|
|
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef V8_DATAFLOW_H_
|
|
|
|
#define V8_DATAFLOW_H_
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#include "ast.h"
|
|
|
|
#include "compiler.h"
|
|
|
|
#include "zone-inl.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
class BitVector: public ZoneObject {
|
|
|
|
public:
|
|
|
|
explicit BitVector(int length)
|
|
|
|
: length_(length),
|
|
|
|
data_length_(SizeFor(length)),
|
|
|
|
data_(Zone::NewArray<uint32_t>(data_length_)) {
|
|
|
|
ASSERT(length > 0);
|
|
|
|
Clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
BitVector(const BitVector& other)
|
|
|
|
: length_(other.length()),
|
|
|
|
data_length_(SizeFor(length_)),
|
|
|
|
data_(Zone::NewArray<uint32_t>(data_length_)) {
|
|
|
|
CopyFrom(other);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int SizeFor(int length) {
|
|
|
|
return 1 + ((length - 1) / 32);
|
|
|
|
}
|
|
|
|
|
|
|
|
BitVector& operator=(const BitVector& rhs) {
|
|
|
|
if (this != &rhs) CopyFrom(rhs);
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CopyFrom(const BitVector& other) {
|
|
|
|
ASSERT(other.length() == length());
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
data_[i] = other.data_[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Contains(int i) {
|
|
|
|
ASSERT(i >= 0 && i < length());
|
|
|
|
uint32_t block = data_[i / 32];
|
|
|
|
return (block & (1U << (i % 32))) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Add(int i) {
|
|
|
|
ASSERT(i >= 0 && i < length());
|
|
|
|
data_[i / 32] |= (1U << (i % 32));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Remove(int i) {
|
|
|
|
ASSERT(i >= 0 && i < length());
|
|
|
|
data_[i / 32] &= ~(1U << (i % 32));
|
|
|
|
}
|
|
|
|
|
|
|
|
void Union(const BitVector& other) {
|
|
|
|
ASSERT(other.length() == length());
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
data_[i] |= other.data_[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Intersect(const BitVector& other) {
|
|
|
|
ASSERT(other.length() == length());
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
data_[i] &= other.data_[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Subtract(const BitVector& other) {
|
|
|
|
ASSERT(other.length() == length());
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
data_[i] &= ~other.data_[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Clear() {
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
data_[i] = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsEmpty() const {
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
if (data_[i] != 0) return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool Equals(const BitVector& other) {
|
|
|
|
for (int i = 0; i < data_length_; i++) {
|
|
|
|
if (data_[i] != other.data_[i]) return false;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int length() const { return length_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
int length_;
|
|
|
|
int data_length_;
|
|
|
|
uint32_t* data_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Simple fixed-capacity list-based worklist (managed as a queue) of
|
|
|
|
// pointers to T.
|
|
|
|
template<typename T>
|
|
|
|
class WorkList BASE_EMBEDDED {
|
|
|
|
public:
|
|
|
|
// The worklist cannot grow bigger than size. We keep one item empty to
|
|
|
|
// distinguish between empty and full.
|
|
|
|
explicit WorkList(int size)
|
|
|
|
: capacity_(size + 1), head_(0), tail_(0), queue_(capacity_) {
|
|
|
|
for (int i = 0; i < capacity_; i++) queue_.Add(NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_empty() { return head_ == tail_; }
|
|
|
|
|
|
|
|
bool is_full() {
|
|
|
|
// The worklist is full if head is at 0 and tail is at capacity - 1:
|
|
|
|
// head == 0 && tail == capacity-1 ==> tail - head == capacity - 1
|
|
|
|
// or if tail is immediately to the left of head:
|
|
|
|
// tail+1 == head ==> tail - head == -1
|
|
|
|
int diff = tail_ - head_;
|
|
|
|
return (diff == -1 || diff == capacity_ - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Insert(T* item) {
|
|
|
|
ASSERT(!is_full());
|
|
|
|
queue_[tail_++] = item;
|
|
|
|
if (tail_ == capacity_) tail_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
T* Remove() {
|
|
|
|
ASSERT(!is_empty());
|
|
|
|
T* item = queue_[head_++];
|
|
|
|
if (head_ == capacity_) head_ = 0;
|
|
|
|
return item;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
int capacity_; // Including one empty slot.
|
|
|
|
int head_; // Where the first item is.
|
|
|
|
int tail_; // Where the next inserted item will go.
