|
|
|
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file.
|
|
|
|
|
|
|
|
// Flags: --no-fast-math
|
|
|
|
|
|
|
|
assertTrue(isNaN(Math.expm1(NaN)));
|
|
|
|
assertTrue(isNaN(Math.expm1(function() {})));
|
|
|
|
assertTrue(isNaN(Math.expm1({ toString: function() { return NaN; } })));
|
|
|
|
assertTrue(isNaN(Math.expm1({ valueOf: function() { return "abc"; } })));
|
|
|
|
assertEquals(Infinity, 1/Math.expm1(0));
|
|
|
|
assertEquals(-Infinity, 1/Math.expm1(-0));
|
|
|
|
assertEquals(Infinity, Math.expm1(Infinity));
|
|
|
|
assertEquals(-1, Math.expm1(-Infinity));
|
|
|
|
|
|
|
|
|
|
|
|
// Sanity check:
|
|
|
|
// Math.expm1(x) stays reasonably close to Math.exp(x) - 1 for large values.
|
|
|
|
for (var x = 1; x < 700; x += 0.25) {
|
|
|
|
var expected = Math.exp(x) - 1;
|
|
|
|
assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15);
|
|
|
|
expected = Math.exp(-x) - 1;
|
|
|
|
assertEqualsDelta(expected, Math.expm1(-x), -expected * 1E-15);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Approximation for values close to 0:
|
|
|
|
// Use six terms of Taylor expansion at 0 for exp(x) as test expectation:
|
|
|
|
// exp(x) - 1 == exp(0) + exp(0) * x + x * x / 2 + ... - 1
|
|
|
|
// == x + x * x / 2 + x * x * x / 6 + ...
|
|
|
|
function expm1(x) {
|
|
|
|
return x * (1 + x * (1/2 + x * (
|
|
|
|
1/6 + x * (1/24 + x * (
|
|
|
|
1/120 + x * (1/720 + x * (
|
|
|
|
1/5040 + x * (1/40320 + x*(
|
|
|
|
1/362880 + x * (1/3628800))))))))));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sanity check:
|
|
|
|
// Math.expm1(x) stays reasonabliy close to the Taylor series for small values.
|
|
|
|
for (var x = 1E-1; x > 1E-300; x *= 0.8) {
|
|
|
|
var expected = expm1(x);
|
|
|
|
assertEqualsDelta(expected, Math.expm1(x), expected * 1E-15);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Tests related to the fdlibm implementation.
|
|
|
|
// Test overflow.
|
|
|
|
assertEquals(Infinity, Math.expm1(709.8));
|
|
|
|
// Test largest double value.
|
|
|
|
assertEquals(Infinity, Math.exp(1.7976931348623157e308));
|
|
|
|
// Cover various code paths.
|
|
|
|
assertEquals(-1, Math.expm1(-56 * Math.LN2));
|
|
|
|
assertEquals(-1, Math.expm1(-50));
|
|
|
|
// Test most negative double value.
|
|
|
|
assertEquals(-1, Math.expm1(-1.7976931348623157e308));
|
|
|
|
// Test argument reduction.
|
|
|
|
// Cases for 0.5*log(2) < |x| < 1.5*log(2).
|
|
|
|
assertEquals(Math.E - 1, Math.expm1(1));
|
|
|
|
assertEquals(1/Math.E - 1, Math.expm1(-1));
|
|
|
|
// Cases for 1.5*log(2) < |x|.
|
|
|
|
assertEquals(6.38905609893065, Math.expm1(2));
|
|
|
|
assertEquals(-0.8646647167633873, Math.expm1(-2));
|
|
|
|
// Cases where Math.expm1(x) = x.
|
|
|
|
assertEquals(0, Math.expm1(0));
|
|
|
|
assertEquals(Math.pow(2,-55), Math.expm1(Math.pow(2,-55)));
|
|
|
|
// Tests for the case where argument reduction has x in the primary range.
|
|
|
|
// Test branch for k = 0.
|
|
|
|
assertEquals(0.18920711500272105, Math.expm1(0.25 * Math.LN2));
|
|
|
|
// Test branch for k = -1.
|
|
|
|
assertEquals(-0.5, Math.expm1(-Math.LN2));
|
|
|
|
// Test branch for k = 1.
|
|
|
|
assertEquals(1, Math.expm1(Math.LN2));
|
|
|
|
// Test branch for k <= -2 || k > 56. k = -3.
|
|
|
|
assertEquals(1.4411518807585582e17, Math.expm1(57 * Math.LN2));
|
|
|
|
// Test last branch for k < 20, k = 19.
|
|
|
|
assertEquals(524286.99999999994, Math.expm1(19 * Math.LN2));
|
|
|
|
// Test the else branch, k = 20.
|
|
|
|
assertEquals(1048575, Math.expm1(20 * Math.LN2));
|