You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

412 lines
9.8 KiB

/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "uv.h"
#include "task.h"
#include <stdio.h>
#include <string.h>
/* See test-ipc.ctx */
void spawn_helper(uv_pipe_t* channel,
uv_process_t* process,
const char* helper);
void ipc_send_recv_helper_threadproc(void* arg);
union handles {
uv_handle_t handle;
uv_stream_t stream;
uv_pipe_t pipe;
uv_tcp_t tcp;
uv_tty_t tty;
};
struct test_ctx {
uv_pipe_t channel;
uv_connect_t connect_req;
uv_write_t write_req;
uv_write_t write_req2;
uv_handle_type expected_type;
union handles send;
union handles send2;
union handles recv;
union handles recv2;
};
struct echo_ctx {
uv_pipe_t listen;
uv_pipe_t channel;
uv_write_t write_req;
uv_write_t write_req2;
uv_handle_type expected_type;
union handles recv;
union handles recv2;
};
static struct test_ctx ctx;
static struct echo_ctx ctx2;
/* Used in write2_cb to decide if we need to cleanup or not */
static int is_child_process;
static int is_in_process;
static int read_cb_called;
static int recv_cb_called;
static int write2_cb_called;
static void alloc_cb(uv_handle_t* handle,
size_t suggested_size,
uv_buf_t* buf) {
/* we're not actually reading anything so a small buffer is okay */
static char slab[8];
buf->base = slab;
buf->len = sizeof(slab);
}
static void recv_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* buf) {
uv_handle_type pending;
uv_pipe_t* pipe;
int r;
union handles* recv;
if (++recv_cb_called == 1) {
recv = &ctx.recv;
} else {
recv = &ctx.recv2;
}
pipe = (uv_pipe_t*) handle;
ASSERT(pipe == &ctx.channel);
/* Depending on the OS, the final recv_cb can be called after the child
* process has terminated which can result in nread being UV_EOF instead of
* the number of bytes read. Since the other end of the pipe has closed this
* UV_EOF is an acceptable value. */
if (nread == UV_EOF) {
/* UV_EOF is only acceptable for the final recv_cb call */
ASSERT(recv_cb_called == 2);
} else {
ASSERT(nread >= 0);
ASSERT(1 == uv_pipe_pending_count(pipe));
pending = uv_pipe_pending_type(pipe);
ASSERT(pending == ctx.expected_type);
if (pending == UV_NAMED_PIPE)
r = uv_pipe_init(ctx.channel.loop, &recv->pipe, 0);
else if (pending == UV_TCP)
r = uv_tcp_init(ctx.channel.loop, &recv->tcp);
else
abort();
ASSERT(r == 0);
r = uv_accept(handle, &recv->stream);
ASSERT(r == 0);
}
/* Close after two writes received */
if (recv_cb_called == 2) {
uv_close((uv_handle_t*)&ctx.channel, NULL);
}
}
static void connect_cb(uv_connect_t* req, int status) {
int r;
uv_buf_t buf;
ASSERT(req == &ctx.connect_req);
ASSERT(status == 0);
buf = uv_buf_init(".", 1);
r = uv_write2(&ctx.write_req,
(uv_stream_t*)&ctx.channel,
&buf, 1,
&ctx.send.stream,
NULL);
ASSERT(r == 0);
/* Perform two writes to the same pipe to make sure that on Windows we are
* not running into issue 505:
* https://github.com/libuv/libuv/issues/505 */
buf = uv_buf_init(".", 1);
r = uv_write2(&ctx.write_req2,
(uv_stream_t*)&ctx.channel,
&buf, 1,
&ctx.send2.stream,
NULL);
ASSERT(r == 0);
r = uv_read_start((uv_stream_t*)&ctx.channel, alloc_cb, recv_cb);
ASSERT(r == 0);
}
static int run_test(int inprocess) {
uv_process_t process;
uv_thread_t tid;
int r;
if (inprocess) {
r = uv_thread_create(&tid, ipc_send_recv_helper_threadproc, (void *) 42);
ASSERT(r == 0);
uv_sleep(1000);
r = uv_pipe_init(uv_default_loop(), &ctx.channel, 1);
ASSERT(r == 0);
uv_pipe_connect(&ctx.connect_req, &ctx.channel, TEST_PIPENAME_3, connect_cb);
} else {
spawn_helper(&ctx.channel, &process, "ipc_send_recv_helper");
connect_cb(&ctx.connect_req, 0);
}
r = uv_run(uv_default_loop(), UV_RUN_DEFAULT);
ASSERT(r == 0);
ASSERT(recv_cb_called == 2);
if (inprocess) {
r = uv_thread_join(&tid);
ASSERT(r == 0);
}
return 0;
}
static int run_ipc_send_recv_pipe(int inprocess) {
int r;
ctx.expected_type = UV_NAMED_PIPE;
r = uv_pipe_init(uv_default_loop(), &ctx.send.pipe, 1);
ASSERT(r == 0);
r = uv_pipe_bind(&ctx.send.pipe, TEST_PIPENAME);
ASSERT(r == 0);
r = uv_pipe_init(uv_default_loop(), &ctx.send2.pipe, 1);
