|
|
|
// Copyright (C) 2016 and later: Unicode, Inc. and others.
|
|
|
|
// License & terms of use: http://www.unicode.org/copyright.html
|
|
|
|
/*
|
|
|
|
******************************************************************************
|
|
|
|
* Copyright (C) 2003-2016, International Business Machines Corporation
|
|
|
|
* and others. All Rights Reserved.
|
|
|
|
******************************************************************************
|
|
|
|
*
|
|
|
|
* File HEBRWCAL.CPP
|
|
|
|
*
|
|
|
|
* Modification History:
|
|
|
|
*
|
|
|
|
* Date Name Description
|
|
|
|
* 12/03/2003 srl ported from java HebrewCalendar
|
|
|
|
*****************************************************************************
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "hebrwcal.h"
|
|
|
|
|
|
|
|
#if !UCONFIG_NO_FORMATTING
|
|
|
|
|
|
|
|
#include "cmemory.h"
|
|
|
|
#include "umutex.h"
|
|
|
|
#include <float.h>
|
|
|
|
#include "gregoimp.h" // Math
|
|
|
|
#include "astro.h" // CalendarAstronomer
|
|
|
|
#include "uhash.h"
|
|
|
|
#include "ucln_in.h"
|
|
|
|
|
|
|
|
// Hebrew Calendar implementation
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The absolute date, in milliseconds since 1/1/1970 AD, Gregorian,
|
|
|
|
* of the start of the Hebrew calendar. In order to keep this calendar's
|
|
|
|
* time of day in sync with that of the Gregorian calendar, we use
|
|
|
|
* midnight, rather than sunset the day before.
|
|
|
|
*/
|
|
|
|
//static const double EPOCH_MILLIS = -180799862400000.; // 1/1/1 HY
|
|
|
|
|
|
|
|
static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = {
|
|
|
|
// Minimum Greatest Least Maximum
|
|
|
|
// Minimum Maximum
|
|
|
|
{ 0, 0, 0, 0}, // ERA
|
|
|
|
{ -5000000, -5000000, 5000000, 5000000}, // YEAR
|
|
|
|
{ 0, 0, 12, 12}, // MONTH
|
|
|
|
{ 1, 1, 51, 56}, // WEEK_OF_YEAR
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
|
|
|
|
{ 1, 1, 29, 30}, // DAY_OF_MONTH
|
|
|
|
{ 1, 1, 353, 385}, // DAY_OF_YEAR
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
|
|
|
|
{ -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
|
|
|
|
{ -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
|
|
|
|
{ -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
|
|
|
|
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The lengths of the Hebrew months. This is complicated, because there
|
|
|
|
* are three different types of years, or six if you count leap years.
|
|
|
|
* Due to the rules for postponing the start of the year to avoid having
|
|
|
|
* certain holidays fall on the sabbath, the year can end up being three
|
|
|
|
* different lengths, called "deficient", "normal", and "complete".
