You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1865 lines
61 KiB

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "api.h"
#include "arguments.h"
#include "bootstrapper.h"
#include "builtins.h"
#include "cpu-profiler.h"
#include "gdb-jit.h"
#include "ic-inl.h"
#include "heap-profiler.h"
#include "mark-compact.h"
#include "stub-cache.h"
#include "vm-state-inl.h"
namespace v8 {
namespace internal {
namespace {
// Arguments object passed to C++ builtins.
template <BuiltinExtraArguments extra_args>
class BuiltinArguments : public Arguments {
public:
BuiltinArguments(int length, Object** arguments)
: Arguments(length, arguments) { }
Object*& operator[] (int index) {
ASSERT(index < length());
return Arguments::operator[](index);
}
template <class S> Handle<S> at(int index) {
ASSERT(index < length());
return Arguments::at<S>(index);
}
Handle<Object> receiver() {
return Arguments::at<Object>(0);
}
Handle<JSFunction> called_function() {
STATIC_ASSERT(extra_args == NEEDS_CALLED_FUNCTION);
return Arguments::at<JSFunction>(Arguments::length() - 1);
}
// Gets the total number of arguments including the receiver (but
// excluding extra arguments).
int length() const {
STATIC_ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
return Arguments::length();
}
#ifdef DEBUG
void Verify() {
// Check we have at least the receiver.
ASSERT(Arguments::length() >= 1);
}
#endif
};
// Specialize BuiltinArguments for the called function extra argument.
template <>
int BuiltinArguments<NEEDS_CALLED_FUNCTION>::length() const {
return Arguments::length() - 1;
}
#ifdef DEBUG
template <>
void BuiltinArguments<NEEDS_CALLED_FUNCTION>::Verify() {
// Check we have at least the receiver and the called function.
ASSERT(Arguments::length() >= 2);
// Make sure cast to JSFunction succeeds.
called_function();
}
#endif
#define DEF_ARG_TYPE(name, spec) \
typedef BuiltinArguments<spec> name##ArgumentsType;
BUILTIN_LIST_C(DEF_ARG_TYPE)
#undef DEF_ARG_TYPE
} // namespace
// ----------------------------------------------------------------------------
// Support macro for defining builtins in C++.
// ----------------------------------------------------------------------------
//
// A builtin function is defined by writing:
//
// BUILTIN(name) {
// ...
// }
//
// In the body of the builtin function the arguments can be accessed
// through the BuiltinArguments object args.
#ifdef DEBUG
#define BUILTIN(name) \
MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate); \
MUST_USE_RESULT static MaybeObject* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
args.Verify(); \
return Builtin_Impl_##name(args, isolate); \
} \
MUST_USE_RESULT static MaybeObject* Builtin_Impl_##name( \
name##ArgumentsType args, Isolate* isolate)
#else // For release mode.
#define BUILTIN(name) \
static MaybeObject* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate); \
static MaybeObject* Builtin_##name( \
int args_length, Object** args_object, Isolate* isolate) { \
name##ArgumentsType args(args_length, args_object); \
return Builtin_impl##name(args, isolate); \
} \
static MaybeObject* Builtin_impl##name( \
name##ArgumentsType args, Isolate* isolate)
#endif
static inline bool CalledAsConstructor(Isolate* isolate) {
#ifdef DEBUG
// Calculate the result using a full stack frame iterator and check
// that the state of the stack is as we assume it to be in the
// code below.
StackFrameIterator it(isolate);
ASSERT(it.frame()->is_exit());
it.Advance();
StackFrame* frame = it.frame();
bool reference_result = frame->is_construct();
#endif
Address fp = Isolate::c_entry_fp(isolate->thread_local_top());
// Because we know fp points to an exit frame we can use the relevant
// part of ExitFrame::ComputeCallerState directly.
const int kCallerOffset = ExitFrameConstants::kCallerFPOffset;
Address caller_fp = Memory::Address_at(fp + kCallerOffset);
// This inlines the part of StackFrame::ComputeType that grabs the
// type of the current frame. Note that StackFrame::ComputeType
// has been specialized for each architecture so if any one of them
// changes this code has to be changed as well.
const int kMarkerOffset = StandardFrameConstants::kMarkerOffset;
const Smi* kConstructMarker = Smi::FromInt(StackFrame::CONSTRUCT);
Object* marker = Memory::Object_at(caller_fp + kMarkerOffset);
bool result = (marker == kConstructMarker);
ASSERT_EQ(result, reference_result);
return result;
}
// ----------------------------------------------------------------------------
BUILTIN(Illegal) {
UNREACHABLE();
return isolate->heap()->undefined_value(); // Make compiler happy.
