|
|
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef V8_X64_ASSEMBLER_X64_INL_H_
|
|
|
|
#define V8_X64_ASSEMBLER_X64_INL_H_
|
|
|
|
|
|
|
|
#include "x64/assembler-x64.h"
|
|
|
|
|
|
|
|
#include "cpu.h"
|
|
|
|
#include "debug.h"
|
|
|
|
#include "v8memory.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of Assembler
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emitl(uint32_t x) {
|
|
|
|
Memory::uint32_at(pc_) = x;
|
|
|
|
pc_ += sizeof(uint32_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emitq(uint64_t x, RelocInfo::Mode rmode) {
|
|
|
|
Memory::uint64_at(pc_) = x;
|
|
|
|
if (rmode != RelocInfo::NONE) {
|
|
|
|
RecordRelocInfo(rmode, x);
|
|
|
|
}
|
|
|
|
pc_ += sizeof(uint64_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emitw(uint16_t x) {
|
|
|
|
Memory::uint16_at(pc_) = x;
|
|
|
|
pc_ += sizeof(uint16_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_code_target(Handle<Code> target,
|
|
|
|
RelocInfo::Mode rmode,
|
|
|
|
unsigned ast_id) {
|
|
|
|
ASSERT(RelocInfo::IsCodeTarget(rmode));
|
|
|
|
if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) {
|
|
|
|
RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID, ast_id);
|
|
|
|
} else {
|
|
|
|
RecordRelocInfo(rmode);
|
|
|
|
}
|
|
|
|
int current = code_targets_.length();
|
|
|
|
if (current > 0 && code_targets_.last().is_identical_to(target)) {
|
|
|
|
// Optimization if we keep jumping to the same code target.
|
|
|
|
emitl(current - 1);
|
|
|
|
} else {
|
|
|
|
code_targets_.Add(target);
|
|
|
|
emitl(current);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(Register reg, Register rm_reg) {
|
|
|
|
emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) {
|
|
|
|
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) {
|
|
|
|
emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(Register reg, const Operand& op) {
|
|
|
|
emit(0x48 | reg.high_bit() << 2 | op.rex_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(XMMRegister reg, const Operand& op) {
|
|
|
|
emit(0x48 | (reg.code() & 0x8) >> 1 | op.rex_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(Register rm_reg) {
|
|
|
|
ASSERT_EQ(rm_reg.code() & 0xf, rm_reg.code());
|
|
|
|
emit(0x48 | rm_reg.high_bit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_64(const Operand& op) {
|
|
|
|
emit(0x48 | op.rex_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_32(Register reg, Register rm_reg) {
|
|
|
|
emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_32(Register reg, const Operand& op) {
|
|
|
|
emit(0x40 | reg.high_bit() << 2 | op.rex_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_32(Register rm_reg) {
|
|
|
|
emit(0x40 | rm_reg.high_bit());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_rex_32(const Operand& op) {
|
|
|
|
emit(0x40 | op.rex_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) {
|
|
|
|
byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit();
|
|
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register reg, const Operand& op) {
|
|
|
|
byte rex_bits = reg.high_bit() << 2 | op.rex_;
|
|
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister reg, const Operand& op) {
|
|
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | op.rex_;
|
|
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) {
|
|
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
|
|
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) {
|
|
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
|
|
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) {
|
|
|
|
byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3;
|
|
|
|
if (rex_bits != 0) emit(0x40 | rex_bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(Register rm_reg) {
|
|
|
|
if (rm_reg.high_bit()) emit(0x41);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::emit_optional_rex_32(const Operand& op) {
|
|
|
|
if (op.rex_ != 0) emit(0x40 | op.rex_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address Assembler::target_address_at(Address pc) {
|
|
|
|
return Memory::int32_at(pc) + pc + 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Assembler::set_target_address_at(Address pc, Address target) {
|
|
|
|
Memory::int32_at(pc) = static_cast<int32_t>(target - pc - 4);
|
|
|
|
CPU::FlushICache(pc, sizeof(int32_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
|
|
|
|
return code_targets_[Memory::int32_at(pc)];
|
|
|
|
}
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of RelocInfo
|
|
|
|
|
|
|
|
// The modes possibly affected by apply must be in kApplyMask.
|
|
|
|
void RelocInfo::apply(intptr_t delta) {
|
|
|
|
if (IsInternalReference(rmode_)) {
|
|
|
|
// absolute code pointer inside code object moves with the code object.