|
|
|
|
*/
|
|
|
|
static const int8_t MONTH_LENGTH[][3] = {
|
|
|
|
// Deficient Normal Complete
|
|
|
|
{ 30, 30, 30 }, //Tishri
|
|
|
|
{ 29, 29, 30 }, //Heshvan
|
|
|
|
{ 29, 30, 30 }, //Kislev
|
|
|
|
{ 29, 29, 29 }, //Tevet
|
|
|
|
{ 30, 30, 30 }, //Shevat
|
|
|
|
{ 30, 30, 30 }, //Adar I (leap years only)
|
|
|
|
{ 29, 29, 29 }, //Adar
|
|
|
|
{ 30, 30, 30 }, //Nisan
|
|
|
|
{ 29, 29, 29 }, //Iyar
|
|
|
|
{ 30, 30, 30 }, //Sivan
|
|
|
|
{ 29, 29, 29 }, //Tammuz
|
|
|
|
{ 30, 30, 30 }, //Av
|
|
|
|
{ 29, 29, 29 }, //Elul
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The cumulative # of days to the end of each month in a non-leap year
|
|
|
|
* Although this can be calculated from the MONTH_LENGTH table,
|
|
|
|
* keeping it around separately makes some calculations a lot faster
|
|
|
|
*/
|
|
|
|
|
|
|
|
static const int16_t MONTH_START[][3] = {
|
|
|
|
// Deficient Normal Complete
|
|
|
|
{ 0, 0, 0 }, // (placeholder)
|
|
|
|
{ 30, 30, 30 }, // Tishri
|
|
|
|
{ 59, 59, 60 }, // Heshvan
|
|
|
|
{ 88, 89, 90 }, // Kislev
|
|
|
|
{ 117, 118, 119 }, // Tevet
|
|
|
|
{ 147, 148, 149 }, // Shevat
|
|
|
|
{ 147, 148, 149 }, // (Adar I placeholder)
|
|
|
|
{ 176, 177, 178 }, // Adar
|
|
|
|
{ 206, 207, 208 }, // Nisan
|
|
|
|
{ 235, 236, 237 }, // Iyar
|
|
|
|
{ 265, 266, 267 }, // Sivan
|
|
|
|
{ 294, 295, 296 }, // Tammuz
|
|
|
|
{ 324, 325, 326 }, // Av
|
|
|
|
{ 353, 354, 355 }, // Elul
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The cumulative # of days to the end of each month in a leap year
|
|
|
|
*/
|
|
|
|
static const int16_t LEAP_MONTH_START[][3] = {
|
|
|
|
// Deficient Normal Complete
|
|
|
|
{ 0, 0, 0 }, // (placeholder)
|
|
|
|
{ 30, 30, 30 }, // Tishri
|
|
|
|
{ 59, 59, 60 }, // Heshvan
|
|
|
|
{ 88, 89, 90 }, // Kislev
|
|
|
|
{ 117, 118, 119 }, // Tevet
|
|
|
|
{ 147, 148, 149 }, // Shevat
|
|
|
|
{ 177, 178, 179 }, // Adar I
|
|
|
|
{ 206, 207, 208 }, // Adar II
|
|
|
|
{ 236, 237, 238 }, // Nisan
|
|
|
|
{ 265, 266, 267 }, // Iyar
|
|
|
|
{ 295, 296, 297 }, // Sivan
|
|
|
|
{ 324, 325, 326 }, // Tammuz
|
|
|
|
{ 354, 355, 356 }, // Av
|
|
|
|
{ 383, 384, 385 }, // Elul
|
|
|
|
};
|
|
|
|
|
|
|
|
static icu::CalendarCache *gCache = NULL;
|
|
|
|
|
|
|
|
U_CDECL_BEGIN
|
|
|
|
static UBool calendar_hebrew_cleanup(void) {
|
|
|
|
delete gCache;
|
|
|
|
gCache = NULL;
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
U_CDECL_END
|
|
|
|
|
|
|
|
U_NAMESPACE_BEGIN
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Constructors...
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Constructs a default <code>HebrewCalendar</code> using the current time
|
|
|
|
* in the default time zone with the default locale.
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
HebrewCalendar::HebrewCalendar(const Locale& aLocale, UErrorCode& success)
|
|
|
|
: Calendar(TimeZone::createDefault(), aLocale, success)
|
|
|
|
|
|
|
|
{
|
|
|
|
setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
HebrewCalendar::~HebrewCalendar() {
|
|
|
|
}
|
|
|
|
|
|
|
|
const char *HebrewCalendar::getType() const {
|
|
|
|
return "hebrew";
|
|
|
|
}
|
|
|
|
|
|
|
|
Calendar* HebrewCalendar::clone() const {
|
|
|
|
return new HebrewCalendar(*this);
|
|
|
|
}
|
|
|
|
|
|
|
|
HebrewCalendar::HebrewCalendar(const HebrewCalendar& other) : Calendar(other) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Rolling and adding functions overridden from Calendar
|
|
|
|
//
|
|
|
|
// These methods call through to the default implementation in IBMCalendar
|
|
|
|
// for most of the fields and only handle the unusual ones themselves.
