You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1174 lines
38 KiB

// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/ast.h"
#include "src/ast-expression-visitor.h"
#include "src/parser.h"
#include "src/rewriter.h"
#include "src/scopes.h"
#include "src/type-cache.h"
#include "src/typing-asm.h"
#include "test/cctest/cctest.h"
#include "test/cctest/expression-type-collector.h"
#include "test/cctest/expression-type-collector-macros.h"
// Macros for function types.
#define FUNC_V_TYPE Bounds(Type::Function(Type::Undefined(), zone))
#define FUNC_I_TYPE Bounds(Type::Function(cache.kInt32, zone))
#define FUNC_F_TYPE Bounds(Type::Function(cache.kFloat32, zone))
#define FUNC_D_TYPE Bounds(Type::Function(cache.kFloat64, zone))
#define FUNC_D2D_TYPE \
Bounds(Type::Function(cache.kFloat64, cache.kFloat64, zone))
#define FUNC_N2F_TYPE \
Bounds(Type::Function(cache.kFloat32, Type::Number(), zone))
#define FUNC_I2I_TYPE Bounds(Type::Function(cache.kInt32, cache.kInt32, zone))
#define FUNC_II2D_TYPE \
Bounds(Type::Function(cache.kFloat64, cache.kInt32, cache.kInt32, zone))
#define FUNC_II2I_TYPE \
Bounds(Type::Function(cache.kInt32, cache.kInt32, cache.kInt32, zone))
#define FUNC_DD2D_TYPE \
Bounds(Type::Function(cache.kFloat64, cache.kFloat64, cache.kFloat64, zone))
#define FUNC_N2N_TYPE \
Bounds(Type::Function(Type::Number(), Type::Number(), zone))
// Macros for array types.
#define FLOAT64_ARRAY_TYPE Bounds(Type::Array(cache.kFloat64, zone))
#define FUNC_I2I_ARRAY_TYPE \
Bounds(Type::Array(Type::Function(cache.kInt32, cache.kInt32, zone), zone))
using namespace v8::internal;
namespace {
std::string Validate(Zone* zone, const char* source,
ZoneVector<ExpressionTypeEntry>* types) {
i::Isolate* isolate = CcTest::i_isolate();
i::Factory* factory = isolate->factory();
i::Handle<i::String> source_code =
factory->NewStringFromUtf8(i::CStrVector(source)).ToHandleChecked();
i::Handle<i::Script> script = factory->NewScript(source_code);
i::ParseInfo info(zone, script);
i::Parser parser(&info);
parser.set_allow_harmony_sloppy(true);
info.set_global();
info.set_lazy(false);
info.set_allow_lazy_parsing(false);
info.set_toplevel(true);
CHECK(i::Compiler::ParseAndAnalyze(&info));
FunctionLiteral* root =
info.scope()->declarations()->at(0)->AsFunctionDeclaration()->fun();
AsmTyper typer(isolate, zone, *script, root);
if (typer.Validate()) {
ExpressionTypeCollector(isolate, root, types).Run();
return "";
} else {
return typer.error_message();
}
}
} // namespace
TEST(ValidateMinimum) {
const char test_function[] =
"function GeometricMean(stdlib, foreign, buffer) {\n"
" \"use asm\";\n"
"\n"
" var exp = stdlib.Math.exp;\n"
" var log = stdlib.Math.log;\n"
" var values = new stdlib.Float64Array(buffer);\n"
"\n"
" function logSum(start, end) {\n"
" start = start|0;\n"
" end = end|0;\n"
"\n"
" var sum = 0.0, p = 0, q = 0;\n"
"\n"
" // asm.js forces byte addressing of the heap by requiring shifting "
"by 3\n"
" for (p = start << 3, q = end << 3; (p|0) < (q|0); p = (p + 8)|0) {\n"
" sum = sum + +log(values[p>>3]);\n"
" }\n"
"\n"
" return +sum;\n"
" }\n"
"\n"
" function geometricMean(start, end) {\n"
" start = start|0;\n"
" end = end|0;\n"
"\n"
" return +exp(+logSum(start, end) / +((end - start)|0));\n"
" }\n"
"\n"
" return { geometricMean: geometricMean };\n"
"}\n";
v8::V8::Initialize();
HandleAndZoneScope handles;
Zone* zone = handles.main_zone();
ZoneVector<ExpressionTypeEntry> types(zone);
CHECK_EQ("", Validate(zone, test_function, &types));
TypeCache cache;
CHECK_TYPES_BEGIN {
// Module.