|
|
|
|
List<T*> queue_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct ReachingDefinitionsData BASE_EMBEDDED {
|
|
|
|
public:
|
|
|
|
ReachingDefinitionsData() : rd_in_(NULL), kill_(NULL), gen_(NULL) {}
|
|
|
|
|
|
|
|
void Initialize(int definition_count) {
|
|
|
|
rd_in_ = new BitVector(definition_count);
|
|
|
|
kill_ = new BitVector(definition_count);
|
|
|
|
gen_ = new BitVector(definition_count);
|
|
|
|
}
|
|
|
|
|
|
|
|
BitVector* rd_in() { return rd_in_; }
|
|
|
|
BitVector* kill() { return kill_; }
|
|
|
|
BitVector* gen() { return gen_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
BitVector* rd_in_;
|
|
|
|
BitVector* kill_;
|
|
|
|
BitVector* gen_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Flow-graph nodes.
|
|
|
|
class Node: public ZoneObject {
|
|
|
|
public:
|
|
|
|
Node() : number_(-1), mark_(false) {}
|
|
|
|
|
|
|
|
virtual ~Node() {}
|
|
|
|
|
|
|
|
virtual bool IsExitNode() { return false; }
|
|
|
|
virtual bool IsBlockNode() { return false; }
|
|
|
|
virtual bool IsBranchNode() { return false; }
|
|
|
|
virtual bool IsJoinNode() { return false; }
|
|
|
|
|
|
|
|
virtual void AddPredecessor(Node* predecessor) = 0;
|
|
|
|
virtual void AddSuccessor(Node* successor) = 0;
|
|
|
|
|
|
|
|
bool IsMarkedWith(bool mark) { return mark_ == mark; }
|
|
|
|
void MarkWith(bool mark) { mark_ = mark; }
|
|
|
|
|
|
|
|
// Perform a depth first search and record preorder and postorder
|
|
|
|
// traversal orders.
|
|
|
|
virtual void Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder) = 0;
|
|
|
|
|
|
|
|
int number() { return number_; }
|
|
|
|
void set_number(int number) { number_ = number; }
|
|
|
|
|
|
|
|
// Functions used by data-flow analyses.
|
|
|
|
virtual void InitializeReachingDefinitions(int definition_count,
|
|
|
|
List<BitVector*>* variables,
|
|
|
|
WorkList<Node>* worklist,
|
|
|
|
bool mark);
|
|
|
|
virtual void ComputeRDOut(BitVector* result) = 0;
|
|
|
|
virtual void UpdateRDIn(WorkList<Node>* worklist, bool mark) = 0;
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void AssignNodeNumber();
|
|
|
|
void PrintReachingDefinitions();
|
|
|
|
virtual void PrintText() = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
protected:
|
|
|
|
ReachingDefinitionsData rd_;
|
|
|
|
|
|
|
|
private:
|
|
|
|
int number_;
|
|
|
|
bool mark_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Node);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// An exit node has a arbitrarily many predecessors and no successors.
|
|
|
|
class ExitNode: public Node {
|
|
|
|
public:
|
|
|
|
ExitNode() : predecessors_(4) {}
|
|
|
|
|
|
|
|
bool IsExitNode() { return true; }
|
|
|
|
|
|
|
|
void AddPredecessor(Node* predecessor) {
|
|
|
|
ASSERT(predecessor != NULL);
|
|
|
|
predecessors_.Add(predecessor);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddSuccessor(Node* successor) { UNREACHABLE(); }
|
|
|
|
|
|
|
|
void Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder);
|
|
|
|
|
|
|
|
void ComputeRDOut(BitVector* result);
|
|
|
|
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void PrintText();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
private:
|
|
|
|
ZoneList<Node*> predecessors_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ExitNode);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Block nodes have a single successor and predecessor and a list of
|
|
|
|
// instructions.
