You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

668 lines
17 KiB

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_DATAFLOW_H_
#define V8_DATAFLOW_H_
#include "v8.h"
#include "ast.h"
#include "compiler.h"
#include "zone-inl.h"
namespace v8 {
namespace internal {
class BitVector: public ZoneObject {
public:
explicit BitVector(int length)
: length_(length),
data_length_(SizeFor(length)),
data_(Zone::NewArray<uint32_t>(data_length_)) {
ASSERT(length > 0);
Clear();
}
BitVector(const BitVector& other)
: length_(other.length()),
data_length_(SizeFor(length_)),
data_(Zone::NewArray<uint32_t>(data_length_)) {
CopyFrom(other);
}
static int SizeFor(int length) {
return 1 + ((length - 1) / 32);
}
BitVector& operator=(const BitVector& rhs) {
if (this != &rhs) CopyFrom(rhs);
return *this;
}
void CopyFrom(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] = other.data_[i];
}
}
bool Contains(int i) {
ASSERT(i >= 0 && i < length());
uint32_t block = data_[i / 32];
return (block & (1U << (i % 32))) != 0;
}
void Add(int i) {
ASSERT(i >= 0 && i < length());
data_[i / 32] |= (1U << (i % 32));
}
void Remove(int i) {
ASSERT(i >= 0 && i < length());
data_[i / 32] &= ~(1U << (i % 32));
}
void Union(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] |= other.data_[i];
}
}
void Intersect(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] &= other.data_[i];
}
}
void Subtract(const BitVector& other) {
ASSERT(other.length() == length());
for (int i = 0; i < data_length_; i++) {
data_[i] &= ~other.data_[i];
}
}
void Clear() {
for (int i = 0; i < data_length_; i++) {
data_[i] = 0;
}
}
bool IsEmpty() const {
for (int i = 0; i < data_length_; i++) {
if (data_[i] != 0) return false;
}
return true;
}
bool Equals(const BitVector& other) {
for (int i = 0; i < data_length_; i++) {
if (data_[i] != other.data_[i]) return false;
}
return true;
}
int length() const { return length_; }
private:
int length_;
int data_length_;
uint32_t* data_;
};
// Simple fixed-capacity list-based worklist (managed as a queue) of
// pointers to T.
template<typename T>
class WorkList BASE_EMBEDDED {
public:
// The worklist cannot grow bigger than size. We keep one item empty to
// distinguish between empty and full.
explicit WorkList(int size)
: capacity_(size + 1), head_(0), tail_(0), queue_(capacity_) {
for (int i = 0; i < capacity_; i++) queue_.Add(NULL);
}
bool is_empty() { return head_ == tail_; }
bool is_full() {
// The worklist is full if head is at 0 and tail is at capacity - 1:
// head == 0 && tail == capacity-1 ==> tail - head == capacity - 1
// or if tail is immediately to the left of head:
// tail+1 == head ==> tail - head == -1
int diff = tail_ - head_;
return (diff == -1 || diff == capacity_ - 1);
}
void Insert(T* item) {
ASSERT(!is_full());
queue_[tail_++] = item;
if (tail_ == capacity_) tail_ = 0;
}
T* Remove() {
ASSERT(!is_empty());
T* item = queue_[head_++];
if (head_ == capacity_) head_ = 0;
return item;
}
private:
int capacity_; // Including one empty slot.
int head_; // Where the first item is.
int tail_; // Where the next inserted item will go.
List<T*> queue_;
};
struct ReachingDefinitionsData BASE_EMBEDDED {
public:
ReachingDefinitionsData() : rd_in_(NULL), kill_(NULL), gen_(NULL) {}
void Initialize(int definition_count) {
rd_in_ = new BitVector(definition_count);
kill_ = new BitVector(definition_count);
gen_ = new BitVector(definition_count);
}
BitVector* rd_in() { return rd_in_; }
BitVector* kill() { return kill_; }
BitVector* gen() { return gen_; }
private:
BitVector* rd_in_;
BitVector* kill_;
BitVector* gen_;
};
// Flow-graph nodes.
class Node: public ZoneObject {
public:
Node() : number_(-1), mark_(false) {}
virtual ~Node() {}
virtual bool IsExitNode() { return false; }
virtual bool IsBlockNode() { return false; }
virtual bool IsBranchNode() { return false; }
virtual bool IsJoinNode() { return false; }
virtual void AddPredecessor(Node* predecessor) = 0;
virtual void AddSuccessor(Node* successor) = 0;
bool IsMarkedWith(bool mark) { return mark_ == mark; }
void MarkWith(bool mark) { mark_ = mark; }
// Perform a depth first search and record preorder and postorder
// traversal orders.