CHECK_EXPR(FunctionLiteral, Bounds::Unbounded()) {
// function logSum
CHECK_EXPR(FunctionLiteral, FUNC_II2D_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(start, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(start, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(end, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(end, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Assignment, Bounds(cache.kFloat64)) {
CHECK_VAR(sum, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(p, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(q, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
// for (p = start << 3, q = end << 3;
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(p, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(start, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(q, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(end, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
}
// (p|0) < (q|0);
CHECK_EXPR(CompareOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(p, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(q, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
// p = (p + 8)|0) {\n"
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(p, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(p, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
// sum = sum + +log(values[p>>3]);
CHECK_EXPR(Assignment, Bounds(cache.kFloat64)) {
CHECK_VAR(sum, Bounds(cache.kFloat64));
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_VAR(sum, Bounds(cache.kFloat64));
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_EXPR(Call, Bounds(cache.kFloat64)) {
CHECK_VAR(log, FUNC_D2D_TYPE);
CHECK_EXPR(Property, Bounds(cache.kFloat64)) {
CHECK_VAR(values, FLOAT64_ARRAY_TYPE);
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(p, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
}
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
}
// return +sum;
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_VAR(sum, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
// function geometricMean
CHECK_EXPR(FunctionLiteral, FUNC_II2D_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(start, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(start, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(end, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(end, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
// return +exp(+logSum(start, end) / +((end - start)|0));
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_EXPR(Call, Bounds(cache.kFloat64)) {
CHECK_VAR(exp, FUNC_D2D_TYPE);
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_EXPR(Call, Bounds(cache.kFloat64)) {
CHECK_VAR(logSum, FUNC_II2D_TYPE);
CHECK_VAR(start, Bounds(cache.kInt32));
CHECK_VAR(end, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(end, Bounds(cache.kInt32));
CHECK_VAR(start, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
}
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
// "use asm";
CHECK_EXPR(Literal, Bounds(Type::String()));
// var exp = stdlib.Math.exp;
CHECK_EXPR(Assignment, FUNC_D2D_TYPE) {
CHECK_VAR(exp, FUNC_D2D_TYPE);
CHECK_EXPR(Property, FUNC_D2D_TYPE) {
CHECK_EXPR(Property, Bounds::Unbounded()) {
CHECK_VAR(stdlib, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
CHECK_EXPR(Literal, Bounds::Unbounded());
}
}
// var log = stdlib.Math.log;
CHECK_EXPR(Assignment, FUNC_D2D_TYPE) {
CHECK_VAR(log, FUNC_D2D_TYPE);
CHECK_EXPR(Property, FUNC_D2D_TYPE) {
CHECK_EXPR(Property, Bounds::Unbounded()) {
CHECK_VAR(stdlib, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
CHECK_EXPR(Literal, Bounds::Unbounded());
