|
|
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#include "ast.h"
|
|
|
|
#include "data-flow.h"
|
|
|
|
#include "parser.h"
|
|
|
|
#include "scopes.h"
|
|
|
|
#include "string-stream.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
|
|
VariableProxySentinel VariableProxySentinel::this_proxy_(true);
|
|
|
|
VariableProxySentinel VariableProxySentinel::identifier_proxy_(false);
|
|
|
|
ValidLeftHandSideSentinel ValidLeftHandSideSentinel::instance_;
|
|
|
|
Property Property::this_property_(VariableProxySentinel::this_proxy(), NULL, 0);
|
|
|
|
Call Call::sentinel_(NULL, NULL, 0);
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// All the Accept member functions for each syntax tree node type.
|
|
|
|
|
|
|
|
#define DECL_ACCEPT(type) \
|
|
|
|
void type::Accept(AstVisitor* v) { \
|
|
|
|
if (v->CheckStackOverflow()) return; \
|
|
|
|
v->Visit##type(this); \
|
|
|
|
}
|
|
|
|
AST_NODE_LIST(DECL_ACCEPT)
|
|
|
|
#undef DECL_ACCEPT
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Implementation of other node functionality.
|
|
|
|
|
|
|
|
Assignment* ExpressionStatement::StatementAsSimpleAssignment() {
|
|
|
|
return (expression()->AsAssignment() != NULL &&
|
|
|
|
!expression()->AsAssignment()->is_compound())
|
|
|
|
? expression()->AsAssignment()
|
|
|
|
: NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CountOperation* ExpressionStatement::StatementAsCountOperation() {
|
|
|
|
return expression()->AsCountOperation();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
VariableProxy::VariableProxy(Handle<String> name,
|
|
|
|
bool is_this,
|
|
|
|
bool inside_with)
|
|
|
|
: name_(name),
|
|
|
|
var_(NULL),
|
|
|
|
is_this_(is_this),
|
|
|
|
inside_with_(inside_with),
|
|
|
|
is_trivial_(false),
|
|
|
|
reaching_definitions_(NULL),
|
|
|
|
is_primitive_(false) {
|
|
|
|
// names must be canonicalized for fast equality checks
|
|
|
|
ASSERT(name->IsSymbol());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
VariableProxy::VariableProxy(bool is_this)
|
|
|
|
: is_this_(is_this),
|
|
|
|
reaching_definitions_(NULL),
|
|
|
|
is_primitive_(false) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void VariableProxy::BindTo(Variable* var) {
|
|
|
|
ASSERT(var_ == NULL); // must be bound only once
|
|
|
|
ASSERT(var != NULL); // must bind
|
|
|
|
ASSERT((is_this() && var->is_this()) || name_.is_identical_to(var->name()));
|
|
|
|
// Ideally CONST-ness should match. However, this is very hard to achieve
|
|
|
|
// because we don't know the exact semantics of conflicting (const and
|
|
|
|
// non-const) multiple variable declarations, const vars introduced via
|
|
|
|
// eval() etc. Const-ness and variable declarations are a complete mess
|
|
|
|
// in JS. Sigh...
|
|
|
|
var_ = var;
|
|
|
|
var->set_is_used(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Token::Value Assignment::binary_op() const {
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
|
|
|
|
case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
|
|
|
|
case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
|
|
|
|
case Token::ASSIGN_SHL: return Token::SHL;
|
|
|
|
case Token::ASSIGN_SAR: return Token::SAR;
|
|
|
|
case Token::ASSIGN_SHR: return Token::SHR;
|
|
|
|
case Token::ASSIGN_ADD: return Token::ADD;
|
|
|
|
case Token::ASSIGN_SUB: return Token::SUB;
|
|
|
|
case Token::ASSIGN_MUL: return Token::MUL;
|
|
|
|
case Token::ASSIGN_DIV: return Token::DIV;
|
|
|
|
case Token::ASSIGN_MOD: return Token::MOD;
|
|
|
|
default: UNREACHABLE();
|
|
|
|
}
|
|
|
|
return Token::ILLEGAL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool FunctionLiteral::AllowsLazyCompilation() {
|
|
|
|
return scope()->AllowsLazyCompilation();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ObjectLiteral::Property::Property(Literal* key, Expression* value) {
|
|
|
|
key_ = key;
|
|
|
|
value_ = value;
|
|
|
|
Object* k = *key->handle();
|
|
|
|
if (k->IsSymbol() && Heap::Proto_symbol()->Equals(String::cast(k))) {
|
|
|
|
kind_ = PROTOTYPE;
|
|
|
|
} else if (value_->AsMaterializedLiteral() != NULL) {
|
|
|
|
kind_ = MATERIALIZED_LITERAL;
|
|
|
|
} else if (value_->AsLiteral() != NULL) {
|
|
|
|
kind_ = CONSTANT;
|
|
|
|
} else {
|
|
|
|
kind_ = COMPUTED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ObjectLiteral::Property::Property(bool is_getter, FunctionLiteral* value) {
|
|
|
|
key_ = new Literal(value->name());
|
|
|
|
value_ = value;
|
|
|
|
kind_ = is_getter ? GETTER : SETTER;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool ObjectLiteral::Property::IsCompileTimeValue() {
|
|
|
|
return kind_ == CONSTANT ||
|
|
|
|
(kind_ == MATERIALIZED_LITERAL &&
|
|
|
|
CompileTimeValue::IsCompileTimeValue(value_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TargetCollector::AddTarget(BreakTarget* target) {
|
|
|
|
// Add the label to the collector, but discard duplicates.