virtual void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder) = 0;
int number() { return number_; }
void set_number(int number) { number_ = number; }
// Functions used by data-flow analyses.
virtual void InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark);
virtual void ComputeRDOut(BitVector* result) = 0;
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark) = 0;
#ifdef DEBUG
void AssignNodeNumber();
void PrintReachingDefinitions();
virtual void PrintText() = 0;
#endif
protected:
ReachingDefinitionsData rd_;
private:
int number_;
bool mark_;
DISALLOW_COPY_AND_ASSIGN(Node);
};
// An exit node has a arbitrarily many predecessors and no successors.
class ExitNode: public Node {
public:
ExitNode() : predecessors_(4) {}
bool IsExitNode() { return true; }
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
void AddSuccessor(Node* successor) { UNREACHABLE(); }
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
void ComputeRDOut(BitVector* result);
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
DISALLOW_COPY_AND_ASSIGN(ExitNode);
};
// Block nodes have a single successor and predecessor and a list of
// instructions.
class BlockNode: public Node {
public:
BlockNode() : predecessor_(NULL), successor_(NULL), instructions_(4) {}
static BlockNode* cast(Node* node) {
ASSERT(node->IsBlockNode());
return reinterpret_cast<BlockNode*>(node);
}
bool IsBlockNode() { return true; }
bool is_empty() { return instructions_.is_empty(); }
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void AddInstruction(AstNode* instruction) {
instructions_.Add(instruction);
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
void InitializeReachingDefinitions(int definition_count,
List<BitVector*>* variables,
WorkList<Node>* worklist,
bool mark);
void ComputeRDOut(BitVector* result);
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
void PrintText();
#endif
private:
Node* predecessor_;
Node* successor_;
ZoneList<AstNode*> instructions_;
DISALLOW_COPY_AND_ASSIGN(BlockNode);
};
// Branch nodes have a single predecessor and a pair of successors.
class BranchNode: public Node {
public:
BranchNode() : predecessor_(NULL), successor0_(NULL), successor1_(NULL) {}
bool IsBranchNode() { return true; }
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor_ == NULL && predecessor != NULL);
predecessor_ = predecessor;
}
void AddSuccessor(Node* successor) {
ASSERT(successor1_ == NULL && successor != NULL);
if (successor0_ == NULL) {
successor0_ = successor;
} else {
successor1_ = successor;
}
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
void ComputeRDOut(BitVector* result);
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
void PrintText();
#endif
private:
Node* predecessor_;
Node* successor0_;
Node* successor1_;
DISALLOW_COPY_AND_ASSIGN(BranchNode);
};
// Join nodes have arbitrarily many predecessors and a single successor.
class JoinNode: public Node {
public:
JoinNode() : predecessors_(2), successor_(NULL) {}
static JoinNode* cast(Node* node) {
ASSERT(node->IsJoinNode());
return reinterpret_cast<JoinNode*>(node);
}
bool IsJoinNode() { return true; }
void AddPredecessor(Node* predecessor) {
ASSERT(predecessor != NULL);
predecessors_.Add(predecessor);
}
void AddSuccessor(Node* successor) {
ASSERT(successor_ == NULL && successor != NULL);
successor_ = successor;
}
void Traverse(bool mark,
ZoneList<Node*>* preorder,
ZoneList<Node*>* postorder);
void ComputeRDOut(BitVector* result);
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
#ifdef DEBUG
void PrintText();
#endif
private:
ZoneList<Node*> predecessors_;
Node* successor_;
DISALLOW_COPY_AND_ASSIGN(JoinNode);
};
// Flow graphs have a single entry and single exit. The empty flowgraph is
// represented by both entry and exit being NULL.
class FlowGraph BASE_EMBEDDED {
public:
static FlowGraph Empty() {
FlowGraph graph;
graph.entry_ = new BlockNode();
graph.exit_ = graph.entry_;
return graph;
}
bool is_empty() const {
return entry_ == exit_ && BlockNode::cast(entry_)->is_empty();
}
Node* entry() const { return entry_; }
Node* exit() const { return exit_; }
// Add a single instruction to the end of this flowgraph.
void AppendInstruction(AstNode* instruction);
// Add a single node to the end of this flow graph.
void AppendNode(Node* node);
// Add a flow graph fragment to the end of this one.
void AppendGraph(FlowGraph* graph);
// Concatenate an if-then-else flow-graph to this one. Control is split
// and merged, so the graph remains single-entry, single-exit.
void Split(BranchNode* branch,
FlowGraph* left,
FlowGraph* right,
JoinNode* merge);
// Concatenate a forward loop (e.g., while or for loop) flow-graph to this
// one. Control is split by the condition and merged back from the back
// edge at end of the body to the beginning of the condition. The single
// (free) exit of the result graph is the right (false) arm of the branch
// node.