}
}
// var values = new stdlib.Float64Array(buffer);
CHECK_EXPR(Assignment, FLOAT64_ARRAY_TYPE) {
CHECK_VAR(values, FLOAT64_ARRAY_TYPE);
CHECK_EXPR(CallNew, FLOAT64_ARRAY_TYPE) {
CHECK_EXPR(Property, Bounds::Unbounded()) {
CHECK_VAR(stdlib, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
CHECK_VAR(buffer, Bounds::Unbounded());
}
}
// return { geometricMean: geometricMean };
CHECK_EXPR(ObjectLiteral, Bounds::Unbounded()) {
CHECK_VAR(geometricMean, FUNC_II2D_TYPE);
}
}
}
CHECK_TYPES_END
}
#define HARNESS_STDLIB() \
"var Infinity = stdlib.Infinity;\n" \
"var NaN = stdlib.NaN;\n" \
"var acos = stdlib.Math.acos;\n" \
"var asin = stdlib.Math.asin;\n" \
"var atan = stdlib.Math.atan;\n" \
"var cos = stdlib.Math.cos;\n" \
"var sin = stdlib.Math.sin;\n" \
"var tan = stdlib.Math.tan;\n" \
"var exp = stdlib.Math.exp;\n" \
"var log = stdlib.Math.log;\n" \
"var ceil = stdlib.Math.ceil;\n" \
"var floor = stdlib.Math.floor;\n" \
"var sqrt = stdlib.Math.sqrt;\n" \
"var min = stdlib.Math.min;\n" \
"var max = stdlib.Math.max;\n" \
"var atan2 = stdlib.Math.atan2;\n" \
"var pow = stdlib.Math.pow;\n" \
"var abs = stdlib.Math.abs;\n" \
"var imul = stdlib.Math.imul;\n" \
"var fround = stdlib.Math.fround;\n" \
"var E = stdlib.Math.E;\n" \
"var LN10 = stdlib.Math.LN10;\n" \
"var LN2 = stdlib.Math.LN2;\n" \
"var LOG2E = stdlib.Math.LOG2E;\n" \
"var LOG10E = stdlib.Math.LOG10E;\n" \
"var PI = stdlib.Math.PI;\n" \
"var SQRT1_2 = stdlib.Math.SQRT1_2;\n" \
"var SQRT2 = stdlib.Math.SQRT2;\n"
#define HARNESS_HEAP() \
"var u8 = new stdlib.Uint8Array(buffer);\n" \
"var i8 = new stdlib.Int8Array(buffer);\n" \
"var u16 = new stdlib.Uint16Array(buffer);\n" \
"var i16 = new stdlib.Int16Array(buffer);\n" \
"var u32 = new stdlib.Uint32Array(buffer);\n" \
"var i32 = new stdlib.Int32Array(buffer);\n" \
"var f32 = new stdlib.Float32Array(buffer);\n" \
"var f64 = new stdlib.Float64Array(buffer);\n"
#define HARNESS_PREAMBLE() \
const char test_function[] = \
"function Module(stdlib, foreign, buffer) {\n" \
"\"use asm\";\n" HARNESS_STDLIB() HARNESS_HEAP()
#define HARNESS_POSTAMBLE() \
"return { foo: foo };\n" \
"}\n";
#define CHECK_VAR_MATH_SHORTCUT(name, type) \
CHECK_EXPR(Assignment, type) { \
CHECK_VAR(name, type); \
CHECK_EXPR(Property, type) { \
CHECK_EXPR(Property, Bounds::Unbounded()) { \
CHECK_VAR(stdlib, Bounds::Unbounded()); \
CHECK_EXPR(Literal, Bounds::Unbounded()); \
} \
CHECK_EXPR(Literal, Bounds::Unbounded()); \
} \
}
#define CHECK_VAR_SHORTCUT(name, type) \
CHECK_EXPR(Assignment, type) { \
CHECK_VAR(name, type); \
CHECK_EXPR(Property, type) { \
CHECK_VAR(stdlib, Bounds::Unbounded()); \
CHECK_EXPR(Literal, Bounds::Unbounded()); \
} \
}
#define CHECK_VAR_NEW_SHORTCUT(name, type) \
CHECK_EXPR(Assignment, type) { \
CHECK_VAR(name, type); \
CHECK_EXPR(CallNew, type) { \
CHECK_EXPR(Property, Bounds::Unbounded()) { \
CHECK_VAR(stdlib, Bounds::Unbounded()); \
CHECK_EXPR(Literal, Bounds::Unbounded()); \
} \
CHECK_VAR(buffer, Bounds::Unbounded()); \
} \
}
namespace {
void CheckStdlibShortcuts(Zone* zone, ZoneVector<ExpressionTypeEntry>& types,
size_t& index, int& depth, TypeCache& cache) {
// var exp = stdlib.*; (D * 12)
CHECK_VAR_SHORTCUT(Infinity, Bounds(cache.kFloat64));
CHECK_VAR_SHORTCUT(NaN, Bounds(cache.kFloat64));
// var x = stdlib.Math.x; D2D
CHECK_VAR_MATH_SHORTCUT(acos, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(asin, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(atan, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(cos, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(sin, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(tan, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(exp, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(log, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(ceil, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(floor, FUNC_D2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(sqrt, FUNC_D2D_TYPE);