|
|
|
|
Memory::Address_at(pc_) += static_cast<int32_t>(delta);
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
} else if (IsCodeTarget(rmode_)) {
|
|
|
|
Memory::int32_at(pc_) -= static_cast<int32_t>(delta);
|
|
|
|
CPU::FlushICache(pc_, sizeof(int32_t));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address RelocInfo::target_address() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
|
|
|
if (IsCodeTarget(rmode_)) {
|
|
|
|
return Assembler::target_address_at(pc_);
|
|
|
|
} else {
|
|
|
|
return Memory::Address_at(pc_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address RelocInfo::target_address_address() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY
|
|
|
|
|| rmode_ == EMBEDDED_OBJECT
|
|
|
|
|| rmode_ == EXTERNAL_REFERENCE);
|
|
|
|
return reinterpret_cast<Address>(pc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int RelocInfo::target_address_size() {
|
|
|
|
if (IsCodedSpecially()) {
|
|
|
|
return Assembler::kCallTargetSize;
|
|
|
|
} else {
|
|
|
|
return Assembler::kExternalTargetSize;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_target_address(Address target, WriteBarrierMode mode) {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == RUNTIME_ENTRY);
|
|
|
|
if (IsCodeTarget(rmode_)) {
|
|
|
|
Assembler::set_target_address_at(pc_, target);
|
|
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
|
|
if (mode == UPDATE_WRITE_BARRIER && host() != NULL) {
|
|
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
|
|
host(), this, HeapObject::cast(target_code));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Memory::Address_at(pc_) = target;
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object* RelocInfo::target_object() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
return Memory::Object_at(pc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
if (rmode_ == EMBEDDED_OBJECT) {
|
|
|
|
return Memory::Object_Handle_at(pc_);
|
|
|
|
} else {
|
|
|
|
return origin->code_target_object_handle_at(pc_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object** RelocInfo::target_object_address() {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
return reinterpret_cast<Object**>(pc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address* RelocInfo::target_reference_address() {
|
|
|
|
ASSERT(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
|
|
|
|
return reinterpret_cast<Address*>(pc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_target_object(Object* target, WriteBarrierMode mode) {
|
|
|
|
ASSERT(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
|
|
|
|
Memory::Object_at(pc_) = target;
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
if (mode == UPDATE_WRITE_BARRIER &&
|
|
|
|
host() != NULL &&
|
|
|
|
target->IsHeapObject()) {
|
|
|
|
host()->GetHeap()->incremental_marking()->RecordWrite(
|
|
|
|
host(), &Memory::Object_at(pc_), HeapObject::cast(target));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Handle<JSGlobalPropertyCell> RelocInfo::target_cell_handle() {
|
|
|
|
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
|
|
|
|
Address address = Memory::Address_at(pc_);
|
|
|
|
return Handle<JSGlobalPropertyCell>(
|
|
|
|
reinterpret_cast<JSGlobalPropertyCell**>(address));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
JSGlobalPropertyCell* RelocInfo::target_cell() {
|
|
|
|
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
|
|
|
|
Address address = Memory::Address_at(pc_);
|
|
|
|
Object* object = HeapObject::FromAddress(
|
|
|
|
address - JSGlobalPropertyCell::kValueOffset);
|
|
|
|
return reinterpret_cast<JSGlobalPropertyCell*>(object);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_target_cell(JSGlobalPropertyCell* cell,
|
|
|
|
WriteBarrierMode mode) {
|
|
|
|
ASSERT(rmode_ == RelocInfo::GLOBAL_PROPERTY_CELL);
|
|
|
|
Address address = cell->address() + JSGlobalPropertyCell::kValueOffset;
|
|
|
|
Memory::Address_at(pc_) = address;
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
if (mode == UPDATE_WRITE_BARRIER &&
|
|
|
|
host() != NULL) {
|
|
|
|
// TODO(1550) We are passing NULL as a slot because cell can never be on
|
|
|
|
// evacuation candidate.
|
|
|
|
host()->GetHeap()->incremental_marking()->RecordWrite(
|
|
|
|
host(), NULL, cell);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RelocInfo::IsPatchedReturnSequence() {
|
|
|
|
// The recognized call sequence is:
|
|
|
|
// movq(kScratchRegister, immediate64); call(kScratchRegister);
|
|
|
|
// It only needs to be distinguished from a return sequence
|
|
|
|
// movq(rsp, rbp); pop(rbp); ret(n); int3 *6
|
|
|
|
// The 11th byte is int3 (0xCC) in the return sequence and
|
|
|
|
// REX.WB (0x48+register bit) for the call sequence.