void Loop(JoinNode* merge,
FlowGraph* condition,
BranchNode* branch,
FlowGraph* body);
#ifdef DEBUG
void PrintText(ZoneList<Node*>* postorder);
#endif
private:
FlowGraph() : entry_(NULL), exit_(NULL) {}
Node* entry_;
Node* exit_;
};
// Construct a flow graph from a function literal. Build pre- and postorder
// traversal orders as a byproduct.
class FlowGraphBuilder: public AstVisitor {
public:
FlowGraphBuilder()
: graph_(FlowGraph::Empty()),
global_exit_(NULL),
preorder_(4),
postorder_(4),
definitions_(4) {
}
void Build(FunctionLiteral* lit);
FlowGraph* graph() { return &graph_; }
ZoneList<Node*>* postorder() { return &postorder_; }
ZoneList<Expression*>* definitions() { return &definitions_; }
private:
ExitNode* global_exit() { return global_exit_; }
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
FlowGraph graph_;
ExitNode* global_exit_;
ZoneList<Node*> preorder_;
ZoneList<Node*> postorder_;
// The flow graph builder collects a list of definitions (assignments and
// count operations) to stack-allocated variables to use for reaching
// definitions analysis. AST node numbers in the AST are used to refer
// into this list.
ZoneList<Expression*> definitions_;
DISALLOW_COPY_AND_ASSIGN(FlowGraphBuilder);
};
// This class is used to number all expressions in the AST according to
// their evaluation order (post-order left-to-right traversal).
class AstLabeler: public AstVisitor {
public:
AstLabeler() : next_number_(0) {}
void Label(CompilationInfo* info);
private:
CompilationInfo* info() { return info_; }
void VisitDeclarations(ZoneList<Declaration*>* decls);
void VisitStatements(ZoneList<Statement*>* stmts);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
// Traversal number for labelling AST nodes.
int next_number_;
CompilationInfo* info_;
DISALLOW_COPY_AND_ASSIGN(AstLabeler);
};
class VarUseMap : public HashMap {
public:
VarUseMap() : HashMap(VarMatch) {}
ZoneList<Expression*>* Lookup(Variable* var);
private:
static bool VarMatch(void* key1, void* key2) { return key1 == key2; }
};
class DefinitionInfo : public ZoneObject {
public:
explicit DefinitionInfo() : last_use_(NULL) {}
Expression* last_use() { return last_use_; }
void set_last_use(Expression* expr) { last_use_ = expr; }
private:
Expression* last_use_;
Register location_;
};
class LivenessAnalyzer : public AstVisitor {
public:
LivenessAnalyzer() {}
void Analyze(FunctionLiteral* fun);
private:
void VisitStatements(ZoneList<Statement*>* stmts);
void RecordUse(Variable* var, Expression* expr);
void RecordDef(Variable* var, Expression* expr);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
// Map for tracking the live variables.
VarUseMap live_vars_;
DISALLOW_COPY_AND_ASSIGN(LivenessAnalyzer);
};
// Computes the set of assigned variables and annotates variables proxies
// that are trivial sub-expressions and for-loops where the loop variable
// is guaranteed to be a smi.
class AssignedVariablesAnalyzer : public AstVisitor {
public:
explicit AssignedVariablesAnalyzer(FunctionLiteral* fun);
void Analyze();
private:
Variable* FindSmiLoopVariable(ForStatement* stmt);
int BitIndex(Variable* var);
void RecordAssignedVar(Variable* var);
void MarkIfTrivial(Expression* expr);
// Visits an expression saving the accumulator before, clearing
// it before visting and restoring it after visiting.
void ProcessExpression(Expression* expr);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
FunctionLiteral* fun_;
// Accumulator for assigned variables set.
BitVector av_;
DISALLOW_COPY_AND_ASSIGN(AssignedVariablesAnalyzer);
};
class ReachingDefinitions BASE_EMBEDDED {
public:
ReachingDefinitions(ZoneList<Node*>* postorder,
ZoneList<Expression*>* definitions,
int variable_count)
: postorder_(postorder),
definitions_(definitions),
variables_(variable_count) {
int definition_count = definitions->length();
for (int i = 0; i < variable_count; i++) {
variables_.Add(new BitVector(definition_count));
}
}
static int IndexFor(Variable* var, int variable_count);
void Compute();
private:
// A (postorder) list of flow-graph nodes in the body.
ZoneList<Node*>* postorder_;
// A list of all the definitions in the body.
ZoneList<Expression*>* definitions_;
// For each variable, the set of all its definitions.
List<BitVector*> variables_;
DISALLOW_COPY_AND_ASSIGN(ReachingDefinitions);
};
} } // namespace v8::internal
#endif // V8_DATAFLOW_H_