|
|
|
|
int length = targets_->length();
|
|
|
|
for (int i = 0; i < length; i++) {
|
|
|
|
if (targets_->at(i) == target) return;
|
|
|
|
}
|
|
|
|
targets_->Add(target);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Expression::GuaranteedSmiResult() {
|
|
|
|
BinaryOperation* node = AsBinaryOperation();
|
|
|
|
if (node == NULL) return false;
|
|
|
|
Token::Value op = node->op();
|
|
|
|
switch (op) {
|
|
|
|
case Token::COMMA:
|
|
|
|
case Token::OR:
|
|
|
|
case Token::AND:
|
|
|
|
case Token::ADD:
|
|
|
|
case Token::SUB:
|
|
|
|
case Token::MUL:
|
|
|
|
case Token::DIV:
|
|
|
|
case Token::MOD:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::SHL:
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_AND: {
|
|
|
|
Literal* left = node->left()->AsLiteral();
|
|
|
|
Literal* right = node->right()->AsLiteral();
|
|
|
|
if (left != NULL && left->handle()->IsSmi()) {
|
|
|
|
int value = Smi::cast(*left->handle())->value();
|
|
|
|
if (op == Token::BIT_OR && ((value & 0xc0000000) == 0xc0000000)) {
|
|
|
|
// Result of bitwise or is always a negative Smi.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (op == Token::BIT_AND && ((value & 0xc0000000) == 0)) {
|
|
|
|
// Result of bitwise and is always a positive Smi.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (right != NULL && right->handle()->IsSmi()) {
|
|
|
|
int value = Smi::cast(*right->handle())->value();
|
|
|
|
if (op == Token::BIT_OR && ((value & 0xc0000000) == 0xc0000000)) {
|
|
|
|
// Result of bitwise or is always a negative Smi.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (op == Token::BIT_AND && ((value & 0xc0000000) == 0)) {
|
|
|
|
// Result of bitwise and is always a positive Smi.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Token::SAR:
|
|
|
|
case Token::SHR: {
|
|
|
|
Literal* right = node->right()->AsLiteral();
|
|
|
|
if (right != NULL && right->handle()->IsSmi()) {
|
|
|
|
int value = Smi::cast(*right->handle())->value();
|
|
|
|
if ((value & 0x1F) > 1 ||
|
|
|
|
(op == Token::SAR && (value & 0x1F) == 1)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Implementation of AstVisitor
|
|
|
|
|
|
|
|
|
|
|
|
void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
|
|
|
|
for (int i = 0; i < declarations->length(); i++) {
|
|
|
|
Visit(declarations->at(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
|
|
|
|
for (int i = 0; i < statements->length(); i++) {
|
|
|
|
Visit(statements->at(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
|
|
|
|
for (int i = 0; i < expressions->length(); i++) {
|
|
|
|
// The variable statement visiting code may pass NULL expressions
|
|
|
|
// to this code. Maybe this should be handled by introducing an
|
|
|
|
// undefined expression or literal? Revisit this code if this
|
|
|
|
// changes
|
|
|
|
Expression* expression = expressions->at(i);
|
|
|
|
if (expression != NULL) Visit(expression);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Regular expressions
|
|
|
|
|
|
|
|
#define MAKE_ACCEPT(Name) \
|
|
|
|
void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \
|
|
|
|
return visitor->Visit##Name(this, data); \
|
|
|
|
}
|
|
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT)
|
|
|
|
#undef MAKE_ACCEPT
|
|
|
|
|
|
|
|
#define MAKE_TYPE_CASE(Name) \
|
|
|
|
RegExp##Name* RegExpTree::As##Name() { \
|
|
|
|
return NULL; \
|
|
|
|
} \
|
|
|
|
bool RegExpTree::Is##Name() { return false; }
|
|
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
|
|
|
#undef MAKE_TYPE_CASE
|
|
|
|
|
|
|
|
#define MAKE_TYPE_CASE(Name) \
|
|
|
|
RegExp##Name* RegExp##Name::As##Name() { \
|
|
|
|
return this; \
|
|
|
|
} \
|
|
|
|
bool RegExp##Name::Is##Name() { return true; }
|
|
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE)
|
|
|
|
#undef MAKE_TYPE_CASE
|
|
|
|
|
|
|
|
RegExpEmpty RegExpEmpty::kInstance;
|
|
|
|
|
|
|
|
|
|
|
|
static Interval ListCaptureRegisters(ZoneList<RegExpTree*>* children) {
|
|
|
|
Interval result = Interval::Empty();
|
|
|
|
for (int i = 0; i < children->length(); i++)
|
|
|
|
result = result.Union(children->at(i)->CaptureRegisters());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Interval RegExpAlternative::CaptureRegisters() {
|
|
|
|
return ListCaptureRegisters(nodes());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Interval RegExpDisjunction::CaptureRegisters() {
|
|
|
|
return ListCaptureRegisters(alternatives());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Interval RegExpLookahead::CaptureRegisters() {
|
|
|
|
return body()->CaptureRegisters();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Interval RegExpCapture::CaptureRegisters() {
|
|
|
|
Interval self(StartRegister(index()), EndRegister(index()));
|
|
|
|
return self.Union(body()->CaptureRegisters());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Interval RegExpQuantifier::CaptureRegisters() {
|
|
|
|
return body()->CaptureRegisters();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RegExpAssertion::IsAnchored() {
|
|
|
|
return type() == RegExpAssertion::START_OF_INPUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RegExpAlternative::IsAnchored() {
|
|
|
|
ZoneList<RegExpTree*>* nodes = this->nodes();
|
|
|
|
for (int i = 0; i < nodes->length(); i++) {
|
|
|
|
RegExpTree* node = nodes->at(i);
|
|
|
|
if (node->IsAnchored()) { return true; }
|
|
|
|
if (node->max_match() > 0) { return false; }
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RegExpDisjunction::IsAnchored() {
|
|
|
|
ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
|
|
|
for (int i = 0; i < alternatives->length(); i++) {
|
|
|
|
if (!alternatives->at(i)->IsAnchored())
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RegExpLookahead::IsAnchored() {
|
|
|
|
return is_positive() && body()->IsAnchored();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RegExpCapture::IsAnchored() {
|
|
|
|
return body()->IsAnchored();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Convert regular expression trees to a simple sexp representation.
