You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

361 lines
12 KiB

# Crypto
Use `require('crypto')` to access this module.
The crypto module requires OpenSSL to be available on the underlying platform.
It offers a way of encapsulating secure credentials to be used as part
of a secure HTTPS net or http connection.
It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.
## crypto.createCredentials(details)
Creates a credentials object, with the optional details being a dictionary with keys:
* `key` : a string holding the PEM encoded private key
* `cert` : a string holding the PEM encoded certificate
* `ca` : either a string or list of strings of PEM encoded CA certificates to trust.
* `ciphers`: a string describing the ciphers to use or exclude. Consult
<http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT> for details
on the format.
If no 'ca' details are given, then node.js will use the default publicly trusted list of CAs as given in
<http://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt>.
## crypto.createHash(algorithm)
Creates and returns a hash object, a cryptographic hash with the given algorithm
which can be used to generate hash digests.
`algorithm` is dependent on the available algorithms supported by the version
of OpenSSL on the platform. Examples are `'sha1'`, `'md5'`, `'sha256'`, `'sha512'`, etc.
On recent releases, `openssl list-message-digest-algorithms` will display the available digest algorithms.
Example: this program that takes the sha1 sum of a file
var filename = process.argv[2];
var crypto = require('crypto');
var fs = require('fs');
var shasum = crypto.createHash('sha1');
var s = fs.ReadStream(filename);
s.on('data', function(d) {
shasum.update(d);
});
s.on('end', function() {
var d = shasum.digest('hex');
console.log(d + ' ' + filename);
});
## Class: Hash
The class for creating hash digests of data.
Returned by `crypto.createHash`.
### hash.update(data, [input_encoding])
Updates the hash content with the given `data`, the encoding of which is given
in `input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`.
Defaults to `'binary'`.
This can be called many times with new data as it is streamed.
### hash.digest([encoding])
Calculates the digest of all of the passed data to be hashed.
The `encoding` can be `'hex'`, `'binary'` or `'base64'`.
Defaults to `'binary'`.
Note: `hash` object can not be used after `digest()` method been called.
## crypto.createHmac(algorithm, key)
Creates and returns a hmac object, a cryptographic hmac with the given algorithm and key.
`algorithm` is dependent on the available algorithms supported by OpenSSL - see createHash above.
`key` is the hmac key to be used.
## Class: Hmac
Class for creating cryptographic hmac content.
Returned by `crypto.createHmac`.
### hmac.update(data)
Update the hmac content with the given `data`.
This can be called many times with new data as it is streamed.
### hmac.digest([encoding])
Calculates the digest of all of the passed data to the hmac.
The `encoding` can be `'hex'`, `'binary'` or `'base64'`.
Defaults to `'binary'`.
Note: `hmac` object can not be used after `digest()` method been called.
## crypto.createCipher(algorithm, password)
Creates and returns a cipher object, with the given algorithm and password.
`algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc.
On recent releases, `openssl list-cipher-algorithms` will display the
available cipher algorithms.
`password` is used to derive key and IV, which must be `'binary'` encoded
string (See the [Buffers](buffers.html) for more information).
## crypto.createCipheriv(algorithm, key, iv)
Creates and returns a cipher object, with the given algorithm, key and iv.
`algorithm` is the same as the `createCipher()`. `key` is a raw key used in
algorithm. `iv` is an Initialization vector. `key` and `iv` must be `'binary'`
encoded string (See the [Buffers](buffers.html) for more information).
## Class: Cipher
Class for encrypting data.
Returned by `crypto.createCipher` and `crypto.createCipheriv`.
### cipher.update(data, [input_encoding], [output_encoding])
Updates the cipher with `data`, the encoding of which is given in
`input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`.
Defaults to `'binary'`.
The `output_encoding` specifies the output format of the enciphered data,
and can be `'binary'`, `'base64'` or `'hex'`. Defaults to `'binary'`.
