|
|
|
// Copyright 2013 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
// TODO(3468): we rely on a precise Math.exp.
|
|
|
|
// Flags: --no-fast-math
|
|
|
|
|
|
|
|
[Math.sinh, Math.cosh, Math.tanh, Math.asinh, Math.acosh, Math.atanh].
|
|
|
|
forEach(function(fun) {
|
|
|
|
assertTrue(isNaN(fun(NaN)));
|
|
|
|
assertTrue(isNaN(fun("abc")));
|
|
|
|
assertTrue(isNaN(fun({})));
|
|
|
|
assertEquals(fun(0), fun([]));
|
|
|
|
assertTrue(isNaN(fun([1, 1])));
|
|
|
|
assertEquals(fun(1.11), fun({ toString: function() { return "1.11"; } }));
|
|
|
|
assertEquals(fun(-3.1), fun({ toString: function() { return -3.1; } }));
|
|
|
|
assertEquals(fun(-1.1), fun({ valueOf: function() { return "-1.1"; } }));
|
|
|
|
assertEquals(fun(3.11), fun({ valueOf: function() { return 3.11; } }));
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
function test_id(fun, rev, value) {
|
|
|
|
assertEqualsDelta(1, rev(fun(value))/value, 1E-7);
|
|
|
|
}
|
|
|
|
|
|
|
|
[Math.PI, 2, 5, 1E-5, 0.3].forEach(function(x) {
|
|
|
|
test_id(Math.sinh, Math.asinh, x);
|
|
|
|
test_id(Math.sinh, Math.asinh, -x);
|
|
|
|
test_id(Math.cosh, Math.acosh, x);
|
|
|
|
test_id(Math.tanh, Math.atanh, x);
|
|
|
|
test_id(Math.tanh, Math.atanh, -x);
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
[Math.sinh, Math.asinh, Math.tanh, Math.atanh].forEach(function(fun) {
|
|
|
|
assertEquals("-Infinity", String(1/fun(-0)));
|
|
|
|
assertEquals("Infinity", String(1/fun(0)));
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
[Math.sinh, Math.asinh].forEach(function(fun) {
|
|
|
|
assertEquals("-Infinity", String(fun(-Infinity)));
|
|
|
|
assertEquals("Infinity", String(fun(Infinity)));
|
|
|
|
assertEquals("-Infinity", String(fun("-Infinity")));
|
|
|
|
assertEquals("Infinity", String(fun("Infinity")));
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
assertEquals(Infinity, Math.cosh(-Infinity));
|
|
|
|
assertEquals(Infinity, Math.cosh(Infinity));
|
|
|
|
assertEquals(Infinity, Math.cosh("-Infinity"));
|
|
|
|
assertEquals(Infinity, Math.cosh("Infinity"));
|
|
|
|
|
|
|
|
|
|
|
|
assertEquals(-Infinity, Math.atanh(-1));
|
|
|
|
assertEquals(Infinity, Math.atanh(1));
|
|
|
|
|
|
|
|
// Math.atanh(x) is NaN for |x| > 1 and NaN
|
|
|
|
[1.000000000001, Math.PI, 10000000, 2, Infinity, NaN].forEach(function(x) {
|
|
|
|
assertTrue(isNaN(Math.atanh(-x)));
|
|
|
|
assertTrue(isNaN(Math.atanh(x)));
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
assertEquals(0, Math.sinh(0));
|
|
|
|
assertEquals(-Infinity, 1/Math.sinh(-0));
|
|
|
|
assertEquals(1, Math.tanh(Infinity));
|
|
|
|
assertEquals(-1, Math.tanh(-Infinity));
|
|
|
|
assertEquals(1, Math.cosh(0));
|
|
|
|
assertEquals(1, Math.cosh(-0));
|
|
|
|
|
|
|
|
assertEquals(0, Math.acosh(1));
|
|
|
|
assertEquals("Infinity", String(Math.acosh(Infinity)));
|
|
|
|
|
|
|
|
// Math.acosh(x) is NaN for x < 1
|
|
|
|
[0.99999999999, 0.2, -1000, 0, -0].forEach(function(x) {
|
|
|
|
assertTrue(isNaN(Math.acosh(x)));
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
// Some random samples.