// var exp = stdlib.Math.*; (DD2D * 12)
CHECK_VAR_MATH_SHORTCUT(min, FUNC_DD2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(max, FUNC_DD2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(atan2, FUNC_DD2D_TYPE);
CHECK_VAR_MATH_SHORTCUT(pow, FUNC_DD2D_TYPE);
// Special ones.
CHECK_VAR_MATH_SHORTCUT(abs, FUNC_N2N_TYPE);
CHECK_VAR_MATH_SHORTCUT(imul, FUNC_II2I_TYPE);
CHECK_VAR_MATH_SHORTCUT(fround, FUNC_N2F_TYPE);
// var exp = stdlib.Math.*; (D * 12)
CHECK_VAR_MATH_SHORTCUT(E, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(LN10, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(LN2, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(LOG2E, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(LOG10E, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(PI, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(SQRT1_2, Bounds(cache.kFloat64));
CHECK_VAR_MATH_SHORTCUT(SQRT2, Bounds(cache.kFloat64));
// var values = new stdlib.*Array(buffer);
CHECK_VAR_NEW_SHORTCUT(u8, Bounds(cache.kUint8Array));
CHECK_VAR_NEW_SHORTCUT(i8, Bounds(cache.kInt8Array));
CHECK_VAR_NEW_SHORTCUT(u16, Bounds(cache.kUint16Array));
CHECK_VAR_NEW_SHORTCUT(i16, Bounds(cache.kInt16Array));
CHECK_VAR_NEW_SHORTCUT(u32, Bounds(cache.kUint32Array));
CHECK_VAR_NEW_SHORTCUT(i32, Bounds(cache.kInt32Array));
CHECK_VAR_NEW_SHORTCUT(f32, Bounds(cache.kFloat32Array));
CHECK_VAR_NEW_SHORTCUT(f64, Bounds(cache.kFloat64Array));
}
} // namespace
#define CHECK_FUNC_TYPES_BEGIN(func) \
HARNESS_PREAMBLE() \
func "\n" HARNESS_POSTAMBLE(); \
\
v8::V8::Initialize(); \
HandleAndZoneScope handles; \
Zone* zone = handles.main_zone(); \
ZoneVector<ExpressionTypeEntry> types(zone); \
CHECK_EQ("", Validate(zone, test_function, &types)); \
TypeCache cache; \
\
CHECK_TYPES_BEGIN { \
/* Module. */ \
CHECK_EXPR(FunctionLiteral, Bounds::Unbounded()) {
#define CHECK_FUNC_TYPES_END_1() \
/* "use asm"; */ \
CHECK_EXPR(Literal, Bounds(Type::String())); \
/* stdlib shortcuts. */ \
CheckStdlibShortcuts(zone, types, index, depth, cache);
#define CHECK_FUNC_TYPES_END_2() \
/* return { foo: foo }; */ \
CHECK_EXPR(ObjectLiteral, Bounds::Unbounded()) { \
CHECK_VAR(foo, FUNC_V_TYPE); \
} \
} \
} \
CHECK_TYPES_END
#define CHECK_FUNC_TYPES_END \
CHECK_FUNC_TYPES_END_1(); \
CHECK_FUNC_TYPES_END_2();
#define CHECK_FUNC_ERROR(func, message) \
HARNESS_PREAMBLE() \
func "\n" HARNESS_POSTAMBLE(); \
\
v8::V8::Initialize(); \
HandleAndZoneScope handles; \
Zone* zone = handles.main_zone(); \
ZoneVector<ExpressionTypeEntry> types(zone); \
CHECK_EQ(message, Validate(zone, test_function, &types));
TEST(BareHarness) {
CHECK_FUNC_TYPES_BEGIN("function foo() {}") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {}
}
CHECK_FUNC_TYPES_END
}
TEST(ReturnVoid) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { return; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
// return undefined;
CHECK_EXPR(Literal, Bounds(Type::Undefined()));
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(Type::Undefined())) {
CHECK_VAR(bar, FUNC_V_TYPE);
}
}
}
CHECK_FUNC_TYPES_END
}
TEST(EmptyBody) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE);
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(Type::Undefined())) {
CHECK_VAR(bar, FUNC_V_TYPE);
}
}
}
CHECK_FUNC_TYPES_END
}
TEST(DoesNothing) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1.0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kFloat64)) {
