if necessary.
|
|
|
|
if (!empty) assm->DataAlign(kDoubleSize);
|
|
|
|
assm->bind(&emitted_label_);
|
|
|
|
if (!empty) {
|
|
|
|
// Emit in groups based on access and type.
|
|
|
|
// Emit doubles first for alignment purposes.
|
|
|
|
EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::DOUBLE);
|
|
|
|
EmitGroup(assm, ConstantPoolEntry::REGULAR, ConstantPoolEntry::INTPTR);
|
|
|
|
if (info_[ConstantPoolEntry::DOUBLE].overflow()) {
|
|
|
|
assm->DataAlign(kDoubleSize);
|
|
|
|
EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
|
|
|
|
ConstantPoolEntry::DOUBLE);
|
|
|
|
}
|
|
|
|
if (info_[ConstantPoolEntry::INTPTR].overflow()) {
|
|
|
|
EmitGroup(assm, ConstantPoolEntry::OVERFLOWED,
|
|
|
|
ConstantPoolEntry::INTPTR);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return !empty ? emitted_label_.pos() : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Platform specific but identical code for all the platforms.
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::RecordDeoptReason(const int reason,
|
|
|
|
const SourcePosition position) {
|
|
|
|
if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling()) {
|
|
|
|
EnsureSpace ensure_space(this);
|
|
|
|
int raw_position = position.IsUnknown() ? 0 : position.raw();
|
|
|
|
RecordRelocInfo(RelocInfo::POSITION, raw_position);
|
|
|
|
RecordRelocInfo(RelocInfo::DEOPT_REASON, reason);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::RecordComment(const char* msg) {
|
|
|
|
if (FLAG_code_comments) {
|
|
|
|
EnsureSpace ensure_space(this);
|
|
|
|
RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::RecordGeneratorContinuation() {
|
|
|
|
EnsureSpace ensure_space(this);
|
|
|
|
RecordRelocInfo(RelocInfo::GENERATOR_CONTINUATION);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::RecordDebugBreakSlot(RelocInfo::Mode mode, int call_argc) {
|
|
|
|
EnsureSpace ensure_space(this);
|
|
|
|
DCHECK(RelocInfo::IsDebugBreakSlot(mode));
|
|
|
|
intptr_t data = static_cast<intptr_t>(call_argc);
|
|
|
|
RecordRelocInfo(mode, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::DataAlign(int m) {
|
|
|
|
DCHECK(m >= 2 && base::bits::IsPowerOfTwo32(m));
|
|
|
|
while ((pc_offset() & (m - 1)) != 0) {
|
|
|
|
db(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} // namespace internal
|
|
|
|
} // namespace v8
|