}
BUILTIN(EmptyFunction) {
return isolate->heap()->undefined_value();
}
static MaybeObject* ArrayCodeGenericCommon(Arguments* args,
Isolate* isolate,
JSFunction* constructor) {
ASSERT(args->length() >= 1);
Heap* heap = isolate->heap();
isolate->counters()->array_function_runtime()->Increment();
JSArray* array;
if (CalledAsConstructor(isolate)) {
array = JSArray::cast((*args)[0]);
// Initialize elements and length in case later allocations fail so that the
// array object is initialized in a valid state.
MaybeObject* maybe_array = array->Initialize(0);
if (maybe_array->IsFailure()) return maybe_array;
AllocationMemento* memento = AllocationMemento::FindForJSObject(array);
if (memento != NULL && memento->IsValid()) {
AllocationSite* site = memento->GetAllocationSite();
ElementsKind to_kind = site->GetElementsKind();
if (IsMoreGeneralElementsKindTransition(array->GetElementsKind(),
to_kind)) {
// We have advice that we should change the elements kind
if (FLAG_trace_track_allocation_sites) {
PrintF("AllocationSite: pre-transitioning array %p(%s->%s)\n",
reinterpret_cast<void*>(array),
ElementsKindToString(array->GetElementsKind()),
ElementsKindToString(to_kind));
}
maybe_array = array->TransitionElementsKind(to_kind);
if (maybe_array->IsFailure()) return maybe_array;
}
}
if (!FLAG_smi_only_arrays) {
Context* native_context = isolate->context()->native_context();
if (array->GetElementsKind() == GetInitialFastElementsKind() &&
!native_context->js_array_maps()->IsUndefined()) {
FixedArray* map_array =
FixedArray::cast(native_context->js_array_maps());
array->set_map(Map::cast(map_array->
get(TERMINAL_FAST_ELEMENTS_KIND)));
}
}
} else {
// Allocate the JS Array
MaybeObject* maybe_obj = heap->AllocateJSObject(constructor);
if (!maybe_obj->To(&array)) return maybe_obj;
}
Arguments adjusted_arguments(args->length() - 1, args->arguments() - 1);
ASSERT(adjusted_arguments.length() < 1 ||
adjusted_arguments[0] == (*args)[1]);
return ArrayConstructInitializeElements(array, &adjusted_arguments);
}
BUILTIN(InternalArrayCodeGeneric) {
return ArrayCodeGenericCommon(
&args,
isolate,
isolate->context()->native_context()->internal_array_function());
}
BUILTIN(ArrayCodeGeneric) {
return ArrayCodeGenericCommon(
&args,
isolate,
isolate->context()->native_context()->array_function());
}
static void MoveDoubleElements(FixedDoubleArray* dst,
int dst_index,
FixedDoubleArray* src,
int src_index,
int len) {
if (len == 0) return;
OS::MemMove(dst->data_start() + dst_index,
src->data_start() + src_index,
len * kDoubleSize);
}
static void FillWithHoles(Heap* heap, FixedArray* dst, int from, int to) {
ASSERT(dst->map() != heap->fixed_cow_array_map());
MemsetPointer(dst->data_start() + from, heap->the_hole_value(), to - from);
}
static void FillWithHoles(FixedDoubleArray* dst, int from, int to) {
for (int i = from; i < to; i++) {
dst->set_the_hole(i);
}
}
static FixedArrayBase* LeftTrimFixedArray(Heap* heap,
FixedArrayBase* elms,
int to_trim) {
Map* map = elms->map();
int entry_size;
if (elms->IsFixedArray()) {
entry_size = kPointerSize;
} else {
entry_size = kDoubleSize;
}
ASSERT(elms->map() != heap->fixed_cow_array_map());
// For now this trick is only applied to fixed arrays in new and paged space.
// In large object space the object's start must coincide with chunk
// and thus the trick is just not applicable.
ASSERT(!heap->lo_space()->Contains(elms));
STATIC_ASSERT(FixedArrayBase::kMapOffset == 0);
STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize);
STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize);
Object** former_start = HeapObject::RawField(elms, 0);
const int len = elms->length();
if (to_trim * entry_size > FixedArrayBase::kHeaderSize &&
elms->IsFixedArray() &&
!heap->new_space()->Contains(elms)) {
// If we are doing a big trim in old space then we zap the space that was
// formerly part of the array so that the GC (aided by the card-based
// remembered set) won't find pointers to new-space there.