Returns the enciphered contents, and can be called many times with new data as it is streamed.
### cipher.final([output_encoding])
Returns any remaining enciphered contents, with `output_encoding` being one of:
`'binary'`, `'base64'` or `'hex'`. Defaults to `'binary'`.
Note: `cipher` object can not be used after `final()` method been called.
### cipher.setAutoPadding(auto_padding=true)
You can disable automatic padding of the input data to block size. If `auto_padding` is false,
the length of the entire input data must be a multiple of the cipher's block size or `final` will fail.
Useful for non-standard padding, e.g. using `0x0` instead of PKCS padding. You must call this before `cipher.final`.
## crypto.createDecipher(algorithm, password)
Creates and returns a decipher object, with the given algorithm and key.
This is the mirror of the [createCipher()](#crypto.createCipher) above.
## crypto.createDecipheriv(algorithm, key, iv)
Creates and returns a decipher object, with the given algorithm, key and iv.
This is the mirror of the [createCipheriv()](#crypto.createCipheriv) above.
## Class: Decipher
Class for decrypting data.
Returned by `crypto.createDecipher` and `crypto.createDecipheriv`.
### decipher.update(data, [input_encoding], [output_encoding])
Updates the decipher with `data`, which is encoded in `'binary'`, `'base64'`
or `'hex'`. Defaults to `'binary'`.
The `output_decoding` specifies in what format to return the deciphered
plaintext: `'binary'`, `'ascii'` or `'utf8'`. Defaults to `'binary'`.
### decipher.final([output_encoding])
Returns any remaining plaintext which is deciphered,
with `output_encoding` being one of: `'binary'`, `'ascii'` or `'utf8'`.
Defaults to `'binary'`.
Note: `decipher` object can not be used after `final()` method been called.
### decipher.setAutoPadding(auto_padding=true)
You can disable auto padding if the data has been encrypted without standard block padding to prevent
`decipher.final` from checking and removing it. Can only work if the input data's length is a multiple of the
ciphers block size. You must call this before streaming data to `decipher.update`.
## crypto.createSign(algorithm)
Creates and returns a signing object, with the given algorithm.
On recent OpenSSL releases, `openssl list-public-key-algorithms` will display
the available signing algorithms. Examples are `'RSA-SHA256'`.
## Class: Signer
Class for generating signatures.
Returned by `crypto.createSign`.
### signer.update(data)
Updates the signer object with data.
This can be called many times with new data as it is streamed.
### signer.sign(private_key, [output_format])
Calculates the signature on all the updated data passed through the signer.
`private_key` is a string containing the PEM encoded private key for signing.
Returns the signature in `output_format` which can be `'binary'`, `'hex'` or
`'base64'`. Defaults to `'binary'`.
Note: `signer` object can not be used after `sign()` method been called.
## crypto.createVerify(algorithm)
Creates and returns a verification object, with the given algorithm.
This is the mirror of the signing object above.
## Class: Verify
Class for verifying signatures.
Returned by `crypto.createVerify`.
### verifier.update(data)
Updates the verifier object with data.
This can be called many times with new data as it is streamed.
### verifier.verify(object, signature, [signature_format])
Verifies the signed data by using the `object` and `signature`. `object` is a
string containing a PEM encoded object, which can be one of RSA public key,
DSA public key, or X.509 certificate. `signature` is the previously calculated
signature for the data, in the `signature_format` which can be `'binary'`,
`'hex'` or `'base64'`. Defaults to `'binary'`.
Returns true or false depending on the validity of the signature for the data and public key.
Note: `verifier` object can not be used after `verify()` method been called.
## crypto.createDiffieHellman(prime_length)
Creates a Diffie-Hellman key exchange object and generates a prime of the
given bit length. The generator used is `2`.
## crypto.createDiffieHellman(prime, [encoding])
Creates a Diffie-Hellman key exchange object using the supplied prime. The
generator used is `2`. Encoding can be `'binary'`, `'hex'`, or `'base64'`.