ASSERT(r == 0);
r = uv_pipe_bind(&ctx.send2.pipe, TEST_PIPENAME_2);
ASSERT(r == 0);
r = run_test(inprocess);
ASSERT(r == 0);
MAKE_VALGRIND_HAPPY();
return 0;
}
TEST_IMPL(ipc_send_recv_pipe) {
return run_ipc_send_recv_pipe(0);
}
TEST_IMPL(ipc_send_recv_pipe_inprocess) {
return run_ipc_send_recv_pipe(1);
}
static int run_ipc_send_recv_tcp(int inprocess) {
struct sockaddr_in addr;
int r;
ASSERT(0 == uv_ip4_addr("127.0.0.1", TEST_PORT, &addr));
ctx.expected_type = UV_TCP;
r = uv_tcp_init(uv_default_loop(), &ctx.send.tcp);
ASSERT(r == 0);
r = uv_tcp_init(uv_default_loop(), &ctx.send2.tcp);
ASSERT(r == 0);
r = uv_tcp_bind(&ctx.send.tcp, (const struct sockaddr*) &addr, 0);
ASSERT(r == 0);
r = uv_tcp_bind(&ctx.send2.tcp, (const struct sockaddr*) &addr, 0);
ASSERT(r == 0);
r = run_test(inprocess);
ASSERT(r == 0);
MAKE_VALGRIND_HAPPY();
return 0;
}
TEST_IMPL(ipc_send_recv_tcp) {
return run_ipc_send_recv_tcp(0);
}
TEST_IMPL(ipc_send_recv_tcp_inprocess) {
return run_ipc_send_recv_tcp(1);
}
/* Everything here runs in a child process or second thread. */
static void write2_cb(uv_write_t* req, int status) {
ASSERT(status == 0);
/* After two successful writes in the child process, allow the child
* process to be closed. */
if (++write2_cb_called == 2 && (is_child_process || is_in_process)) {
uv_close(&ctx2.recv.handle, NULL);
uv_close(&ctx2.recv2.handle, NULL);
uv_close((uv_handle_t*)&ctx2.channel, NULL);
uv_close((uv_handle_t*)&ctx2.listen, NULL);
}
}
static void read_cb(uv_stream_t* handle,
ssize_t nread,
const uv_buf_t* rdbuf) {
uv_buf_t wrbuf;
uv_pipe_t* pipe;
uv_handle_type pending;
int r;
union handles* recv;
uv_write_t* write_req;
if (nread == UV__EOF || nread == UV__ECONNABORTED) {
return;
}
if (++read_cb_called == 2) {
recv = &ctx2.recv;
write_req = &ctx2.write_req;
} else {
recv = &ctx2.recv2;
write_req = &ctx2.write_req2;
}
pipe = (uv_pipe_t*) handle;
ASSERT(pipe == &ctx2.channel);
ASSERT(nread >= 0);
ASSERT(1 == uv_pipe_pending_count(pipe));
pending = uv_pipe_pending_type(pipe);
ASSERT(pending == UV_NAMED_PIPE || pending == UV_TCP);
if (pending == UV_NAMED_PIPE)
r = uv_pipe_init(ctx2.channel.loop, &recv->pipe, 0);
else if (pending == UV_TCP)
r = uv_tcp_init(ctx2.channel.loop, &recv->tcp);
else
abort();
ASSERT(r == 0);
r = uv_accept(handle, &recv->stream);
ASSERT(r == 0);
wrbuf = uv_buf_init(".", 1);
r = uv_write2(write_req,
(uv_stream_t*)&ctx2.channel,
&wrbuf,
1,
&recv->stream,
write2_cb);
ASSERT(r == 0);
}
static void send_recv_start() {
int r;
ASSERT(1 == uv_is_readable((uv_stream_t*)&ctx2.channel));
ASSERT(1 == uv_is_writable((uv_stream_t*)&ctx2.channel));
ASSERT(0 == uv_is_closing((uv_handle_t*)&ctx2.channel));
r = uv_read_start((uv_stream_t*)&ctx2.channel, alloc_cb, read_cb);
ASSERT(r == 0);
}
static void listen_cb(uv_stream_t* handle, int status) {
int r;
ASSERT(handle == (uv_stream_t*)&ctx2.listen);
ASSERT(status == 0);
r = uv_accept((uv_stream_t*)&ctx2.listen, (uv_stream_t*)&ctx2.channel);
ASSERT(r == 0);
send_recv_start();
}
int run_ipc_send_recv_helper(uv_loop_t* loop, int inprocess) {
int r;
is_in_process = inprocess;
memset(&ctx2, 0, sizeof(ctx2));
r = uv_pipe_init(loop, &ctx2.listen, 0);
ASSERT(r == 0);
r = uv_pipe_init(loop, &ctx2.channel, 1);
ASSERT(r == 0);
if (inprocess) {
r = uv_pipe_bind(&ctx2.listen, TEST_PIPENAME_3);
ASSERT(r == 0);
r = uv_listen((uv_stream_t*)&ctx2.listen, SOMAXCONN, listen_cb);
ASSERT(r == 0);
} else {
r = uv_pipe_open(&ctx2.channel, 0);
ASSERT(r == 0);
send_recv_start();
}
r = uv_run(loop, UV_RUN_DEFAULT);
ASSERT(r == 0);
return 0;
}
/* stdin is a duplex channel over which a handle is sent.
* We receive it and send it back where it came from.
*/
int ipc_send_recv_helper(void) {
int r;
r = run_ipc_send_recv_helper(uv_default_loop(), 0);
ASSERT(r == 0);
MAKE_VALGRIND_HAPPY();
return 0;
}
void ipc_send_recv_helper_threadproc(void* arg) {
int r;
uv_loop_t loop;
r = uv_loop_init(&loop);
ASSERT(r == 0);
r = run_ipc_send_recv_helper(&loop, 1);
ASSERT(r == 0);
r = uv_loop_close(&loop);
ASSERT(r == 0);
}