Object** zap = reinterpret_cast<Object**>(elms->address());
zap++; // Header of filler must be at least one word so skip that.
for (int i = 1; i < to_trim; i++) {
*zap++ = Smi::FromInt(0);
}
}
// Technically in new space this write might be omitted (except for
// debug mode which iterates through the heap), but to play safer
// we still do it.
heap->CreateFillerObjectAt(elms->address(), to_trim * entry_size);
int new_start_index = to_trim * (entry_size / kPointerSize);
former_start[new_start_index] = map;
former_start[new_start_index + 1] = Smi::FromInt(len - to_trim);
// Maintain marking consistency for HeapObjectIterator and
// IncrementalMarking.
int size_delta = to_trim * entry_size;
if (heap->marking()->TransferMark(elms->address(),
elms->address() + size_delta)) {
MemoryChunk::IncrementLiveBytesFromMutator(elms->address(), -size_delta);
}
HEAP_PROFILE(heap, ObjectMoveEvent(elms->address(),
elms->address() + size_delta));
return FixedArrayBase::cast(HeapObject::FromAddress(
elms->address() + to_trim * entry_size));
}
static bool ArrayPrototypeHasNoElements(Heap* heap,
Context* native_context,
JSObject* array_proto) {
// This method depends on non writability of Object and Array prototype
// fields.
if (array_proto->elements() != heap->empty_fixed_array()) return false;
// Object.prototype
Object* proto = array_proto->GetPrototype();
if (proto == heap->null_value()) return false;
array_proto = JSObject::cast(proto);
if (array_proto != native_context->initial_object_prototype()) return false;
if (array_proto->elements() != heap->empty_fixed_array()) return false;
return array_proto->GetPrototype()->IsNull();
}
MUST_USE_RESULT
static inline MaybeObject* EnsureJSArrayWithWritableFastElements(
Heap* heap, Object* receiver, Arguments* args, int first_added_arg) {
if (!receiver->IsJSArray()) return NULL;
JSArray* array = JSArray::cast(receiver);
HeapObject* elms = array->elements();
Map* map = elms->map();
if (map == heap->fixed_array_map()) {
if (args == NULL || array->HasFastObjectElements()) return elms;
} else if (map == heap->fixed_cow_array_map()) {
MaybeObject* maybe_writable_result = array->EnsureWritableFastElements();
if (args == NULL || array->HasFastObjectElements() ||
!maybe_writable_result->To(&elms)) {
return maybe_writable_result;
}
} else if (map == heap->fixed_double_array_map()) {
if (args == NULL) return elms;
} else {
return NULL;
}
// Need to ensure that the arguments passed in args can be contained in
// the array.
int args_length = args->length();
if (first_added_arg >= args_length) return array->elements();
ElementsKind origin_kind = array->map()->elements_kind();
ASSERT(!IsFastObjectElementsKind(origin_kind));
ElementsKind target_kind = origin_kind;
int arg_count = args->length() - first_added_arg;
Object** arguments = args->arguments() - first_added_arg - (arg_count - 1);
for (int i = 0; i < arg_count; i++) {
Object* arg = arguments[i];
if (arg->IsHeapObject()) {
if (arg->IsHeapNumber()) {
target_kind = FAST_DOUBLE_ELEMENTS;
} else {
target_kind = FAST_ELEMENTS;
break;
}
}
}
if (target_kind != origin_kind) {
MaybeObject* maybe_failure = array->TransitionElementsKind(target_kind);
if (maybe_failure->IsFailure()) return maybe_failure;
return array->elements();
}
return elms;
}
static inline bool IsJSArrayFastElementMovingAllowed(Heap* heap,
JSArray* receiver) {
if (!FLAG_clever_optimizations) return false;
Context* native_context = heap->isolate()->context()->native_context();
JSObject* array_proto =
JSObject::cast(native_context->array_function()->prototype());
return receiver->GetPrototype() == array_proto &&
ArrayPrototypeHasNoElements(heap, native_context, array_proto);
}
MUST_USE_RESULT static MaybeObject* CallJsBuiltin(
Isolate* isolate,
const char* name,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
HandleScope handleScope(isolate);
Handle<Object> js_builtin =
GetProperty(Handle<JSObject>(isolate->native_context()->builtins()),
name);
Handle<JSFunction> function = Handle<JSFunction>::cast(js_builtin);
int argc = args.length() - 1;
ScopedVector<Handle<Object> > argv(argc);
for (int i = 0; i < argc; ++i) {
argv[i] = args.at<Object>(i + 1);
}
bool pending_exception;
Handle<Object> result = Execution::Call(isolate,
function,
args.receiver(),
argc,
argv.start(),
&pending_exception);
if (pending_exception) return Failure::Exception();
return *result;
}
BUILTIN(ArrayPush) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(heap, receiver, &args, 1);
if (maybe_elms_obj == NULL) {
return CallJsBuiltin(isolate, "ArrayPush", args);
}
if (!maybe_elms_obj->To(&elms_obj)) return maybe_elms_obj;
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
ElementsKind kind = array->GetElementsKind();
if (IsFastSmiOrObjectElementsKind(kind)) {
FixedArray* elms = FixedArray::cast(elms_obj);
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
FixedArray* new_elms;
MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe_obj->To(&new_elms)) return maybe_obj;
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms_obj);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
elms = new_elms;
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int index = 0; index < to_add; index++) {
elms->set(index + len, args[index + 1], mode);
}
if (elms != array->elements()) {
array->set_elements(elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
} else {
int len = Smi::cast(array->length())->value();
int elms_len = elms_obj->length();
int to_add = args.length() - 1;
if (to_add == 0) {
return Smi::FromInt(len);
}
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
int new_length = len + to_add;
FixedDoubleArray* new_elms;
if (new_length > elms_len) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
MaybeObject* maybe_obj =
heap->AllocateUninitializedFixedDoubleArray(capacity);
if (!maybe_obj->To(&new_elms)) return maybe_obj;
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, 0,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms_obj);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
} else {
// to_add is > 0 and new_length <= elms_len, so elms_obj cannot be the
// empty_fixed_array.