|
|
|
|
assertEqualsDelta(74.20321057778875, Math.sinh(5), 1E-12);
|
|
|
|
assertEqualsDelta(-74.20321057778875, Math.sinh(-5), 1E-12);
|
|
|
|
|
|
|
|
assertEqualsDelta(1.1276259652063807, Math.cosh(0.5), 1E-12);
|
|
|
|
assertEqualsDelta(74.20994852478785, Math.cosh(5), 1E-12);
|
|
|
|
assertEqualsDelta(1.1276259652063807, Math.cosh(-0.5), 1E-12);
|
|
|
|
assertEqualsDelta(74.20994852478785, Math.cosh(-5), 1E-12);
|
|
|
|
|
|
|
|
assertEqualsDelta(0.4621171572600, Math.tanh(0.5), 1E-12);
|
|
|
|
assertEqualsDelta(0.9999092042625, Math.tanh(5), 1E-12);
|
|
|
|
assertEqualsDelta(-0.4621171572600, Math.tanh(-0.5), 1E-12);
|
|
|
|
assertEqualsDelta(-0.9999092042625, Math.tanh(-5), 1E-12);
|
|
|
|
|
|
|
|
assertEqualsDelta(0.4812118250596, Math.asinh(0.5), 1E-12);
|
|
|
|
assertEqualsDelta(2.3124383412727, Math.asinh(5), 1E-12);
|
|
|
|
assertEqualsDelta(-0.4812118250596, Math.asinh(-0.5), 1E-12);
|
|
|
|
assertEqualsDelta(-2.3124383412727, Math.asinh(-5), 1E-12);
|
|
|
|
|
|
|
|
assertEqualsDelta(0.9624236501192, Math.acosh(1.5), 1E-12);
|
|
|
|
assertEqualsDelta(2.2924316695612, Math.acosh(5), 1E-12);
|
|
|
|
assertEqualsDelta(0.4435682543851, Math.acosh(1.1), 1E-12);
|
|
|
|
assertEqualsDelta(1.3169578969248, Math.acosh(2), 1E-12);
|
|
|
|
|
|
|
|
assertEqualsDelta(0.5493061443341, Math.atanh(0.5), 1E-12);
|
|
|
|
assertEqualsDelta(0.1003353477311, Math.atanh(0.1), 1E-12);
|
|
|
|
assertEqualsDelta(-0.5493061443341, Math.atanh(-0.5), 1E-12);
|
|
|
|
assertEqualsDelta(-0.1003353477311, Math.atanh(-0.1), 1E-12);
|
|
|
|
|
|
|
|
[0, 1E-50, 1E-10, 1E10, 1E50, 1E100, 1E150].forEach(function(x) {
|
|
|
|
assertEqualsDelta(Math.asinh(x), -Math.asinh(-x), 1E-12);
|
|
|
|
});
|
|
|
|
|
|
|
|
[1-(1E-16), 0, 1E-10, 1E-50].forEach(function(x) {
|
|
|
|
assertEqualsDelta(Math.atanh(x), -Math.atanh(-x), 1E-12);
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
// Implementation-specific tests for sinh.