|
|
|
|
// This representation should be different from the input grammar
|
|
|
|
// in as many cases as possible, to make it more difficult for incorrect
|
|
|
|
// parses to look as correct ones which is likely if the input and
|
|
|
|
// output formats are alike.
|
|
|
|
class RegExpUnparser: public RegExpVisitor {
|
|
|
|
public:
|
|
|
|
RegExpUnparser();
|
|
|
|
void VisitCharacterRange(CharacterRange that);
|
|
|
|
SmartPointer<const char> ToString() { return stream_.ToCString(); }
|
|
|
|
#define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, void* data);
|
|
|
|
FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE)
|
|
|
|
#undef MAKE_CASE
|
|
|
|
private:
|
|
|
|
StringStream* stream() { return &stream_; }
|
|
|
|
HeapStringAllocator alloc_;
|
|
|
|
StringStream stream_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
RegExpUnparser::RegExpUnparser() : stream_(&alloc_) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) {
|
|
|
|
stream()->Add("(|");
|
|
|
|
for (int i = 0; i < that->alternatives()->length(); i++) {
|
|
|
|
stream()->Add(" ");
|
|
|
|
that->alternatives()->at(i)->Accept(this, data);
|
|
|
|
}
|
|
|
|
stream()->Add(")");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) {
|
|
|
|
stream()->Add("(:");
|
|
|
|
for (int i = 0; i < that->nodes()->length(); i++) {
|
|
|
|
stream()->Add(" ");
|
|
|
|
that->nodes()->at(i)->Accept(this, data);
|
|
|
|
}
|
|
|
|
stream()->Add(")");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RegExpUnparser::VisitCharacterRange(CharacterRange that) {
|
|
|
|
stream()->Add("%k", that.from());
|
|
|
|
if (!that.IsSingleton()) {
|
|
|
|
stream()->Add("-%k", that.to());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that,
|
|
|
|
void* data) {
|
|
|
|
if (that->is_negated())
|
|
|
|
stream()->Add("^");
|
|
|
|
stream()->Add("[");
|
|
|
|
for (int i = 0; i < that->ranges()->length(); i++) {
|
|
|
|
if (i > 0) stream()->Add(" ");
|
|
|
|
VisitCharacterRange(that->ranges()->at(i));
|
|
|
|
}
|
|
|
|
stream()->Add("]");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) {
|
|
|
|
switch (that->type()) {
|
|
|
|
case RegExpAssertion::START_OF_INPUT:
|
|
|
|
stream()->Add("@^i");
|
|
|
|
break;
|
|
|
|
case RegExpAssertion::END_OF_INPUT:
|
|
|
|
stream()->Add("@$i");
|
|
|
|
break;
|
|
|
|
case RegExpAssertion::START_OF_LINE:
|
|
|
|
stream()->Add("@^l");
|
|
|
|
break;
|
|
|
|
case RegExpAssertion::END_OF_LINE:
|
|
|
|
stream()->Add("@$l");
|
|
|
|
break;
|
|
|
|
case RegExpAssertion::BOUNDARY:
|
|
|
|
stream()->Add("@b");
|
|
|
|
break;
|
|
|
|
case RegExpAssertion::NON_BOUNDARY:
|
|
|
|
stream()->Add("@B");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) {
|
|
|
|
stream()->Add("'");
|
|
|
|
Vector<const uc16> chardata = that->data();
|
|
|
|
for (int i = 0; i < chardata.length(); i++) {
|
|
|
|
stream()->Add("%k", chardata[i]);
|
|
|
|
}
|
|
|
|
stream()->Add("'");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitText(RegExpText* that, void* data) {
|
|
|
|
if (that->elements()->length() == 1) {
|
|
|
|
that->elements()->at(0).data.u_atom->Accept(this, data);
|
|
|
|
} else {
|
|
|
|
stream()->Add("(!");
|
|
|
|
for (int i = 0; i < that->elements()->length(); i++) {
|
|
|
|
stream()->Add(" ");
|
|
|
|
that->elements()->at(i).data.u_atom->Accept(this, data);
|
|
|
|
}
|
|
|
|
stream()->Add(")");
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) {
|
|
|
|
stream()->Add("(# %i ", that->min());
|
|
|
|
if (that->max() == RegExpTree::kInfinity) {
|
|
|
|
stream()->Add("- ");
|
|
|
|
} else {
|
|
|
|
stream()->Add("%i ", that->max());
|
|
|
|
}
|
|
|
|
stream()->Add(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n ");
|
|
|
|
that->body()->Accept(this, data);