new_elms = FixedDoubleArray::cast(elms_obj);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
int index;
for (index = 0; index < to_add; index++) {
Object* arg = args[index + 1];
new_elms->set(index + len, arg->Number());
}
if (new_elms != array->elements()) {
array->set_elements(new_elms);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
}
BUILTIN(ArrayPop) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms =
EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0);
if (maybe_elms == NULL) return CallJsBuiltin(isolate, "ArrayPop", args);
if (!maybe_elms->To(&elms_obj)) return maybe_elms;
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
ElementsAccessor* accessor = array->GetElementsAccessor();
int new_length = len - 1;
MaybeObject* maybe_result;
if (accessor->HasElement(array, array, new_length, elms_obj)) {
maybe_result = accessor->Get(array, array, new_length, elms_obj);
} else {
maybe_result = array->GetPrototype()->GetElement(isolate, len - 1);
}
if (maybe_result->IsFailure()) return maybe_result;
MaybeObject* maybe_failure =
accessor->SetLength(array, Smi::FromInt(new_length));
if (maybe_failure->IsFailure()) return maybe_failure;
return maybe_result;
}
BUILTIN(ArrayShift) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0);
if (maybe_elms_obj == NULL)
return CallJsBuiltin(isolate, "ArrayShift", args);
if (!maybe_elms_obj->To(&elms_obj)) return maybe_elms_obj;
if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) {
return CallJsBuiltin(isolate, "ArrayShift", args);
}
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
if (len == 0) return heap->undefined_value();
// Get first element
ElementsAccessor* accessor = array->GetElementsAccessor();
Object* first;
MaybeObject* maybe_first = accessor->Get(receiver, array, 0, elms_obj);
if (!maybe_first->To(&first)) return maybe_first;
if (first->IsTheHole()) {
first = heap->undefined_value();
}
if (!heap->lo_space()->Contains(elms_obj)) {
array->set_elements(LeftTrimFixedArray(heap, elms_obj, 1));
} else {
// Shift the elements.
if (elms_obj->IsFixedArray()) {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, 0, 1, len - 1);
elms->set(len - 1, heap->the_hole_value());
} else {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
MoveDoubleElements(elms, 0, elms, 1, len - 1);
elms->set_the_hole(len - 1);
}
}
// Set the length.
array->set_length(Smi::FromInt(len - 1));
return first;
}
BUILTIN(ArrayUnshift) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms_obj =
EnsureJSArrayWithWritableFastElements(heap, receiver, NULL, 0);
if (maybe_elms_obj == NULL)
return CallJsBuiltin(isolate, "ArrayUnshift", args);
if (!maybe_elms_obj->To(&elms_obj)) return maybe_elms_obj;
if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
if (!array->HasFastSmiOrObjectElements()) {
return CallJsBuiltin(isolate, "ArrayUnshift", args);
}
FixedArray* elms = FixedArray::cast(elms_obj);
int len = Smi::cast(array->length())->value();
int to_add = args.length() - 1;
int new_length = len + to_add;
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT(to_add <= (Smi::kMaxValue - len));
MaybeObject* maybe_object =
array->EnsureCanContainElements(&args, 1, to_add,
DONT_ALLOW_DOUBLE_ELEMENTS);
if (maybe_object->IsFailure()) return maybe_object;
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
FixedArray* new_elms;
MaybeObject* maybe_elms = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe_elms->To(&new_elms)) return maybe_elms;
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, to_add,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
elms = new_elms;
array->set_elements(elms);
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, to_add, 0, len);
}
// Add the provided values.
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int i = 0; i < to_add; i++) {
elms->set(i, args[i + 1], mode);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return Smi::FromInt(new_length);
}
BUILTIN(ArraySlice) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms;
int len = -1;
if (receiver->IsJSArray()) {
JSArray* array = JSArray::cast(receiver);
if (!IsJSArrayFastElementMovingAllowed(heap, array)) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (array->HasFastElements()) {
elms = array->elements();
} else {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(array->length())->value();
} else {
// Array.slice(arguments, ...) is quite a common idiom (notably more
// than 50% of invocations in Web apps). Treat it in C++ as well.