CHECK_VAR(x, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(Type::Undefined())) {
CHECK_VAR(bar, FUNC_V_TYPE);
}
}
}
CHECK_FUNC_TYPES_END
}
TEST(ReturnInt32Literal) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { return 1; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
// return 1;
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(cache.kInt32)) { CHECK_VAR(bar, FUNC_I_TYPE); }
}
}
CHECK_FUNC_TYPES_END
}
TEST(ReturnFloat64Literal) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { return 1.0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_D_TYPE) {
// return 1.0;
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(cache.kFloat64)) { CHECK_VAR(bar, FUNC_D_TYPE); }
}
}
CHECK_FUNC_TYPES_END
}
TEST(ReturnFloat32Literal) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { return fround(1.0); }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_F_TYPE) {
// return fround(1.0);
CHECK_EXPR(Call, Bounds(cache.kFloat32)) {
CHECK_VAR(fround, FUNC_N2F_TYPE);
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(cache.kFloat32)) { CHECK_VAR(bar, FUNC_F_TYPE); }
}
}
CHECK_FUNC_TYPES_END
}
TEST(ReturnFloat64Var) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1.0; return +x; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_D_TYPE) {
// return 1.0;
CHECK_EXPR(Assignment, Bounds(cache.kFloat64)) {
CHECK_VAR(x, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
// return 1.0;
CHECK_EXPR(BinaryOperation, Bounds(cache.kFloat64)) {
CHECK_VAR(x, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(cache.kFloat64)) { CHECK_VAR(bar, FUNC_D_TYPE); }
}
}
CHECK_FUNC_TYPES_END
}
TEST(Addition2) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = 2; return (x+y)|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_VAR(y, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(UnsignedCompare) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = 1; return ((x>>>0) < (y>>>0))|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(CompareOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kUint32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kUint32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(UnsignedDivide) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = 1; return ((x>>>0) / (y>>>0))|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(Type::None(), Type::Any())) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kUint32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kUint32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(UnsignedFromFloat64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1.0; return (x>>>0)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill typed bitwise operation\n");
}
TEST(TypeMismatchAddInt32Float64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1.0; var y = 0; return (x + y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed arithmetic operation\n");
}
TEST(TypeMismatchSubInt32Float64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1.0; var y = 0; return (x - y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed arithmetic operation\n");
}
TEST(TypeMismatchDivInt32Float64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1.0; var y = 0; return (x / y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed arithmetic operation\n");
}
TEST(TypeMismatchModInt32Float64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1.0; var y = 0; return (x % y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed arithmetic operation\n");
}
TEST(ModFloat32) {
CHECK_FUNC_ERROR(