|
|
|
|
stream()->Add(")");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) {
|
|
|
|
stream()->Add("(^ ");
|
|
|
|
that->body()->Accept(this, data);
|
|
|
|
stream()->Add(")");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) {
|
|
|
|
stream()->Add("(-> ");
|
|
|
|
stream()->Add(that->is_positive() ? "+ " : "- ");
|
|
|
|
that->body()->Accept(this, data);
|
|
|
|
stream()->Add(")");
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitBackReference(RegExpBackReference* that,
|
|
|
|
void* data) {
|
|
|
|
stream()->Add("(<- %i)", that->index());
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) {
|
|
|
|
stream()->Put('%');
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
SmartPointer<const char> RegExpTree::ToString() {
|
|
|
|
RegExpUnparser unparser;
|
|
|
|
Accept(&unparser, NULL);
|
|
|
|
return unparser.ToString();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
RegExpDisjunction::RegExpDisjunction(ZoneList<RegExpTree*>* alternatives)
|
|
|
|
: alternatives_(alternatives) {
|
|
|
|
ASSERT(alternatives->length() > 1);
|
|
|
|
RegExpTree* first_alternative = alternatives->at(0);
|
|
|
|
min_match_ = first_alternative->min_match();
|
|
|
|
max_match_ = first_alternative->max_match();
|
|
|
|
for (int i = 1; i < alternatives->length(); i++) {
|
|
|
|
RegExpTree* alternative = alternatives->at(i);
|
|
|
|
min_match_ = Min(min_match_, alternative->min_match());
|
|
|
|
max_match_ = Max(max_match_, alternative->max_match());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
RegExpAlternative::RegExpAlternative(ZoneList<RegExpTree*>* nodes)
|
|
|
|
: nodes_(nodes) {
|
|
|
|
ASSERT(nodes->length() > 1);
|
|
|
|
min_match_ = 0;
|
|
|
|
max_match_ = 0;
|
|
|
|
for (int i = 0; i < nodes->length(); i++) {
|
|
|
|
RegExpTree* node = nodes->at(i);
|
|
|
|
min_match_ += node->min_match();
|
|
|
|
int node_max_match = node->max_match();
|
|
|
|
if (kInfinity - max_match_ < node_max_match) {
|
|
|
|
max_match_ = kInfinity;
|
|
|
|
} else {
|
|
|
|
max_match_ += node->max_match();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// IsPrimitive implementation. IsPrimitive is true if the value of an
|
|
|
|
// expression is known at compile-time to be any JS type other than Object
|
|
|
|
// (e.g, it is Undefined, Null, Boolean, String, or Number).
|
|
|
|
|
|
|
|
// The following expression types are never primitive because they express
|
|
|
|
// Object values.
|
|
|
|
bool FunctionLiteral::IsPrimitive() { return false; }
|
|
|
|
bool SharedFunctionInfoLiteral::IsPrimitive() { return false; }
|
|
|
|
bool RegExpLiteral::IsPrimitive() { return false; }
|
|
|
|
bool ObjectLiteral::IsPrimitive() { return false; }
|
|
|
|
bool ArrayLiteral::IsPrimitive() { return false; }
|
|
|
|
bool CatchExtensionObject::IsPrimitive() { return false; }
|
|
|
|
bool CallNew::IsPrimitive() { return false; }
|
|
|
|
bool ThisFunction::IsPrimitive() { return false; }
|
|
|
|
|
|
|
|
|
|
|
|
// The following expression types are not always primitive because we do not
|
|
|
|
// have enough information to conclude that they are.
|
|
|
|
bool Property::IsPrimitive() { return false; }
|
|
|
|
bool Call::IsPrimitive() { return false; }
|
|
|
|
bool CallRuntime::IsPrimitive() { return false; }
|
|
|
|
|
|
|
|
|
|
|
|
// A variable use is not primitive unless the primitive-type analysis
|
|
|
|
// determines otherwise.
|
|
|
|
bool VariableProxy::IsPrimitive() {
|
|
|
|
ASSERT(!is_primitive_ || (var() != NULL && var()->IsStackAllocated()));
|
|
|
|
return is_primitive_;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The value of a conditional is the value of one of the alternatives. It's
|
|
|
|
// always primitive if both alternatives are always primitive.