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Add a signed amount to a specified field, using this calendar's rules.
|
|
|
|
* For example, to add three days to the current date, you can call
|
|
|
|
* <code>add(Calendar.DATE, 3)</code>.
|
|
|
|
* <p>
|
|
|
|
* When adding to certain fields, the values of other fields may conflict and
|
|
|
|
* need to be changed. For example, when adding one to the {@link #MONTH MONTH} field
|
|
|
|
* for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field
|
|
|
|
* must be adjusted so that the result is "29 Elul 5758" rather than the invalid
|
|
|
|
* "30 Elul 5758".
|
|
|
|
* <p>
|
|
|
|
* This method is able to add to
|
|
|
|
* all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET},
|
|
|
|
* and {@link #ZONE_OFFSET ZONE_OFFSET}.
|
|
|
|
* <p>
|
|
|
|
* <b>Note:</b> You should always use {@link #roll roll} and add rather
|
|
|
|
* than attempting to perform arithmetic operations directly on the fields
|
|
|
|
* of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves
|
|
|
|
* discontinuously in non-leap years, simple arithmetic can give invalid results.
|
|
|
|
* <p>
|
|
|
|
* @param field the time field.
|
|
|
|
* @param amount the amount to add to the field.
|
|
|
|
*
|
|
|
|
* @exception IllegalArgumentException if the field is invalid or refers
|
|
|
|
* to a field that cannot be handled by this method.
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
void HebrewCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status)
|
|
|
|
{
|
|
|
|
if(U_FAILURE(status)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
switch (field) {
|
|
|
|
case UCAL_MONTH:
|
|
|
|
{
|
|
|
|
// We can't just do a set(MONTH, get(MONTH) + amount). The
|
|
|
|
// reason is ADAR_1. Suppose amount is +2 and we land in
|
|
|
|
// ADAR_1 -- then we have to bump to ADAR_2 aka ADAR. But
|
|
|
|
// if amount is -2 and we land in ADAR_1, then we have to
|
|
|
|
// bump the other way -- down to SHEVAT. - Alan 11/00
|
|
|
|
int32_t month = get(UCAL_MONTH, status);
|
|
|
|
int32_t year = get(UCAL_YEAR, status);
|
|
|
|
UBool acrossAdar1;
|
|
|
|
if (amount > 0) {
|
|
|
|
acrossAdar1 = (month < ADAR_1); // started before ADAR_1?
|
|
|
|
month += amount;
|
|
|
|
for (;;) {
|
|
|
|
if (acrossAdar1 && month>=ADAR_1 && !isLeapYear(year)) {
|
|
|
|
++month;
|
|
|
|
}
|
|
|
|
if (month <= ELUL) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
month -= ELUL+1;
|
|
|
|
++year;
|
|
|
|
acrossAdar1 = TRUE;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
acrossAdar1 = (month > ADAR_1); // started after ADAR_1?
|
|
|
|
month += amount;
|
|
|
|
for (;;) {
|
|
|
|
if (acrossAdar1 && month<=ADAR_1 && !isLeapYear(year)) {
|
|
|
|
--month;
|
|
|
|
}
|
|
|
|
if (month >= 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
month += ELUL+1;
|
|
|
|
--year;
|
|
|
|
acrossAdar1 = TRUE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
set(UCAL_MONTH, month);
|
|
|
|
set(UCAL_YEAR, year);
|
|
|
|
pinField(UCAL_DAY_OF_MONTH, status);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
Calendar::add(field, amount, status);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @deprecated ICU 2.6 use UCalendarDateFields instead of EDateFields
|
|
|
|
*/
|
|
|
|
void HebrewCalendar::add(EDateFields field, int32_t amount, UErrorCode& status)
|
|
|
|
{
|
|
|
|
add((UCalendarDateFields)field, amount, status);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Rolls (up/down) a specified amount time on the given field. For
|
|
|
|
* example, to roll the current date up by three days, you can call
|
|
|
|
* <code>roll(Calendar.DATE, 3)</code>. If the
|
|
|
|
* field is rolled past its maximum allowable value, it will "wrap" back
|
|
|
|
* to its minimum and continue rolling.