|
|
|
|
class BlockNode: public Node {
|
|
|
|
public:
|
|
|
|
BlockNode() : predecessor_(NULL), successor_(NULL), instructions_(4) {}
|
|
|
|
|
|
|
|
static BlockNode* cast(Node* node) {
|
|
|
|
ASSERT(node->IsBlockNode());
|
|
|
|
return reinterpret_cast<BlockNode*>(node);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsBlockNode() { return true; }
|
|
|
|
|
|
|
|
bool is_empty() { return instructions_.is_empty(); }
|
|
|
|
|
|
|
|
void AddPredecessor(Node* predecessor) {
|
|
|
|
ASSERT(predecessor_ == NULL && predecessor != NULL);
|
|
|
|
predecessor_ = predecessor;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddSuccessor(Node* successor) {
|
|
|
|
ASSERT(successor_ == NULL && successor != NULL);
|
|
|
|
successor_ = successor;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddInstruction(AstNode* instruction) {
|
|
|
|
instructions_.Add(instruction);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder);
|
|
|
|
|
|
|
|
void InitializeReachingDefinitions(int definition_count,
|
|
|
|
List<BitVector*>* variables,
|
|
|
|
WorkList<Node>* worklist,
|
|
|
|
bool mark);
|
|
|
|
void ComputeRDOut(BitVector* result);
|
|
|
|
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void PrintText();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
private:
|
|
|
|
Node* predecessor_;
|
|
|
|
Node* successor_;
|
|
|
|
ZoneList<AstNode*> instructions_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(BlockNode);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Branch nodes have a single predecessor and a pair of successors.
|
|
|
|
class BranchNode: public Node {
|
|
|
|
public:
|
|
|
|
BranchNode() : predecessor_(NULL), successor0_(NULL), successor1_(NULL) {}
|
|
|
|
|
|
|
|
bool IsBranchNode() { return true; }
|
|
|
|
|
|
|
|
void AddPredecessor(Node* predecessor) {
|
|
|
|
ASSERT(predecessor_ == NULL && predecessor != NULL);
|
|
|
|
predecessor_ = predecessor;
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddSuccessor(Node* successor) {
|
|
|
|
ASSERT(successor1_ == NULL && successor != NULL);
|
|
|
|
if (successor0_ == NULL) {
|
|
|
|
successor0_ = successor;
|
|
|
|
} else {
|
|
|
|
successor1_ = successor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder);
|
|
|
|
|
|
|
|
void ComputeRDOut(BitVector* result);
|
|
|
|
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void PrintText();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
private:
|
|
|
|
Node* predecessor_;
|
|
|
|
Node* successor0_;
|
|
|
|
Node* successor1_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(BranchNode);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Join nodes have arbitrarily many predecessors and a single successor.
|
|
|
|
class JoinNode: public Node {
|
|
|
|
public:
|
|
|
|
JoinNode() : predecessors_(2), successor_(NULL) {}
|
|
|
|
|
|
|
|
static JoinNode* cast(Node* node) {
|
|
|
|
ASSERT(node->IsJoinNode());
|
|
|
|
return reinterpret_cast<JoinNode*>(node);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool IsJoinNode() { return true; }
|
|
|
|
|
|
|
|
void AddPredecessor(Node* predecessor) {
|
|
|
|
ASSERT(predecessor != NULL);
|
|
|
|
predecessors_.Add(predecessor);
|
|
|
|
}
|
|
|
|
|
|
|
|
void AddSuccessor(Node* successor) {
|
|
|
|
ASSERT(successor_ == NULL && successor != NULL);
|
|
|
|
successor_ = successor;
|
|
|
|
}
|
|
|
|
|
|
|
|
void Traverse(bool mark,
|
|
|
|
ZoneList<Node*>* preorder,
|
|
|
|
ZoneList<Node*>* postorder);
|
|
|
|
|
|
|
|
void ComputeRDOut(BitVector* result);
|
|
|
|
void UpdateRDIn(WorkList<Node>* worklist, bool mark);
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void PrintText();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
private:
|
|
|
|
ZoneList<Node*> predecessors_;
|
|
|
|
Node* successor_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(JoinNode);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Flow graphs have a single entry and single exit. The empty flowgraph is
|
|
|
|
// represented by both entry and exit being NULL.
|
|
|
|
class FlowGraph BASE_EMBEDDED {
|
|
|
|
public:
|
|
|
|
static FlowGraph Empty() {
|
|
|
|
FlowGraph graph;
|
|
|
|
graph.entry_ = new BlockNode();
|
|
|
|
graph.exit_ = graph.entry_;
|
|
|
|
return graph;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_empty() const {
|
|
|
|
return entry_ == exit_ && BlockNode::cast(entry_)->is_empty();
|
|
|
|
}
|
|
|
|
Node* entry() const { return entry_; }
|
|
|
|
Node* exit() const { return exit_; }
|
|
|
|
|
|
|
|
// Add a single instruction to the end of this flowgraph.