|
|
|
|
bool Conditional::IsPrimitive() {
|
|
|
|
return then_expression()->IsPrimitive() && else_expression()->IsPrimitive();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// A literal is primitive when it is not a JSObject.
|
|
|
|
bool Literal::IsPrimitive() { return !handle()->IsJSObject(); }
|
|
|
|
|
|
|
|
|
|
|
|
// The value of an assignment is the value of its right-hand side.
|
|
|
|
bool Assignment::IsPrimitive() {
|
|
|
|
switch (op()) {
|
|
|
|
case Token::INIT_VAR:
|
|
|
|
case Token::INIT_CONST:
|
|
|
|
case Token::ASSIGN:
|
|
|
|
return value()->IsPrimitive();
|
|
|
|
|
|
|
|
default:
|
|
|
|
// {|=, ^=, &=, <<=, >>=, >>>=, +=, -=, *=, /=, %=}
|
|
|
|
// Arithmetic operations are always primitive. They express Numbers
|
|
|
|
// with the exception of +, which expresses a Number or a String.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Throw does not express a value, so it's trivially always primitive.
|
|
|
|
bool Throw::IsPrimitive() { return true; }
|
|
|
|
|
|
|
|
|
|
|
|
// Unary operations always express primitive values. delete and ! express
|
|
|
|
// Booleans, void Undefined, typeof String, +, -, and ~ Numbers.
|
|
|
|
bool UnaryOperation::IsPrimitive() { return true; }
|
|
|
|
|
|
|
|
|
|
|
|
// Count operations (pre- and post-fix increment and decrement) always
|
|
|
|
// express primitive values (Numbers). See ECMA-262-3, 11.3.1, 11.3.2,
|
|
|
|
// 11.4.4, ane 11.4.5.
|
|
|
|
bool CountOperation::IsPrimitive() { return true; }
|
|
|
|
|
|
|
|
|
|
|
|
// Binary operations depend on the operator.
|
|
|
|
bool BinaryOperation::IsPrimitive() {
|
|
|
|
switch (op()) {
|
|
|
|
case Token::COMMA:
|
|
|
|
// Value is the value of the right subexpression.
|
|
|
|
return right()->IsPrimitive();
|
|
|
|
|
|
|
|
case Token::OR:
|
|
|
|
case Token::AND:
|
|
|
|
// Value is the value one of the subexpressions.
|
|
|
|
return left()->IsPrimitive() && right()->IsPrimitive();
|
|
|
|
|
|
|
|
default:
|
|
|
|
// {|, ^, &, <<, >>, >>>, +, -, *, /, %}
|
|
|
|
// Arithmetic operations are always primitive. They express Numbers
|
|
|
|
// with the exception of +, which expresses a Number or a String.
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Compare operations always express Boolean values.
|
|
|
|
bool CompareOperation::IsPrimitive() { return true; }
|
|
|
|
|
|
|
|
|
|
|
|
// Overridden IsCritical member functions. IsCritical is true for AST nodes
|
|
|
|
// whose evaluation is absolutely required (they are never dead) because
|
|
|
|
// they are externally visible.
|
|
|
|
|
|
|
|
// References to global variables or lookup slots are critical because they
|
|
|
|
// may have getters. All others, including parameters rewritten to explicit
|
|
|
|
// property references, are not critical.
|
|
|
|
bool VariableProxy::IsCritical() {
|
|
|
|
Variable* var = AsVariable();
|
|
|
|
return var != NULL &&
|
|
|
|
(var->slot() == NULL || var->slot()->type() == Slot::LOOKUP);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Literals are never critical.
|
|
|
|
bool Literal::IsCritical() { return false; }
|
|
|
|
|
|
|
|
|
|
|
|
// Property assignments and throwing of reference errors are always
|
|
|
|
// critical. Assignments to escaping variables are also critical. In
|
|
|
|
// addition the operation of compound assignments is critical if either of
|
|
|
|
// its operands is non-primitive (the arithmetic operations all use one of
|
|
|
|
// ToPrimitive, ToNumber, ToInt32, or ToUint32 on each of their operands).
|
|
|
|
// In this case, we mark the entire AST node as critical because there is
|
|
|
|
// no binary operation node to mark.
|
|
|
|
bool Assignment::IsCritical() {
|
|
|
|
Variable* var = AssignedVariable();
|
|
|
|
return var == NULL ||
|
|
|
|
!var->IsStackAllocated() ||
|
|
|
|
(is_compound() && (!target()->IsPrimitive() || !value()->IsPrimitive()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Property references are always critical, because they may have getters.
|
|
|
|
bool Property::IsCritical() { return true; }
|
|
|
|
|
|
|
|
|
|
|
|
// Calls are always critical.
|
|
|
|
bool Call::IsCritical() { return true; }
|
|
|
|
|
|
|
|
|
|
|
|
// +,- use ToNumber on the value of their operand.
|
|
|
|
bool UnaryOperation::IsCritical() {
|
|
|
|
ASSERT(op() == Token::ADD || op() == Token::SUB);
|
|
|
|
return !expression()->IsPrimitive();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Count operations targeting properties and reference errors are always
|
|
|
|
// critical. Count operations on escaping variables are critical. Count
|
|
|
|
// operations targeting non-primitives are also critical because they use
|
|
|
|
// ToNumber.