|
|
|
|
* For example, calling <code>roll(Calendar.DATE, 10)</code>
|
|
|
|
* on a Hebrew calendar set to "25 Av 5758" will result in the date "5 Av 5758".
|
|
|
|
* <p>
|
|
|
|
* When rolling certain fields, the values of other fields may conflict and
|
|
|
|
* need to be changed. For example, when rolling the {@link #MONTH MONTH} field
|
|
|
|
* upward by one for the date "30 Av 5758", the {@link #DAY_OF_MONTH DAY_OF_MONTH} field
|
|
|
|
* must be adjusted so that the result is "29 Elul 5758" rather than the invalid
|
|
|
|
* "30 Elul".
|
|
|
|
* <p>
|
|
|
|
* This method is able to roll
|
|
|
|
* all fields except for {@link #ERA ERA}, {@link #DST_OFFSET DST_OFFSET},
|
|
|
|
* and {@link #ZONE_OFFSET ZONE_OFFSET}. Subclasses may, of course, add support for
|
|
|
|
* additional fields in their overrides of <code>roll</code>.
|
|
|
|
* <p>
|
|
|
|
* <b>Note:</b> You should always use roll and {@link #add add} rather
|
|
|
|
* than attempting to perform arithmetic operations directly on the fields
|
|
|
|
* of a <tt>HebrewCalendar</tt>. Since the {@link #MONTH MONTH} field behaves
|
|
|
|
* discontinuously in non-leap years, simple arithmetic can give invalid results.
|
|
|
|
* <p>
|
|
|
|
* @param field the time field.
|
|
|
|
* @param amount the amount by which the field should be rolled.
|
|
|
|
*
|
|
|
|
* @exception IllegalArgumentException if the field is invalid or refers
|
|
|
|
* to a field that cannot be handled by this method.
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
void HebrewCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status)
|
|
|
|
{
|
|
|
|
if(U_FAILURE(status)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
switch (field) {
|
|
|
|
case UCAL_MONTH:
|
|
|
|
{
|
|
|
|
int32_t month = get(UCAL_MONTH, status);
|
|
|
|
int32_t year = get(UCAL_YEAR, status);
|
|
|
|
|
|
|
|
UBool leapYear = isLeapYear(year);
|
|
|
|
int32_t yearLength = monthsInYear(year);
|
|
|
|
int32_t newMonth = month + (amount % yearLength);
|
|
|
|
//
|
|
|
|
// If it's not a leap year and we're rolling past the missing month
|
|
|
|
// of ADAR_1, we need to roll an extra month to make up for it.
|
|
|
|
//
|
|
|
|
if (!leapYear) {
|
|
|
|
if (amount > 0 && month < ADAR_1 && newMonth >= ADAR_1) {
|
|
|
|
newMonth++;
|
|
|
|
} else if (amount < 0 && month > ADAR_1 && newMonth <= ADAR_1) {
|
|
|
|
newMonth--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
set(UCAL_MONTH, (newMonth + 13) % 13);
|
|
|
|
pinField(UCAL_DAY_OF_MONTH, status);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
Calendar::roll(field, amount, status);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void HebrewCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
|
|
|
|
roll((UCalendarDateFields)field, amount, status);
|
|
|
|
}
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Support methods
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Hebrew date calculations are performed in terms of days, hours, and
|
|
|
|
// "parts" (or halakim), which are 1/1080 of an hour, or 3 1/3 seconds.
|
|
|
|
static const int32_t HOUR_PARTS = 1080;
|
|
|
|
static const int32_t DAY_PARTS = 24*HOUR_PARTS;
|
|
|
|
|
|
|
|
// An approximate value for the length of a lunar month.
|
|
|
|
// It is used to calculate the approximate year and month of a given
|
|
|
|
// absolute date.