"function bar() { var x = fround(1.0); return (x % x)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed arithmetic operation\n");
}
TEST(TernaryMismatchInt32Float64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1; var y = 0.0; return (1 ? x : y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed conditional\n");
}
TEST(FroundFloat32) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; return fround(x); }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_F_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Call, Bounds(cache.kFloat32)) {
CHECK_VAR(fround, FUNC_N2F_TYPE);
CHECK_VAR(x, Bounds(cache.kInt32));
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(Addition4) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = 2; return (x+y+x+y)|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_VAR(y, Bounds(cache.kInt32));
}
CHECK_VAR(x, Bounds(cache.kInt32));
}
CHECK_VAR(y, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(Multiplication2) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1; var y = 2; return (x*y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: direct integer multiply forbidden\n");
}
TEST(Division4) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1; var y = 2; return (x/y/x/y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: too many consecutive multiplicative ops\n");
}
TEST(CompareMismatchInt32Float64) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1; var y = 2.0; return (x < y)|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed comparison operation\n");
}
TEST(CompareMismatchInt32Uint32) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1; var y = 2; return (x < (y>>>0))|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed comparison operation\n");
}
TEST(CompareMismatchInt32Float32) {
CHECK_FUNC_ERROR(
"function bar() { var x = 1; var y = 2; return (x < fround(y))|0; }\n"
"function foo() { bar(); }",
"asm: line 39: ill-typed comparison operation\n");
}
TEST(Float64ToInt32) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = 0.0; x = ~~y; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kFloat64)) {
CHECK_VAR(y, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kFloat64));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kFloat64));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(Load1) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = i8[x>>0]|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(Property, Bounds(cache.kInt8)) {
CHECK_VAR(i8, Bounds(cache.kInt8Array));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(Load1Constant) {
CHECK_FUNC_TYPES_BEGIN(
"function bar() { var x = 1; var y = i8[5]|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(Property, Bounds(cache.kInt8)) {
CHECK_VAR(i8, Bounds(cache.kInt8Array));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END
}
TEST(FunctionTables) {
CHECK_FUNC_TYPES_BEGIN(
"function func1(x) { x = x | 0; return (x * 5) | 0; }\n"
"function func2(x) { x = x | 0; return (x * 25) | 0; }\n"
"var table1 = [func1, func2];\n"
"function bar(x, y) { x = x | 0; y = y | 0;\n"
" return table1[x & 1](y)|0; }\n"
"function foo() { bar(1, 2); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I2I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(FunctionLiteral, FUNC_I2I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(FunctionLiteral, FUNC_II2I_TYPE) {
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(Assignment, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(y, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(Call, Bounds(cache.kInt32)) {
CHECK_EXPR(Property, FUNC_I2I_TYPE) {
CHECK_VAR(table1, FUNC_I2I_ARRAY_TYPE);