|
|
|
|
bool CountOperation::IsCritical() {
|
|
|
|
Variable* var = AssignedVariable();
|
|
|
|
return var == NULL ||
|
|
|
|
!var->IsStackAllocated() ||
|
|
|
|
!expression()->IsPrimitive();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Arithmetic operations all use one of ToPrimitive, ToNumber, ToInt32, or
|
|
|
|
// ToUint32 on each of their operands.
|
|
|
|
bool BinaryOperation::IsCritical() {
|
|
|
|
ASSERT(op() != Token::COMMA);
|
|
|
|
ASSERT(op() != Token::OR);
|
|
|
|
ASSERT(op() != Token::AND);
|
|
|
|
return !left()->IsPrimitive() || !right()->IsPrimitive();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// <, >, <=, and >= all use ToPrimitive on both their operands.
|
|
|
|
bool CompareOperation::IsCritical() {
|
|
|
|
ASSERT(op() != Token::EQ);
|
|
|
|
ASSERT(op() != Token::NE);
|
|
|
|
ASSERT(op() != Token::EQ_STRICT);
|
|
|
|
ASSERT(op() != Token::NE_STRICT);
|
|
|
|
ASSERT(op() != Token::INSTANCEOF);
|
|
|
|
ASSERT(op() != Token::IN);
|
|
|
|
return !left()->IsPrimitive() || !right()->IsPrimitive();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline void MarkIfNotLive(Expression* expr, List<AstNode*>* stack) {
|
|
|
|
if (!expr->is_live()) {
|
|
|
|
expr->mark_as_live();
|
|
|
|
stack->Add(expr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Overloaded functions for marking children of live code as live.
|
|
|
|
void VariableProxy::ProcessNonLiveChildren(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
// A reference to a stack-allocated variable depends on all the
|
|
|
|
// definitions reaching it.
|
|
|
|
BitVector* defs = reaching_definitions();
|
|
|
|
if (defs != NULL) {
|
|
|
|
ASSERT(var()->IsStackAllocated());
|
|
|
|
// The first variable_count definitions are the initial parameter and
|
|
|
|
// local declarations.
|
|
|
|
for (int i = variable_count; i < defs->length(); i++) {
|
|
|
|
if (defs->Contains(i)) {
|
|
|
|
MarkIfNotLive(body_definitions->at(i - variable_count), stack);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Literal::ProcessNonLiveChildren(List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
// Leaf node, no children.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assignment::ProcessNonLiveChildren(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
Property* prop = target()->AsProperty();
|
|
|
|
VariableProxy* proxy = target()->AsVariableProxy();
|
|
|
|
|
|
|
|
if (prop != NULL) {
|
|
|
|
if (!prop->key()->IsPropertyName()) MarkIfNotLive(prop->key(), stack);
|
|
|
|
MarkIfNotLive(prop->obj(), stack);
|
|
|
|
} else if (proxy == NULL) {
|
|
|
|
// Must be a reference error.
|
|
|
|
ASSERT(!target()->IsValidLeftHandSide());
|
|
|
|
MarkIfNotLive(target(), stack);
|
|
|
|
} else if (is_compound()) {
|
|
|
|
// A variable assignment so lhs is an operand to the operation.
|
|
|
|
MarkIfNotLive(target(), stack);
|
|
|
|
}
|
|
|
|
MarkIfNotLive(value(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Property::ProcessNonLiveChildren(List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
if (!key()->IsPropertyName()) MarkIfNotLive(key(), stack);
|
|
|
|
MarkIfNotLive(obj(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Call::ProcessNonLiveChildren(List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
ZoneList<Expression*>* args = arguments();
|
|
|
|
for (int i = args->length() - 1; i >= 0; i--) {
|
|
|
|
MarkIfNotLive(args->at(i), stack);
|
|
|
|
}
|
|
|
|
MarkIfNotLive(expression(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOperation::ProcessNonLiveChildren(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
MarkIfNotLive(expression(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CountOperation::ProcessNonLiveChildren(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
MarkIfNotLive(expression(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOperation::ProcessNonLiveChildren(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
MarkIfNotLive(right(), stack);
|
|
|
|
MarkIfNotLive(left(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CompareOperation::ProcessNonLiveChildren(
|
|
|
|
List<AstNode*>* stack,
|
|
|
|
ZoneList<Expression*>* body_definitions,
|
|
|
|
int variable_count) {
|
|
|
|
MarkIfNotLive(right(), stack);
|
|
|
|
MarkIfNotLive(left(), stack);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Implementation of a copy visitor. The visitor create a deep copy
|
|
|
|
// of ast nodes. Nodes that do not require a deep copy are copied
|
|
|
|
// with the default copy constructor.
|
|
|
|
|
|
|
|
AstNode::AstNode(AstNode* other) : num_(kNoNumber) {
|
|
|
|
// AST node number should be unique. Assert that we only copy AstNodes
|
|
|
|
// before node numbers are assigned.