|
|
|
|
static const int32_t MONTH_DAYS = 29;
|
|
|
|
static const int32_t MONTH_FRACT = 12*HOUR_PARTS + 793;
|
|
|
|
static const int32_t MONTH_PARTS = MONTH_DAYS*DAY_PARTS + MONTH_FRACT;
|
|
|
|
|
|
|
|
// The time of the new moon (in parts) on 1 Tishri, year 1 (the epoch)
|
|
|
|
// counting from noon on the day before. BAHARAD is an abbreviation of
|
|
|
|
// Bet (Monday), Hey (5 hours from sunset), Resh-Daled (204).
|
|
|
|
static const int32_t BAHARAD = 11*HOUR_PARTS + 204;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Finds the day # of the first day in the given Hebrew year.
|
|
|
|
* To do this, we want to calculate the time of the Tishri 1 new moon
|
|
|
|
* in that year.
|
|
|
|
* <p>
|
|
|
|
* The algorithm here is similar to ones described in a number of
|
|
|
|
* references, including:
|
|
|
|
* <ul>
|
|
|
|
* <li>"Calendrical Calculations", by Nachum Dershowitz & Edward Reingold,
|
|
|
|
* Cambridge University Press, 1997, pages 85-91.
|
|
|
|
*
|
|
|
|
* <li>Hebrew Calendar Science and Myths,
|
|
|
|
* <a href="http://www.geocities.com/Athens/1584/">
|
|
|
|
* http://www.geocities.com/Athens/1584/</a>
|
|
|
|
*
|
|
|
|
* <li>The Calendar FAQ,
|
|
|
|
* <a href="http://www.faqs.org/faqs/calendars/faq/">
|
|
|
|
* http://www.faqs.org/faqs/calendars/faq/</a>
|
|
|
|
* </ul>
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::startOfYear(int32_t year, UErrorCode &status)
|
|
|
|
{
|
|
|
|
ucln_i18n_registerCleanup(UCLN_I18N_HEBREW_CALENDAR, calendar_hebrew_cleanup);
|
|
|
|
int32_t day = CalendarCache::get(&gCache, year, status);
|
|
|
|
|
|
|
|
if (day == 0) {
|
|
|
|
int32_t months = (235 * year - 234) / 19; // # of months before year
|
|
|
|
|
|
|
|
int64_t frac = (int64_t)months * MONTH_FRACT + BAHARAD; // Fractional part of day #
|
|
|
|
day = months * 29 + (int32_t)(frac / DAY_PARTS); // Whole # part of calculation
|
|
|
|
frac = frac % DAY_PARTS; // Time of day
|
|
|
|
|
|
|
|
int32_t wd = (day % 7); // Day of week (0 == Monday)
|
|
|
|
|
|
|
|
if (wd == 2 || wd == 4 || wd == 6) {
|
|
|
|
// If the 1st is on Sun, Wed, or Fri, postpone to the next day
|
|
|
|
day += 1;
|
|
|
|
wd = (day % 7);
|
|
|
|
}
|
|
|
|
if (wd == 1 && frac > 15*HOUR_PARTS+204 && !isLeapYear(year) ) {
|
|
|
|
// If the new moon falls after 3:11:20am (15h204p from the previous noon)
|
|
|
|
// on a Tuesday and it is not a leap year, postpone by 2 days.
|
|
|
|
// This prevents 356-day years.
|
|
|
|
day += 2;
|
|
|
|
}
|
|
|
|
else if (wd == 0 && frac > 21*HOUR_PARTS+589 && isLeapYear(year-1) ) {
|
|
|
|
// If the new moon falls after 9:32:43 1/3am (21h589p from yesterday noon)
|
|
|
|
// on a Monday and *last* year was a leap year, postpone by 1 day.
|
|
|
|
// Prevents 382-day years.
|
|
|
|
day += 1;
|
|
|
|
}
|
|
|
|
CalendarCache::put(&gCache, year, day, status);
|
|
|
|
}
|
|
|
|
return day;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Find the day of the week for a given day
|
|
|
|
*
|
|
|
|
* @param day The # of days since the start of the Hebrew calendar,
|
|
|
|
* 1-based (i.e. 1/1/1 AM is day 1).