|
|
|
|
void AppendInstruction(AstNode* instruction);
|
|
|
|
|
|
|
|
// Add a single node to the end of this flow graph.
|
|
|
|
void AppendNode(Node* node);
|
|
|
|
|
|
|
|
// Add a flow graph fragment to the end of this one.
|
|
|
|
void AppendGraph(FlowGraph* graph);
|
|
|
|
|
|
|
|
// Concatenate an if-then-else flow-graph to this one. Control is split
|
|
|
|
// and merged, so the graph remains single-entry, single-exit.
|
|
|
|
void Split(BranchNode* branch,
|
|
|
|
FlowGraph* left,
|
|
|
|
FlowGraph* right,
|
|
|
|
JoinNode* merge);
|
|
|
|
|
|
|
|
// Concatenate a forward loop (e.g., while or for loop) flow-graph to this
|
|
|
|
// one. Control is split by the condition and merged back from the back
|
|
|
|
// edge at end of the body to the beginning of the condition. The single
|
|
|
|
// (free) exit of the result graph is the right (false) arm of the branch
|
|
|
|
// node.
|
|
|
|
void Loop(JoinNode* merge,
|
|
|
|
FlowGraph* condition,
|
|
|
|
BranchNode* branch,
|
|
|
|
FlowGraph* body);
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
void PrintText(ZoneList<Node*>* postorder);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
private:
|
|
|
|
FlowGraph() : entry_(NULL), exit_(NULL) {}
|
|
|
|
|
|
|
|
Node* entry_;
|
|
|
|
Node* exit_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Construct a flow graph from a function literal. Build pre- and postorder
|
|
|
|
// traversal orders as a byproduct.
|
|
|
|
class FlowGraphBuilder: public AstVisitor {
|
|
|
|
public:
|
|
|
|
FlowGraphBuilder()
|
|
|
|
: graph_(FlowGraph::Empty()),
|
|
|
|
global_exit_(NULL),
|
|
|
|
preorder_(4),
|
|
|
|
postorder_(4),
|
|
|
|
definitions_(4) {
|
|
|
|
}
|
|
|
|
|
|
|
|
void Build(FunctionLiteral* lit);
|
|
|
|
|
|
|
|
FlowGraph* graph() { return &graph_; }
|
|
|
|
ZoneList<Node*>* postorder() { return &postorder_; }
|
|
|
|
ZoneList<Expression*>* definitions() { return &definitions_; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
ExitNode* global_exit() { return global_exit_; }
|
|
|
|
|
|
|
|
// AST node visit functions.
|
|
|
|
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
|
|
|
|
AST_NODE_LIST(DECLARE_VISIT)
|
|
|
|
#undef DECLARE_VISIT
|
|
|
|
|
|
|
|
FlowGraph graph_;
|
|
|
|
ExitNode* global_exit_;
|
|
|
|
ZoneList<Node*> preorder_;
|
|
|
|
ZoneList<Node*> postorder_;
|
|
|
|
|
|
|
|
// The flow graph builder collects a list of definitions (assignments and
|
|
|
|
// count operations) to stack-allocated variables to use for reaching
|
|
|
|
// definitions analysis. AST node numbers in the AST are used to refer
|
|
|
|
// into this list.
|
|
|
|
ZoneList<Expression*> definitions_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(FlowGraphBuilder);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// This class is used to number all expressions in the AST according to
|
|
|
|
// their evaluation order (post-order left-to-right traversal).
|
|
|
|
class AstLabeler: public AstVisitor {
|
|
|
|
public:
|
|
|
|
AstLabeler() : next_number_(0) {}
|
|
|
|
|
|
|
|
void Label(CompilationInfo* info);
|
|
|
|
|
|
|
|
private:
|
|
|
|
CompilationInfo* info() { return info_; }
|
|
|
|
|
|
|
|
void VisitDeclarations(ZoneList<Declaration*>* decls);
|
|
|
|
void VisitStatements(ZoneList<Statement*>* stmts);
|
|
|
|
|
|
|
|
// AST node visit functions.
|
|
|
|
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
|
|
|
|
AST_NODE_LIST(DECLARE_VISIT)
|
|
|
|
#undef DECLARE_VISIT
|
|
|
|
|
|
|
|
// Traversal number for labelling AST nodes.