Defaults to `'binary'`.
## Class: DiffieHellman
The class for creating Diffie-Hellman key exchanges.
Returned by `crypto.createDiffieHellman`.
### diffieHellman.generateKeys([encoding])
Generates private and public Diffie-Hellman key values, and returns the
public key in the specified encoding. This key should be transferred to the
other party. Encoding can be `'binary'`, `'hex'`, or `'base64'`.
Defaults to `'binary'`.
### diffieHellman.computeSecret(other_public_key, [input_encoding], [output_encoding])
Computes the shared secret using `other_public_key` as the other party's
public key and returns the computed shared secret. Supplied key is
interpreted using specified `input_encoding`, and secret is encoded using
specified `output_encoding`. Encodings can be `'binary'`, `'hex'`, or
`'base64'`. The input encoding defaults to `'binary'`.
If no output encoding is given, the input encoding is used as output encoding.
### diffieHellman.getPrime([encoding])
Returns the Diffie-Hellman prime in the specified encoding, which can be
`'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.
### diffieHellman.getGenerator([encoding])
Returns the Diffie-Hellman prime in the specified encoding, which can be
`'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.
### diffieHellman.getPublicKey([encoding])
Returns the Diffie-Hellman public key in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.
### diffieHellman.getPrivateKey([encoding])
Returns the Diffie-Hellman private key in the specified encoding, which can
be `'binary'`, `'hex'`, or `'base64'`. Defaults to `'binary'`.
### diffieHellman.setPublicKey(public_key, [encoding])
Sets the Diffie-Hellman public key. Key encoding can be `'binary'`, `'hex'`,
or `'base64'`. Defaults to `'binary'`.
### diffieHellman.setPrivateKey(public_key, [encoding])
Sets the Diffie-Hellman private key. Key encoding can be `'binary'`, `'hex'`,
or `'base64'`. Defaults to `'binary'`.
## crypto.getDiffieHellman(group_name)
Creates a predefined Diffie-Hellman key exchange object.
The supported groups are: `'modp1'`, `'modp2'`, `'modp5'`
(defined in [RFC 2412](http://www.rfc-editor.org/rfc/rfc2412.txt ))
and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`, `'modp18'`
(defined in [RFC 3526](http://www.rfc-editor.org/rfc/rfc3526.txt )).
The returned object mimics the interface of objects created by
[crypto.createDiffieHellman()](#crypto.createDiffieHellman) above, but
will not allow to change the keys (with
[diffieHellman.setPublicKey()](#diffieHellman.setPublicKey) for example).
The advantage of using this routine is that the parties don't have to
generate nor exchange group modulus beforehand, saving both processor and
communication time.
Example (obtaining a shared secret):
var crypto = require('crypto');
var alice = crypto.getDiffieHellman('modp5');
var bob = crypto.getDiffieHellman('modp5');
alice.generateKeys();
bob.generateKeys();
var alice_secret = alice.computeSecret(bob.getPublicKey(), 'binary', 'hex');
var bob_secret = bob.computeSecret(alice.getPublicKey(), 'binary', 'hex');
/* alice_secret and bob_secret should be the same */
console.log(alice_secret == bob_secret);
## crypto.pbkdf2(password, salt, iterations, keylen, callback)
Asynchronous PBKDF2 applies pseudorandom function HMAC-SHA1 to derive
a key of given length from the given password, salt and iterations.
The callback gets two arguments `(err, derivedKey)`.
## crypto.randomBytes(size, [callback])
Generates cryptographically strong pseudo-random data. Usage:
// async
crypto.randomBytes(256, function(ex, buf) {
if (ex) throw ex;
console.log('Have %d bytes of random data: %s', buf.length, buf);
});
// sync
try {
var buf = crypto.randomBytes(256);
console.log('Have %d bytes of random data: %s', buf.length, buf);
} catch (ex) {
// handle error
}