|
|
|
|
ASSERT(other->num_ == kNoNumber);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Statement::Statement(Statement* other)
|
|
|
|
: AstNode(other), statement_pos_(other->statement_pos_) {}
|
|
|
|
|
|
|
|
|
|
|
|
Expression::Expression(Expression* other)
|
|
|
|
: AstNode(other),
|
|
|
|
bitfields_(other->bitfields_),
|
|
|
|
type_(other->type_) {}
|
|
|
|
|
|
|
|
|
|
|
|
BreakableStatement::BreakableStatement(BreakableStatement* other)
|
|
|
|
: Statement(other), labels_(other->labels_), type_(other->type_) {}
|
|
|
|
|
|
|
|
|
|
|
|
Block::Block(Block* other, ZoneList<Statement*>* statements)
|
|
|
|
: BreakableStatement(other),
|
|
|
|
statements_(statements->length()),
|
|
|
|
is_initializer_block_(other->is_initializer_block_) {
|
|
|
|
statements_.AddAll(*statements);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ExpressionStatement::ExpressionStatement(ExpressionStatement* other,
|
|
|
|
Expression* expression)
|
|
|
|
: Statement(other), expression_(expression) {}
|
|
|
|
|
|
|
|
|
|
|
|
IfStatement::IfStatement(IfStatement* other,
|
|
|
|
Expression* condition,
|
|
|
|
Statement* then_statement,
|
|
|
|
Statement* else_statement)
|
|
|
|
: Statement(other),
|
|
|
|
condition_(condition),
|
|
|
|
then_statement_(then_statement),
|
|
|
|
else_statement_(else_statement) {}
|
|
|
|
|
|
|
|
|
|
|
|
EmptyStatement::EmptyStatement(EmptyStatement* other) : Statement(other) {}
|
|
|
|
|
|
|
|
|
|
|
|
IterationStatement::IterationStatement(IterationStatement* other,
|
|
|
|
Statement* body)
|
|
|
|
: BreakableStatement(other), body_(body) {}
|
|
|
|
|
|
|
|
|
|
|
|
ForStatement::ForStatement(ForStatement* other,
|
|
|
|
Statement* init,
|
|
|
|
Expression* cond,
|
|
|
|
Statement* next,
|
|
|
|
Statement* body)
|
|
|
|
: IterationStatement(other, body),
|
|
|
|
init_(init),
|
|
|
|
cond_(cond),
|
|
|
|
next_(next),
|
|
|
|
may_have_function_literal_(other->may_have_function_literal_),
|
|
|
|
loop_variable_(other->loop_variable_),
|
|
|
|
peel_this_loop_(other->peel_this_loop_) {}
|
|
|
|
|
|
|
|
|
|
|
|
Assignment::Assignment(Assignment* other,
|
|
|
|
Expression* target,
|
|
|
|
Expression* value)
|
|
|
|
: Expression(other),
|
|
|
|
op_(other->op_),
|
|
|
|
target_(target),
|
|
|
|
value_(value),
|
|
|
|
pos_(other->pos_),
|
|
|
|
block_start_(other->block_start_),
|
|
|
|
block_end_(other->block_end_) {}
|
|
|
|
|
|
|
|
|
|
|
|
Property::Property(Property* other, Expression* obj, Expression* key)
|
|
|
|
: Expression(other),
|
|
|
|
obj_(obj),
|
|
|
|
key_(key),
|
|
|
|
pos_(other->pos_),
|
|
|
|
type_(other->type_) {}
|
|
|
|
|
|
|
|
|
|
|
|
Call::Call(Call* other,
|
|
|
|
Expression* expression,
|
|
|
|
ZoneList<Expression*>* arguments)
|
|
|
|
: Expression(other),
|
|
|
|
expression_(expression),
|
|
|
|
arguments_(arguments),
|
|
|
|
pos_(other->pos_) {}
|
|
|
|
|
|
|
|
|
|
|
|
UnaryOperation::UnaryOperation(UnaryOperation* other, Expression* expression)
|
|
|
|
: Expression(other), op_(other->op_), expression_(expression) {}
|
|
|
|
|
|
|
|
|
|
|
|
BinaryOperation::BinaryOperation(BinaryOperation* other,
|
|
|
|
Expression* left,
|
|
|
|
Expression* right)
|
|
|
|
: Expression(other),
|
|
|
|
op_(other->op_),
|
|
|
|
left_(left),
|
|
|
|
right_(right) {}
|
|
|
|
|
|
|
|
|
|
|
|
CountOperation::CountOperation(CountOperation* other, Expression* expression)
|
|
|
|
: Expression(other),
|
|
|
|
is_prefix_(other->is_prefix_),
|
|
|
|
op_(other->op_),
|
|
|
|
expression_(expression) {}
|
|
|
|
|
|
|
|
|
|
|
|
CompareOperation::CompareOperation(CompareOperation* other,
|
|
|
|
Expression* left,
|
|
|
|
Expression* right)
|
|
|
|
: Expression(other),
|
|
|
|
op_(other->op_),
|
|
|
|
left_(left),
|
|
|
|
right_(right) {}
|
|
|
|
|
|
|
|
|
|
|
|
Expression* CopyAstVisitor::DeepCopyExpr(Expression* expr) {
|
|
|
|
expr_ = NULL;
|
|
|
|
if (expr != NULL) Visit(expr);
|
|
|
|
return expr_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Statement* CopyAstVisitor::DeepCopyStmt(Statement* stmt) {
|
|
|
|
stmt_ = NULL;
|
|
|
|
if (stmt != NULL) Visit(stmt);
|
|
|
|
return stmt_;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ZoneList<Expression*>* CopyAstVisitor::DeepCopyExprList(
|
|
|
|
ZoneList<Expression*>* expressions) {
|
|
|
|
ZoneList<Expression*>* copy =
|
|
|
|
new ZoneList<Expression*>(expressions->length());
|
|
|
|
for (int i = 0; i < expressions->length(); i++) {
|
|
|
|
copy->Add(DeepCopyExpr(expressions->at(i)));
|
|
|
|
}
|
|
|
|
return copy;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ZoneList<Statement*>* CopyAstVisitor::DeepCopyStmtList(
|
|
|
|
ZoneList<Statement*>* statements) {
|
|
|
|
ZoneList<Statement*>* copy = new ZoneList<Statement*>(statements->length());
|
|
|
|