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::absoluteDayToDayOfWeek(int32_t day)
|
|
|
|
{
|
|
|
|
// We know that 1/1/1 AM is a Monday, which makes the math easy...
|
|
|
|
return (day % 7) + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the the type of a given year.
|
|
|
|
* 0 "Deficient" year with 353 or 383 days
|
|
|
|
* 1 "Normal" year with 354 or 384 days
|
|
|
|
* 2 "Complete" year with 355 or 385 days
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::yearType(int32_t year) const
|
|
|
|
{
|
|
|
|
int32_t yearLength = handleGetYearLength(year);
|
|
|
|
|
|
|
|
if (yearLength > 380) {
|
|
|
|
yearLength -= 30; // Subtract length of leap month.
|
|
|
|
}
|
|
|
|
|
|
|
|
int type = 0;
|
|
|
|
|
|
|
|
switch (yearLength) {
|
|
|
|
case 353:
|
|
|
|
type = 0; break;
|
|
|
|
case 354:
|
|
|
|
type = 1; break;
|
|
|
|
case 355:
|
|
|
|
type = 2; break;
|
|
|
|
default:
|
|
|
|
//throw new RuntimeException("Illegal year length " + yearLength + " in year " + year);
|
|
|
|
type = 1;
|
|
|
|
}
|
|
|
|
return type;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Determine whether a given Hebrew year is a leap year
|
|
|
|
*
|
|
|
|
* The rule here is that if (year % 19) == 0, 3, 6, 8, 11, 14, or 17.
|
|
|
|
* The formula below performs the same test, believe it or not.
|
|
|
|
*/
|
|
|
|
UBool HebrewCalendar::isLeapYear(int32_t year) {
|
|
|
|
//return (year * 12 + 17) % 19 >= 12;
|
|
|
|
int32_t x = (year*12 + 17) % 19;
|
|
|
|
return x >= ((x < 0) ? -7 : 12);
|
|
|
|
}
|
|
|
|
|
|
|
|
int32_t HebrewCalendar::monthsInYear(int32_t year) {
|
|
|
|
return isLeapYear(year) ? 13 : 12;
|
|
|
|
}
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Calendar framework
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
|
|
|
|
return LIMITS[field][limitType];
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the length of the given month in the given year
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const {
|
|
|
|
// Resolve out-of-range months. This is necessary in order to
|
|
|
|
// obtain the correct year. We correct to
|
|
|
|
// a 12- or 13-month year (add/subtract 12 or 13, depending
|
|
|
|
// on the year) but since we _always_ number from 0..12, and
|
|
|
|
// the leap year determines whether or not month 5 (Adar 1)
|
|
|
|
// is present, we allow 0..12 in any given year.
|
|
|
|
while (month < 0) {
|
|
|
|
month += monthsInYear(--extendedYear);
|
|
|
|
}
|
|
|
|
// Careful: allow 0..12 in all years
|
|
|
|
while (month > 12) {
|
|
|
|
month -= monthsInYear(extendedYear++);
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (month) {
|
|
|
|
case HESHVAN:
|
|
|
|
case KISLEV:
|
|
|
|
// These two month lengths can vary
|
|
|
|
return MONTH_LENGTH[month][yearType(extendedYear)];
|
|
|
|
|
|
|
|
default:
|
|
|
|
// The rest are a fixed length
|
|
|
|
return MONTH_LENGTH[month][0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the number of days in the given Hebrew year
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::handleGetYearLength(int32_t eyear) const {
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
|
|
return startOfYear(eyear+1, status) - startOfYear(eyear, status);
|
|
|
|
}
|
|
|
|
|
|
|
|
void HebrewCalendar::validateField(UCalendarDateFields field, UErrorCode &status) {
|
|
|
|
if (field == UCAL_MONTH && !isLeapYear(handleGetExtendedYear()) && internalGet(UCAL_MONTH) == ADAR_1) {
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
Calendar::validateField(field, status);
|
|
|
|
}
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Functions for converting from milliseconds to field values
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Subclasses may override this method to compute several fields
|
|
|
|
* specific to each calendar system. These are:
|
|
|
|
*
|
|
|
|
* <ul><li>ERA
|
|
|
|
* <li>YEAR
|
|
|
|
* <li>MONTH
|
|
|
|
* <li>DAY_OF_MONTH
|
|
|
|
* <li>DAY_OF_YEAR
|
|
|
|
* <li>EXTENDED_YEAR</ul>
|
|
|
|
*
|
|
|
|
* Subclasses can refer to the DAY_OF_WEEK and DOW_LOCAL fields,
|
|
|
|
* which will be set when this method is called. Subclasses can
|
|
|
|
* also call the getGregorianXxx() methods to obtain Gregorian
|
|
|
|
* calendar equivalents for the given Julian day.