Map* arguments_map =
isolate->context()->native_context()->arguments_boilerplate()->map();
bool is_arguments_object_with_fast_elements =
receiver->IsJSObject() &&
JSObject::cast(receiver)->map() == arguments_map;
if (!is_arguments_object_with_fast_elements) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
JSObject* object = JSObject::cast(receiver);
if (object->HasFastElements()) {
elms = object->elements();
} else {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
Object* len_obj = object->InObjectPropertyAt(Heap::kArgumentsLengthIndex);
if (!len_obj->IsSmi()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
len = Smi::cast(len_obj)->value();
if (len > elms->length()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
JSObject* object = JSObject::cast(receiver);
ASSERT(len >= 0);
int n_arguments = args.length() - 1;
// Note carefully choosen defaults---if argument is missing,
// it's undefined which gets converted to 0 for relative_start
// and to len for relative_end.
int relative_start = 0;
int relative_end = len;
if (n_arguments > 0) {
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
if (n_arguments > 1) {
Object* arg2 = args[2];
if (arg2->IsSmi()) {
relative_end = Smi::cast(arg2)->value();
} else if (arg2->IsHeapNumber()) {
double end = HeapNumber::cast(arg2)->value();
if (end < kMinInt || end > kMaxInt) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
relative_end = std::isnan(end) ? 0 : static_cast<int>(end);
} else if (!arg2->IsUndefined()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
}
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6.
int k = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8.
int final = (relative_end < 0) ? Max(len + relative_end, 0)
: Min(relative_end, len);
// Calculate the length of result array.
int result_len = Max(final - k, 0);
ElementsKind kind = object->GetElementsKind();
if (IsHoleyElementsKind(kind)) {
bool packed = true;
ElementsAccessor* accessor = ElementsAccessor::ForKind(kind);
for (int i = k; i < final; i++) {
if (!accessor->HasElement(object, object, i, elms)) {
packed = false;
break;
}
}
if (packed) {
kind = GetPackedElementsKind(kind);
} else if (!receiver->IsJSArray()) {
return CallJsBuiltin(isolate, "ArraySlice", args);
}
}
JSArray* result_array;
MaybeObject* maybe_array = heap->AllocateJSArrayAndStorage(kind,
result_len,
result_len);
DisallowHeapAllocation no_gc;
if (result_len == 0) return maybe_array;
if (!maybe_array->To(&result_array)) return maybe_array;
ElementsAccessor* accessor = object->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, k, kind, result_array->elements(), 0, result_len, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
return result_array;
}
BUILTIN(ArraySplice) {
Heap* heap = isolate->heap();
Object* receiver = *args.receiver();
FixedArrayBase* elms_obj;
MaybeObject* maybe_elms =
EnsureJSArrayWithWritableFastElements(heap, receiver, &args, 3);
if (maybe_elms == NULL) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (!maybe_elms->To(&elms_obj)) return maybe_elms;
if (!IsJSArrayFastElementMovingAllowed(heap, JSArray::cast(receiver))) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
JSArray* array = JSArray::cast(receiver);
ASSERT(!array->map()->is_observed());
int len = Smi::cast(array->length())->value();
int n_arguments = args.length() - 1;
int relative_start = 0;
if (n_arguments > 0) {
Object* arg1 = args[1];
if (arg1->IsSmi()) {
relative_start = Smi::cast(arg1)->value();
} else if (arg1->IsHeapNumber()) {
double start = HeapNumber::cast(arg1)->value();
if (start < kMinInt || start > kMaxInt) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
relative_start = std::isnan(start) ? 0 : static_cast<int>(start);
} else if (!arg1->IsUndefined()) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
int actual_start = (relative_start < 0) ? Max(len + relative_start, 0)
: Min(relative_start, len);
// SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is
// given as a request to delete all the elements from the start.
// And it differs from the case of undefined delete count.
// This does not follow ECMA-262, but we do the same for
// compatibility.
int actual_delete_count;
if (n_arguments == 1) {
ASSERT(len - actual_start >= 0);
actual_delete_count = len - actual_start;
} else {
int value = 0; // ToInteger(undefined) == 0
if (n_arguments > 1) {
Object* arg2 = args[2];
if (arg2->IsSmi()) {
value = Smi::cast(arg2)->value();
} else {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
}
actual_delete_count = Min(Max(value, 0), len - actual_start);
}
ElementsKind elements_kind = array->GetElementsKind();
int item_count = (n_arguments > 1) ? (n_arguments - 2) : 0;
int new_length = len - actual_delete_count + item_count;
// For double mode we do not support changing the length.