for (int i = 0; i < statements->length(); i++) {
|
|
|
|
copy->Add(DeepCopyStmt(statements->at(i)));
|
|
|
|
}
|
|
|
|
return copy;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitBlock(Block* stmt) {
|
|
|
|
stmt_ = new Block(stmt,
|
|
|
|
DeepCopyStmtList(stmt->statements()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitExpressionStatement(
|
|
|
|
ExpressionStatement* stmt) {
|
|
|
|
stmt_ = new ExpressionStatement(stmt, DeepCopyExpr(stmt->expression()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitEmptyStatement(EmptyStatement* stmt) {
|
|
|
|
stmt_ = new EmptyStatement(stmt);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitIfStatement(IfStatement* stmt) {
|
|
|
|
stmt_ = new IfStatement(stmt,
|
|
|
|
DeepCopyExpr(stmt->condition()),
|
|
|
|
DeepCopyStmt(stmt->then_statement()),
|
|
|
|
DeepCopyStmt(stmt->else_statement()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitContinueStatement(ContinueStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitBreakStatement(BreakStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitReturnStatement(ReturnStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitWithEnterStatement(
|
|
|
|
WithEnterStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitWithExitStatement(WithExitStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitSwitchStatement(SwitchStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitWhileStatement(WhileStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitForStatement(ForStatement* stmt) {
|
|
|
|
stmt_ = new ForStatement(stmt,
|
|
|
|
DeepCopyStmt(stmt->init()),
|
|
|
|
DeepCopyExpr(stmt->cond()),
|
|
|
|
DeepCopyStmt(stmt->next()),
|
|
|
|
DeepCopyStmt(stmt->body()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitForInStatement(ForInStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitTryFinallyStatement(
|
|
|
|
TryFinallyStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitDebuggerStatement(
|
|
|
|
DebuggerStatement* stmt) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitFunctionLiteral(FunctionLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitSharedFunctionInfoLiteral(
|
|
|
|
SharedFunctionInfoLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitConditional(Conditional* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitSlot(Slot* expr) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitVariableProxy(VariableProxy* expr) {
|
|
|
|
expr_ = new VariableProxy(*expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitLiteral(Literal* expr) {
|
|
|
|
expr_ = new Literal(*expr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitRegExpLiteral(RegExpLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitObjectLiteral(ObjectLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitArrayLiteral(ArrayLiteral* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitCatchExtensionObject(
|
|
|
|
CatchExtensionObject* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitAssignment(Assignment* expr) {
|
|
|
|
expr_ = new Assignment(expr,
|
|
|
|
DeepCopyExpr(expr->target()),
|
|
|
|
DeepCopyExpr(expr->value()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitThrow(Throw* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitProperty(Property* expr) {
|
|
|
|
expr_ = new Property(expr,
|
|
|
|
DeepCopyExpr(expr->obj()),
|
|
|
|
DeepCopyExpr(expr->key()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitCall(Call* expr) {
|
|
|
|
expr_ = new Call(expr,
|
|
|
|
DeepCopyExpr(expr->expression()),
|
|
|
|
DeepCopyExprList(expr->arguments()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitCallNew(CallNew* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitCallRuntime(CallRuntime* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitUnaryOperation(UnaryOperation* expr) {
|
|
|
|
expr_ = new UnaryOperation(expr, DeepCopyExpr(expr->expression()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitCountOperation(CountOperation* expr) {
|
|
|
|
expr_ = new CountOperation(expr,
|
|
|
|
DeepCopyExpr(expr->expression()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitBinaryOperation(BinaryOperation* expr) {
|
|
|
|
expr_ = new BinaryOperation(expr,
|
|
|
|
DeepCopyExpr(expr->left()),
|
|
|
|
DeepCopyExpr(expr->right()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitCompareOperation(CompareOperation* expr) {
|
|
|
|
expr_ = new CompareOperation(expr,
|
|
|
|
DeepCopyExpr(expr->left()),
|
|
|
|
DeepCopyExpr(expr->right()));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitThisFunction(ThisFunction* expr) {
|
|
|
|
SetStackOverflow();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CopyAstVisitor::VisitDeclaration(Declaration* decl) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|