|
|
|
|
*
|
|
|
|
* <p>In addition, subclasses should compute any subclass-specific
|
|
|
|
* fields, that is, fields from BASE_FIELD_COUNT to
|
|
|
|
* getFieldCount() - 1.
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
void HebrewCalendar::handleComputeFields(int32_t julianDay, UErrorCode &status) {
|
|
|
|
int32_t d = julianDay - 347997;
|
|
|
|
double m = ((d * (double)DAY_PARTS)/ (double) MONTH_PARTS); // Months (approx)
|
|
|
|
int32_t year = (int32_t)( ((19. * m + 234.) / 235.) + 1.); // Years (approx)
|
|
|
|
int32_t ys = startOfYear(year, status); // 1st day of year
|
|
|
|
int32_t dayOfYear = (d - ys);
|
|
|
|
|
|
|
|
// Because of the postponement rules, it's possible to guess wrong. Fix it.
|
|
|
|
while (dayOfYear < 1) {
|
|
|
|
year--;
|
|
|
|
ys = startOfYear(year, status);
|
|
|
|
dayOfYear = (d - ys);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now figure out which month we're in, and the date within that month
|
|
|
|
int32_t type = yearType(year);
|
|
|
|
UBool isLeap = isLeapYear(year);
|
|
|
|
|
|
|
|
int32_t month = 0;
|
|
|
|
int32_t momax = UPRV_LENGTHOF(MONTH_START);
|
|
|
|
while (month < momax && dayOfYear > ( isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type] ) ) {
|
|
|
|
month++;
|
|
|
|
}
|
|
|
|
if (month >= momax || month<=0) {
|
|
|
|
// TODO: I found dayOfYear could be out of range when
|
|
|
|
// a large value is set to julianDay. I patched startOfYear
|
|
|
|
// to reduce the chace, but it could be still reproduced either
|
|
|
|
// by startOfYear or other places. For now, we check
|
|
|
|
// the month is in valid range to avoid out of array index
|
|
|
|
// access problem here. However, we need to carefully review
|
|
|
|
// the calendar implementation to check the extreme limit of
|
|
|
|
// each calendar field and the code works well for any values
|
|
|
|
// in the valid value range. -yoshito
|
|
|
|
status = U_ILLEGAL_ARGUMENT_ERROR;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
month--;
|
|
|
|
int dayOfMonth = dayOfYear - (isLeap ? LEAP_MONTH_START[month][type] : MONTH_START[month][type]);
|
|
|
|
|
|
|
|
internalSet(UCAL_ERA, 0);
|
|
|
|
internalSet(UCAL_YEAR, year);
|
|
|
|
internalSet(UCAL_EXTENDED_YEAR, year);
|
|
|
|
internalSet(UCAL_MONTH, month);
|
|
|
|
internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
|
|
|
|
internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
|
|
|
|
}
|
|
|
|
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
// Functions for converting from field values to milliseconds
|
|
|
|
//-------------------------------------------------------------------------
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::handleGetExtendedYear() {
|
|
|
|
int32_t year;
|
|
|
|
if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) {
|
|
|
|
year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1
|
|
|
|
} else {
|
|
|
|
year = internalGet(UCAL_YEAR, 1); // Default to year 1
|
|
|
|
}
|
|
|
|
return year;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return JD of start of given month/year.