if (new_length > len && IsFastDoubleElementsKind(elements_kind)) {
return CallJsBuiltin(isolate, "ArraySplice", args);
}
if (new_length == 0) {
MaybeObject* maybe_array = heap->AllocateJSArrayWithElements(
elms_obj, elements_kind, actual_delete_count);
if (maybe_array->IsFailure()) return maybe_array;
array->set_elements(heap->empty_fixed_array());
array->set_length(Smi::FromInt(0));
return maybe_array;
}
JSArray* result_array = NULL;
MaybeObject* maybe_array =
heap->AllocateJSArrayAndStorage(elements_kind,
actual_delete_count,
actual_delete_count);
if (!maybe_array->To(&result_array)) return maybe_array;
if (actual_delete_count > 0) {
DisallowHeapAllocation no_gc;
ElementsAccessor* accessor = array->GetElementsAccessor();
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, actual_start, elements_kind, result_array->elements(),
0, actual_delete_count, elms_obj);
// Cannot fail since the origin and target array are of the same elements
// kind.
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
}
bool elms_changed = false;
if (item_count < actual_delete_count) {
// Shrink the array.
const bool trim_array = !heap->lo_space()->Contains(elms_obj) &&
((actual_start + item_count) <
(len - actual_delete_count - actual_start));
if (trim_array) {
const int delta = actual_delete_count - item_count;
if (elms_obj->IsFixedDoubleArray()) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
MoveDoubleElements(elms, delta, elms, 0, actual_start);
} else {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, delta, 0, actual_start);
}
elms_obj = LeftTrimFixedArray(heap, elms_obj, delta);
elms_changed = true;
} else {
if (elms_obj->IsFixedDoubleArray()) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
MoveDoubleElements(elms, actual_start + item_count,
elms, actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
FillWithHoles(elms, new_length, len);
} else {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
FillWithHoles(heap, elms, new_length, len);
}
}
} else if (item_count > actual_delete_count) {
FixedArray* elms = FixedArray::cast(elms_obj);
// Currently fixed arrays cannot grow too big, so
// we should never hit this case.
ASSERT((item_count - actual_delete_count) <= (Smi::kMaxValue - len));
// Check if array need to grow.
if (new_length > elms->length()) {
// New backing storage is needed.
int capacity = new_length + (new_length >> 1) + 16;
FixedArray* new_elms;
MaybeObject* maybe_obj = heap->AllocateUninitializedFixedArray(capacity);
if (!maybe_obj->To(&new_elms)) return maybe_obj;
DisallowHeapAllocation no_gc;
ElementsKind kind = array->GetElementsKind();
ElementsAccessor* accessor = array->GetElementsAccessor();
if (actual_start > 0) {
// Copy the part before actual_start as is.
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, 0, kind, new_elms, 0, actual_start, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
}
MaybeObject* maybe_failure = accessor->CopyElements(
NULL, actual_start + actual_delete_count, kind, new_elms,
actual_start + item_count,
ElementsAccessor::kCopyToEndAndInitializeToHole, elms);
ASSERT(!maybe_failure->IsFailure());
USE(maybe_failure);
elms_obj = new_elms;
elms_changed = true;
} else {
DisallowHeapAllocation no_gc;
heap->MoveElements(elms, actual_start + item_count,
actual_start + actual_delete_count,
(len - actual_delete_count - actual_start));
}
}
if (IsFastDoubleElementsKind(elements_kind)) {
FixedDoubleArray* elms = FixedDoubleArray::cast(elms_obj);
for (int k = actual_start; k < actual_start + item_count; k++) {
Object* arg = args[3 + k - actual_start];
if (arg->IsSmi()) {
elms->set(k, Smi::cast(arg)->value());
} else {
elms->set(k, HeapNumber::cast(arg)->value());
}
}
} else {
FixedArray* elms = FixedArray::cast(elms_obj);
DisallowHeapAllocation no_gc;
WriteBarrierMode mode = elms->GetWriteBarrierMode(no_gc);
for (int k = actual_start; k < actual_start + item_count; k++) {
elms->set(k, args[3 + k - actual_start], mode);
}
}
if (elms_changed) {
array->set_elements(elms_obj);
}
// Set the length.
array->set_length(Smi::FromInt(new_length));
return result_array;
}
BUILTIN(ArrayConcat) {
Heap* heap = isolate->heap();
Context* native_context = isolate->context()->native_context();
JSObject* array_proto =
JSObject::cast(native_context->array_function()->prototype());
if (!ArrayPrototypeHasNoElements(heap, native_context, array_proto)) {
return CallJsBuiltin(isolate, "ArrayConcat", args);
}
// Iterate through all the arguments performing checks
// and calculating total length.
int n_arguments = args.length();
int result_len = 0;
ElementsKind elements_kind = GetInitialFastElementsKind();
bool has_double = false;
bool is_holey = false;
for (int i = 0; i < n_arguments; i++) {
Object* arg = args[i];
if (!arg->IsJSArray() ||
!JSArray::cast(arg)->HasFastElements() ||
JSArray::cast(arg)->GetPrototype() != array_proto) {
return CallJsBuiltin(isolate, "ArrayConcat", args);
}
int len = Smi::cast(JSArray::cast(arg)->length())->value();
// We shouldn't overflow when adding another len.