|
|
|
|
int next_number_;
|
|
|
|
|
|
|
|
CompilationInfo* info_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(AstLabeler);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class VarUseMap : public HashMap {
|
|
|
|
public:
|
|
|
|
VarUseMap() : HashMap(VarMatch) {}
|
|
|
|
|
|
|
|
ZoneList<Expression*>* Lookup(Variable* var);
|
|
|
|
|
|
|
|
private:
|
|
|
|
static bool VarMatch(void* key1, void* key2) { return key1 == key2; }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class DefinitionInfo : public ZoneObject {
|
|
|
|
public:
|
|
|
|
explicit DefinitionInfo() : last_use_(NULL) {}
|
|
|
|
|
|
|
|
Expression* last_use() { return last_use_; }
|
|
|
|
void set_last_use(Expression* expr) { last_use_ = expr; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Expression* last_use_;
|
|
|
|
Register location_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class LivenessAnalyzer : public AstVisitor {
|
|
|
|
public:
|
|
|
|
LivenessAnalyzer() {}
|
|
|
|
|
|
|
|
void Analyze(FunctionLiteral* fun);
|
|
|
|
|
|
|
|
private:
|
|
|
|
void VisitStatements(ZoneList<Statement*>* stmts);
|
|
|
|
|
|
|
|
void RecordUse(Variable* var, Expression* expr);
|
|
|
|
void RecordDef(Variable* var, Expression* expr);
|
|
|
|
|
|
|
|
|
|
|
|
// AST node visit functions.
|
|
|
|
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
|
|
|
|
AST_NODE_LIST(DECLARE_VISIT)
|
|
|
|
#undef DECLARE_VISIT
|
|
|
|
|
|
|
|
// Map for tracking the live variables.
|
|
|
|
VarUseMap live_vars_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LivenessAnalyzer);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Computes the set of assigned variables and annotates variables proxies
|
|
|
|
// that are trivial sub-expressions and for-loops where the loop variable
|
|
|
|
// is guaranteed to be a smi.
|
|
|
|
class AssignedVariablesAnalyzer : public AstVisitor {
|
|
|
|
public:
|
|
|
|
explicit AssignedVariablesAnalyzer(FunctionLiteral* fun);
|
|
|
|
|
|
|
|
void Analyze();
|
|
|
|
|
|
|
|
private:
|
|
|
|
Variable* FindSmiLoopVariable(ForStatement* stmt);
|
|
|
|
|
|
|
|
int BitIndex(Variable* var);
|
|
|
|
|
|
|
|
void RecordAssignedVar(Variable* var);
|
|
|
|
|
|
|
|
void MarkIfTrivial(Expression* expr);
|
|
|
|
|
|
|
|
// Visits an expression saving the accumulator before, clearing
|
|
|
|
// it before visting and restoring it after visiting.
|
|
|
|
void ProcessExpression(Expression* expr);
|
|
|
|
|
|
|
|
// AST node visit functions.
|
|
|
|
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
|
|
|
|
AST_NODE_LIST(DECLARE_VISIT)
|
|
|
|
#undef DECLARE_VISIT
|
|
|
|
|
|
|
|
FunctionLiteral* fun_;
|
|
|
|
|
|
|
|
// Accumulator for assigned variables set.
|
|
|
|
BitVector av_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(AssignedVariablesAnalyzer);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class ReachingDefinitions BASE_EMBEDDED {
|
|
|
|
public:
|
|
|
|
ReachingDefinitions(ZoneList<Node*>* postorder,
|
|
|
|
ZoneList<Expression*>* definitions,
|
|
|
|
int variable_count)
|
|
|
|
: postorder_(postorder),
|
|
|
|
definitions_(definitions),
|
|
|
|
variables_(variable_count) {
|
|
|
|
int definition_count = definitions->length();
|
|
|
|
for (int i = 0; i < variable_count; i++) {
|
|
|
|
variables_.Add(new BitVector(definition_count));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int IndexFor(Variable* var, int variable_count);
|
|
|
|
|
|
|
|
void Compute();
|
|
|
|
|
|
|
|
private:
|
|
|
|
// A (postorder) list of flow-graph nodes in the body.
|
|
|
|
ZoneList<Node*>* postorder_;
|
|
|
|
|
|
|
|
// A list of all the definitions in the body.
|
|
|
|
ZoneList<Expression*>* definitions_;
|
|
|
|
|
|
|
|
// For each variable, the set of all its definitions.
|
|
|
|
List<BitVector*> variables_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReachingDefinitions);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
|
|
|
|
#endif // V8_DATAFLOW_H_
|