|
|
|
|
* @internal
|
|
|
|
*/
|
|
|
|
int32_t HebrewCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /*useMonth*/) const {
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
|
|
// Resolve out-of-range months. This is necessary in order to
|
|
|
|
// obtain the correct year. We correct to
|
|
|
|
// a 12- or 13-month year (add/subtract 12 or 13, depending
|
|
|
|
// on the year) but since we _always_ number from 0..12, and
|
|
|
|
// the leap year determines whether or not month 5 (Adar 1)
|
|
|
|
// is present, we allow 0..12 in any given year.
|
|
|
|
while (month < 0) {
|
|
|
|
month += monthsInYear(--eyear);
|
|
|
|
}
|
|
|
|
// Careful: allow 0..12 in all years
|
|
|
|
while (month > 12) {
|
|
|
|
month -= monthsInYear(eyear++);
|
|
|
|
}
|
|
|
|
|
|
|
|
int32_t day = startOfYear(eyear, status);
|
|
|
|
|
|
|
|
if(U_FAILURE(status)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (month != 0) {
|
|
|
|
if (isLeapYear(eyear)) {
|
|
|
|
day += LEAP_MONTH_START[month][yearType(eyear)];
|
|
|
|
} else {
|
|
|
|
day += MONTH_START[month][yearType(eyear)];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return (int) (day + 347997);
|
|
|
|
}
|
|
|
|
|
|
|
|
UBool
|
|
|
|
HebrewCalendar::inDaylightTime(UErrorCode& status) const
|
|
|
|
{
|
|
|
|
// copied from GregorianCalendar
|
|
|
|
if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
|
|
|
|
return FALSE;
|
|
|
|
|
|
|
|
// Force an update of the state of the Calendar.
|
|
|
|
((HebrewCalendar*)this)->complete(status); // cast away const
|
|
|
|
|
|
|
|
return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The system maintains a static default century start date and Year. They are
|
|
|
|
* initialized the first time they are used. Once the system default century date
|
|
|
|
* and year are set, they do not change.
|
|
|
|
*/
|
|
|
|
static UDate gSystemDefaultCenturyStart = DBL_MIN;
|
|
|
|
static int32_t gSystemDefaultCenturyStartYear = -1;
|
|
|
|
static icu::UInitOnce gSystemDefaultCenturyInit = U_INITONCE_INITIALIZER;
|
|
|
|
|
|
|
|
UBool HebrewCalendar::haveDefaultCentury() const
|
|
|
|
{
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void U_CALLCONV initializeSystemDefaultCentury()
|
|
|
|
{
|
|
|
|
// initialize systemDefaultCentury and systemDefaultCenturyYear based
|
|
|
|
// on the current time. They'll be set to 80 years before
|
|
|
|
// the current time.
|
|
|
|
UErrorCode status = U_ZERO_ERROR;
|
|
|
|
HebrewCalendar calendar(Locale("@calendar=hebrew"),status);
|
|
|
|
if (U_SUCCESS(status)) {
|
|
|
|
calendar.setTime(Calendar::getNow(), status);
|
|
|
|
calendar.add(UCAL_YEAR, -80, status);
|
|
|
|
|
|
|
|
gSystemDefaultCenturyStart = calendar.getTime(status);
|
|
|
|
gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
|
|
|
|
}
|
|
|
|
// We have no recourse upon failure unless we want to propagate the failure
|
|
|
|
// out.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
UDate HebrewCalendar::defaultCenturyStart() const {
|
|
|
|
// lazy-evaluate systemDefaultCenturyStart
|
|
|
|
umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
|
|
|
|
return gSystemDefaultCenturyStart;
|
|
|
|
}
|
|
|
|
|
|
|
|
int32_t HebrewCalendar::defaultCenturyStartYear() const {
|
|
|
|
// lazy-evaluate systemDefaultCenturyStartYear
|
|
|
|
umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
|
|
|
|
return gSystemDefaultCenturyStartYear;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(HebrewCalendar)
|
|
|
|
|
|
|
|
U_NAMESPACE_END
|
|
|
|
|
|
|
|
#endif // UCONFIG_NO_FORMATTING
|