const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt);
USE(kHalfOfMaxInt);
result_len += len;
ASSERT(result_len >= 0);
if (result_len > FixedDoubleArray::kMaxLength) {
return CallJsBuiltin(isolate, "ArrayConcat", args);
}
ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind();
has_double = has_double || IsFastDoubleElementsKind(arg_kind);
is_holey = is_holey || IsFastHoleyElementsKind(arg_kind);
if (IsMoreGeneralElementsKindTransition(elements_kind, arg_kind)) {
elements_kind = arg_kind;
}
}
if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind);
// If a double array is concatted into a fast elements array, the fast
// elements array needs to be initialized to contain proper holes, since
// boxing doubles may cause incremental marking.
ArrayStorageAllocationMode mode =
has_double && IsFastObjectElementsKind(elements_kind)
? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS;
JSArray* result_array;
// Allocate result.
MaybeObject* maybe_array =
heap->AllocateJSArrayAndStorage(elements_kind,
result_len,
result_len,
mode);
if (!maybe_array->To(&result_array)) return maybe_array;
if (result_len == 0) return result_array;
int j = 0;
FixedArrayBase* storage = result_array->elements();
ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind);
for (int i = 0; i < n_arguments; i++) {
JSArray* array = JSArray::cast(args[i]);
int len = Smi::cast(array->length())->value();
ElementsKind from_kind = array->GetElementsKind();
if (len > 0) {
MaybeObject* maybe_failure =
accessor->CopyElements(array, 0, from_kind, storage, j, len);
if (maybe_failure->IsFailure()) return maybe_failure;
j += len;
}
}
ASSERT(j == result_len);
return result_array;
}
// -----------------------------------------------------------------------------
// Strict mode poison pills
BUILTIN(StrictModePoisonPill) {
HandleScope scope(isolate);
return isolate->Throw(*isolate->factory()->NewTypeError(
"strict_poison_pill", HandleVector<Object>(NULL, 0)));
}
// -----------------------------------------------------------------------------
//
// Searches the hidden prototype chain of the given object for the first
// object that is an instance of the given type. If no such object can
// be found then Heap::null_value() is returned.
static inline Object* FindHidden(Heap* heap,
Object* object,
FunctionTemplateInfo* type) {
if (object->IsInstanceOf(type)) return object;
Object* proto = object->GetPrototype(heap->isolate());
if (proto->IsJSObject() &&
JSObject::cast(proto)->map()->is_hidden_prototype()) {
return FindHidden(heap, proto, type);
}
return heap->null_value();
}
// Returns the holder JSObject if the function can legally be called
// with this receiver. Returns Heap::null_value() if the call is
// illegal. Any arguments that don't fit the expected type is
// overwritten with undefined. Note that holder and the arguments are
// implicitly rewritten with the first object in the hidden prototype
// chain that actually has the expected type.
static inline Object* TypeCheck(Heap* heap,
int argc,
Object** argv,
FunctionTemplateInfo* info) {
Object* recv = argv[0];
// API calls are only supported with JSObject receivers.
if (!recv->IsJSObject()) return heap->null_value();
Object* sig_obj = info->signature();
if (sig_obj->IsUndefined()) return recv;
SignatureInfo* sig = SignatureInfo::cast(sig_obj);
// If necessary, check the receiver
Object* recv_type = sig->receiver();
Object* holder = recv;
if (!recv_type->IsUndefined()) {
holder = FindHidden(heap, holder, FunctionTemplateInfo::cast(recv_type));
if (holder == heap->null_value()) return heap->null_value();
}
Object* args_obj = sig->args();
// If there is no argument signature we're done
if (args_obj->IsUndefined()) return holder;
FixedArray* args = FixedArray::cast(args_obj);
int length = args->length();
if (argc <= length) length = argc - 1;
for (int i = 0; i < length; i++) {
Object* argtype = args->get(i);
if (argtype->IsUndefined()) continue;
Object** arg = &argv[-1 - i];
Object* current = *arg;
current = FindHidden(heap, current, FunctionTemplateInfo::cast(argtype));
if (current == heap->null_value()) current = heap->undefined_value();
*arg = current;
}
return holder;
}
template <bool is_construct>
MUST_USE_RESULT static MaybeObject* HandleApiCallHelper(
BuiltinArguments<NEEDS_CALLED_FUNCTION> args, Isolate* isolate) {
ASSERT(is_construct == CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
HandleScope scope(isolate);
Handle<JSFunction> function = args.called_function();
ASSERT(function->shared()->IsApiFunction());
FunctionTemplateInfo* fun_data = function->shared()->get_api_func_data();
if (is_construct) {
Handle<FunctionTemplateInfo> desc(fun_data, isolate);
bool pending_exception = false;
isolate->factory()->ConfigureInstance(
desc, Handle<JSObject>::cast(args.receiver()), &pending_exception);
ASSERT(isolate->has_pending_exception() == pending_exception);
if (pending_exception) return Failure::Exception();
fun_data = *desc;
}
Object* raw_holder = TypeCheck(heap, args.length(), &args[0], fun_data);
if (raw_holder->IsNull()) {
// This function cannot be called with the given receiver. Abort!