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
|
|
return pc_[10] != 0xCC;
|
|
|
|
#else
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
|
|
|
|
return !Assembler::IsNop(pc());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Address RelocInfo::call_address() {
|
|
|
|
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
|
|
|
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
|
|
|
return Memory::Address_at(
|
|
|
|
pc_ + Assembler::kRealPatchReturnSequenceAddressOffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_call_address(Address target) {
|
|
|
|
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
|
|
|
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
|
|
|
Memory::Address_at(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset) =
|
|
|
|
target;
|
|
|
|
CPU::FlushICache(pc_ + Assembler::kRealPatchReturnSequenceAddressOffset,
|
|
|
|
sizeof(Address));
|
|
|
|
if (host() != NULL) {
|
|
|
|
Object* target_code = Code::GetCodeFromTargetAddress(target);
|
|
|
|
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
|
|
|
|
host(), this, HeapObject::cast(target_code));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object* RelocInfo::call_object() {
|
|
|
|
return *call_object_address();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::set_call_object(Object* target) {
|
|
|
|
*call_object_address() = target;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object** RelocInfo::call_object_address() {
|
|
|
|
ASSERT((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
|
|
|
|
(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
|
|
|
|
return reinterpret_cast<Object**>(
|
|
|
|
pc_ + Assembler::kPatchReturnSequenceAddressOffset);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RelocInfo::Visit(ObjectVisitor* visitor) {
|
|
|
|
RelocInfo::Mode mode = rmode();
|
|
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
|
|
visitor->VisitEmbeddedPointer(this);
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
|
|
visitor->VisitCodeTarget(this);
|
|
|
|
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
|
|
|
|
visitor->VisitGlobalPropertyCell(this);
|
|
|
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
|
|
visitor->VisitExternalReference(this);
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
|
|
// TODO(isolates): Get a cached isolate below.
|
|
|
|
} else if (((RelocInfo::IsJSReturn(mode) &&
|
|
|
|
IsPatchedReturnSequence()) ||
|
|
|
|
(RelocInfo::IsDebugBreakSlot(mode) &&
|
|
|
|
IsPatchedDebugBreakSlotSequence())) &&
|
|
|
|
Isolate::Current()->debug()->has_break_points()) {
|
|
|
|
visitor->VisitDebugTarget(this);
|
|
|
|
#endif
|
|
|
|
} else if (mode == RelocInfo::RUNTIME_ENTRY) {
|
|
|
|
visitor->VisitRuntimeEntry(this);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename StaticVisitor>
|
|
|
|
void RelocInfo::Visit(Heap* heap) {
|
|
|
|
RelocInfo::Mode mode = rmode();
|
|
|
|
if (mode == RelocInfo::EMBEDDED_OBJECT) {
|
|
|
|
StaticVisitor::VisitEmbeddedPointer(heap, this);
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
} else if (RelocInfo::IsCodeTarget(mode)) {
|
|
|
|
StaticVisitor::VisitCodeTarget(heap, this);
|
|
|
|
} else if (mode == RelocInfo::GLOBAL_PROPERTY_CELL) {
|
|
|
|
StaticVisitor::VisitGlobalPropertyCell(heap, this);
|
|
|
|
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
|
|
|
|
StaticVisitor::VisitExternalReference(this);
|
|
|
|
CPU::FlushICache(pc_, sizeof(Address));
|
|
|
|
#ifdef ENABLE_DEBUGGER_SUPPORT
|
|
|
|
} else if (heap->isolate()->debug()->has_break_points() &&
|
|
|
|
((RelocInfo::IsJSReturn(mode) &&
|
|
|
|
IsPatchedReturnSequence()) ||
|
|
|
|
(RelocInfo::IsDebugBreakSlot(mode) &&
|
|
|
|
IsPatchedDebugBreakSlotSequence()))) {
|
|
|
|
StaticVisitor::VisitDebugTarget(heap, this);
|
|
|
|
#endif
|
|
|
|
} else if (mode == RelocInfo::RUNTIME_ENTRY) {
|
|
|
|
StaticVisitor::VisitRuntimeEntry(this);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
// Implementation of Operand
|
|
|
|
|
|
|
|
void Operand::set_modrm(int mod, Register rm_reg) {
|
|
|
|
ASSERT(is_uint2(mod));
|
|
|
|
buf_[0] = mod << 6 | rm_reg.low_bits();
|
|
|
|
// Set REX.B to the high bit of rm.code().
|
|
|
|
rex_ |= rm_reg.high_bit();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Operand::set_sib(ScaleFactor scale, Register index, Register base) {
|
|
|
|
ASSERT(len_ == 1);
|
|
|
|
ASSERT(is_uint2(scale));
|
|
|
|
// Use SIB with no index register only for base rsp or r12. Otherwise we
|
|
|
|
// would skip the SIB byte entirely.
|
|
|
|
ASSERT(!index.is(rsp) || base.is(rsp) || base.is(r12));
|
|
|
|
buf_[1] = (scale << 6) | (index.low_bits() << 3) | base.low_bits();
|
|
|
|
rex_ |= index.high_bit() << 1 | base.high_bit();
|
|
|
|
len_ = 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Operand::set_disp8(int disp) {
|
|
|
|
ASSERT(is_int8(disp));
|
|
|
|
ASSERT(len_ == 1 || len_ == 2);
|
|
|
|
int8_t* p = reinterpret_cast<int8_t*>(&buf_[len_]);
|
|
|
|
*p = disp;
|
|
|
|
len_ += sizeof(int8_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Operand::set_disp32(int disp) {
|
|
|
|
ASSERT(len_ == 1 || len_ == 2);
|
|
|
|
int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
|
|
|
|
*p = disp;
|
|
|
|
len_ += sizeof(int32_t);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_X64_ASSEMBLER_X64_INL_H_
|