|
|
|
|
// Case |x| < 2^-28
|
|
|
|
assertEquals(Math.pow(2, -29), Math.sinh(Math.pow(2, -29)));
|
|
|
|
assertEquals(-Math.pow(2, -29), Math.sinh(-Math.pow(2, -29)));
|
|
|
|
// Case |x| < 1
|
|
|
|
assertEquals(0.5210953054937474, Math.sinh(0.5));
|
|
|
|
assertEquals(-0.5210953054937474, Math.sinh(-0.5));
|
|
|
|
// sinh(10*log(2)) = 1048575/2048, case |x| < 22
|
|
|
|
assertEquals(1048575/2048, Math.sinh(10*Math.LN2));
|
|
|
|
assertEquals(-1048575/2048, Math.sinh(-10*Math.LN2));
|
|
|
|
// Case |x| < 22
|
|
|
|
assertEquals(11013.232874703393, Math.sinh(10));
|
|
|
|
assertEquals(-11013.232874703393, Math.sinh(-10));
|
|
|
|
// Case |x| in [22, log(maxdouble)]
|
|
|
|
assertEquals(2.1474836479999983e9, Math.sinh(32*Math.LN2));
|
|
|
|
assertEquals(-2.1474836479999983e9, Math.sinh(-32*Math.LN2));
|
|
|
|
// Case |x| in [22, log(maxdouble)]
|
|
|
|
assertEquals(1.3440585709080678e43, Math.sinh(100));
|
|
|
|
assertEquals(-1.3440585709080678e43, Math.sinh(-100));
|
|
|
|
// No overflow, case |x| in [log(maxdouble), threshold]
|
|
|
|
assertEquals(1.7976931348621744e308, Math.sinh(710.4758600739439));
|
|
|
|
assertEquals(-1.7976931348621744e308, Math.sinh(-710.4758600739439));
|
|
|
|
// Overflow, case |x| > threshold
|
|
|
|
assertEquals(Infinity, Math.sinh(710.475860073944));
|
|
|
|
assertEquals(-Infinity, Math.sinh(-710.475860073944));
|
|
|
|
assertEquals(Infinity, Math.sinh(1000));
|
|
|
|
assertEquals(-Infinity, Math.sinh(-1000));
|
|
|
|
|
|
|
|
// Implementation-specific tests for cosh.
|
|
|
|
// Case |x| < 2^-55
|
|
|
|
assertEquals(1, Math.cosh(Math.pow(2, -56)));
|
|
|
|
assertEquals(1, Math.cosh(-Math.pow(2, -56)));
|
|
|
|
// Case |x| < 1/2*log(2). cosh(Math.LN2/4) = (sqrt(2)+1)/2^(5/4)
|
|
|
|
assertEquals(1.0150517651282178, Math.cosh(Math.LN2/4));
|
|
|
|
assertEquals(1.0150517651282178, Math.cosh(-Math.LN2/4));
|
|
|
|
// Case 1/2*log(2) < |x| < 22. cosh(10*Math.LN2) = 1048577/2048
|
|
|
|
assertEquals(512.00048828125, Math.cosh(10*Math.LN2));
|
|
|
|
assertEquals(512.00048828125, Math.cosh(-10*Math.LN2));
|
|
|
|
// Case 22 <= |x| < log(maxdouble)
|
|
|
|
assertEquals(2.1474836479999983e9, Math.cosh(32*Math.LN2));
|
|
|
|
assertEquals(2.1474836479999983e9, Math.cosh(-32*Math.LN2));
|
|
|
|
// Case log(maxdouble) <= |x| <= overflowthreshold
|
|
|
|
assertEquals(1.7976931348621744e308, Math.cosh(710.4758600739439));
|
|
|
|
assertEquals(1.7976931348621744e308, Math.cosh(-710.4758600739439));
|
|
|
|
// Overflow.
|
|
|
|
assertEquals(Infinity, Math.cosh(710.475860073944));
|
|
|
|
assertEquals(Infinity, Math.cosh(-710.475860073944));
|
|
|
|
|
|
|
|
// Implementation-specific tests for tanh.
|
|
|
|
// Case |x| < 2^-55
|
|
|
|
var two_56 = Math.pow(2, -56);
|
|
|
|
assertEquals(two_56, Math.tanh(two_56));
|
|
|
|
assertEquals(-two_56, Math.tanh(-two_56));
|
|
|
|
// Case |x| < 1
|
|
|
|
assertEquals(0.6, Math.tanh(Math.LN2));
|
|
|
|
assertEquals(-0.6, Math.tanh(-Math.LN2));
|
|
|
|
// Case 1 < |x| < 22
|
|
|
|
assertEquals(15/17, Math.tanh(2 * Math.LN2));
|
|
|
|
assertEquals(-15/17, Math.tanh(-2 * Math.LN2));
|
|
|
|
// Case |x| > 22
|
|
|
|
assertEquals(1, Math.tanh(100));
|
|
|
|
assertEquals(-1, Math.tanh(-100));
|
|
|
|
// Test against overflow
|
|
|
|
assertEquals(1, Math.tanh(1e300));
|
|
|
|
assertEquals(-1, Math.tanh(-1e300));
|