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_VAR(x, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_VAR(y, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_SKIP();
}
CHECK_FUNC_TYPES_END_1();
CHECK_EXPR(Assignment, FUNC_I2I_ARRAY_TYPE) {
CHECK_VAR(table1, FUNC_I2I_ARRAY_TYPE);
CHECK_EXPR(ArrayLiteral, FUNC_I2I_ARRAY_TYPE) {
CHECK_VAR(func1, FUNC_I2I_TYPE);
CHECK_VAR(func2, FUNC_I2I_TYPE);
}
}
CHECK_FUNC_TYPES_END_2();
}
TEST(BadFunctionTable) {
CHECK_FUNC_ERROR(
"function func1(x) { x = x | 0; return (x * 5) | 0; }\n"
"var table1 = [func1, 1];\n"
"function bar(x, y) { x = x | 0; y = y | 0;\n"
" return table1[x & 1](y)|0; }\n"
"function foo() { bar(1, 2); }",
"asm: line 40: array component expected to be a function\n");
}
TEST(MissingParameterTypes) {
CHECK_FUNC_ERROR(
"function bar(x) { var y = 1; }\n"
"function foo() { bar(2); }",
"asm: line 39: missing parameter type annotations\n");
}
TEST(InvalidTypeAnnotationBinaryOpDiv) {
CHECK_FUNC_ERROR(
"function bar(x) { x = x / 4; }\n"
"function foo() { bar(2); }",
"asm: line 39: invalid type annotation on binary op\n");
}
TEST(InvalidTypeAnnotationBinaryOpMul) {
CHECK_FUNC_ERROR(
"function bar(x) { x = x * 4.0; }\n"
"function foo() { bar(2); }",
"asm: line 39: invalid type annotation on binary op\n");
}
TEST(InvalidArgumentCount) {
CHECK_FUNC_ERROR(
"function bar(x) { return fround(4, 5); }\n"
"function foo() { bar(); }",
"asm: line 39: invalid argument count calling fround\n");
}
TEST(InvalidTypeAnnotationArity) {
CHECK_FUNC_ERROR(
"function bar(x) { x = max(x); }\n"
"function foo() { bar(3); }",
"asm: line 39: only fround allowed on expression annotations\n");
}
TEST(InvalidTypeAnnotationOnlyFround) {
CHECK_FUNC_ERROR(
"function bar(x) { x = sin(x); }\n"
"function foo() { bar(3); }",
"asm: line 39: only fround allowed on expression annotations\n");
}
TEST(InvalidTypeAnnotation) {
CHECK_FUNC_ERROR(
"function bar(x) { x = (x+x)(x); }\n"
"function foo() { bar(3); }",
"asm: line 39: invalid type annotation\n");
}
TEST(WithStatement) {
CHECK_FUNC_ERROR(
"function bar() { var x = 0; with (x) { x = x + 1; } }\n"
"function foo() { bar(); }",
"asm: line 39: bad with statement\n");
}
TEST(NestedFunction) {
CHECK_FUNC_ERROR(
"function bar() { function x() { return 1; } }\n"
"function foo() { bar(); }",
"asm: line 39: function declared inside another\n");
}
TEST(UnboundVariable) {
CHECK_FUNC_ERROR(
"function bar() { var x = y; }\n"
"function foo() { bar(); }",
"asm: line 39: unbound variable\n");
}
TEST(ForeignFunction) {
CHECK_FUNC_TYPES_BEGIN(
"var baz = foreign.baz;\n"
"function bar() { return baz(1, 2)|0; }\n"
"function foo() { bar(); }") {
CHECK_EXPR(FunctionLiteral, FUNC_I_TYPE) {
CHECK_EXPR(BinaryOperation, Bounds(cache.kInt32)) {
CHECK_EXPR(Call, Bounds(Type::Number(zone))) {
CHECK_VAR(baz, Bounds(Type::Any()));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
CHECK_EXPR(Literal, Bounds(cache.kInt32));
}
}
CHECK_EXPR(FunctionLiteral, FUNC_V_TYPE) {
CHECK_EXPR(Call, Bounds(cache.kInt32)) { CHECK_VAR(bar, FUNC_I_TYPE); }
}
}
CHECK_FUNC_TYPES_END_1()
CHECK_EXPR(Assignment, Bounds(Type::Any())) {
CHECK_VAR(baz, Bounds(Type::Any()));
CHECK_EXPR(Property, Bounds(Type::Any())) {
CHECK_VAR(foreign, Bounds::Unbounded());
CHECK_EXPR(Literal, Bounds::Unbounded());
}
}
CHECK_FUNC_TYPES_END_2()
}
TEST(BadExports) {
HARNESS_PREAMBLE()
"function foo() {};\n"
"return {foo: foo, bar: 1};"
"}\n";
v8::V8::Initialize();
HandleAndZoneScope handles;
Zone* zone = handles.main_zone();
ZoneVector<ExpressionTypeEntry> types(zone);
CHECK_EQ("asm: line 40: non-function in function table\n",
Validate(zone, test_function, &types));
}