Handle<Object> obj =
isolate->factory()->NewTypeError(
"illegal_invocation", HandleVector(&function, 1));
return isolate->Throw(*obj);
}
Object* raw_call_data = fun_data->call_code();
if (!raw_call_data->IsUndefined()) {
CallHandlerInfo* call_data = CallHandlerInfo::cast(raw_call_data);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
Object* data_obj = call_data->data();
Object* result;
LOG(isolate, ApiObjectAccess("call", JSObject::cast(*args.receiver())));
ASSERT(raw_holder->IsJSObject());
FunctionCallbackArguments custom(isolate,
data_obj,
*function,
raw_holder,
&args[0] - 1,
args.length() - 1,
is_construct);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
if (!is_construct || result->IsJSObject()) return result;
}
return *args.receiver();
}
BUILTIN(HandleApiCall) {
return HandleApiCallHelper<false>(args, isolate);
}
BUILTIN(HandleApiCallConstruct) {
return HandleApiCallHelper<true>(args, isolate);
}
// Helper function to handle calls to non-function objects created through the
// API. The object can be called as either a constructor (using new) or just as
// a function (without new).
MUST_USE_RESULT static MaybeObject* HandleApiCallAsFunctionOrConstructor(
Isolate* isolate,
bool is_construct_call,
BuiltinArguments<NO_EXTRA_ARGUMENTS> args) {
// Non-functions are never called as constructors. Even if this is an object
// called as a constructor the delegate call is not a construct call.
ASSERT(!CalledAsConstructor(isolate));
Heap* heap = isolate->heap();
Handle<Object> receiver = args.receiver();
// Get the object called.
JSObject* obj = JSObject::cast(*receiver);
// Get the invocation callback from the function descriptor that was
// used to create the called object.
ASSERT(obj->map()->has_instance_call_handler());
JSFunction* constructor = JSFunction::cast(obj->map()->constructor());
ASSERT(constructor->shared()->IsApiFunction());
Object* handler =
constructor->shared()->get_api_func_data()->instance_call_handler();
ASSERT(!handler->IsUndefined());
CallHandlerInfo* call_data = CallHandlerInfo::cast(handler);
Object* callback_obj = call_data->callback();
v8::FunctionCallback callback =
v8::ToCData<v8::FunctionCallback>(callback_obj);
// Get the data for the call and perform the callback.
Object* result;
{
HandleScope scope(isolate);
LOG(isolate, ApiObjectAccess("call non-function", obj));
FunctionCallbackArguments custom(isolate,
call_data->data(),
constructor,
obj,
&args[0] - 1,
args.length() - 1,
is_construct_call);
v8::Handle<v8::Value> value = custom.Call(callback);
if (value.IsEmpty()) {
result = heap->undefined_value();
} else {
result = *reinterpret_cast<Object**>(*value);
result->VerifyApiCallResultType();
}
}
// Check for exceptions and return result.
RETURN_IF_SCHEDULED_EXCEPTION(isolate);
return result;
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a normal function call.
BUILTIN(HandleApiCallAsFunction) {
return HandleApiCallAsFunctionOrConstructor(isolate, false, args);
}
// Handle calls to non-function objects created through the API. This delegate
// function is used when the call is a construct call.
BUILTIN(HandleApiCallAsConstructor) {
return HandleApiCallAsFunctionOrConstructor(isolate, true, args);
}
static void Generate_LoadIC_Initialize(MacroAssembler* masm) {
LoadIC::GenerateInitialize(masm);
}
static void Generate_LoadIC_PreMonomorphic(MacroAssembler* masm) {
LoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_LoadIC_Miss(MacroAssembler* masm) {
LoadIC::GenerateMiss(masm);
}
static void Generate_LoadIC_Megamorphic(MacroAssembler* masm) {
LoadIC::GenerateMegamorphic(masm);
}
static void Generate_LoadIC_Normal(MacroAssembler* masm) {
LoadIC::GenerateNormal(masm);
}
static void Generate_LoadIC_Getter_ForDeopt(MacroAssembler* masm) {
LoadStubCompiler::GenerateLoadViaGetter(masm, Handle<JSFunction>());
}
static void Generate_LoadIC_Slow(MacroAssembler* masm) {
LoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Initialize(MacroAssembler* masm) {
KeyedLoadIC::GenerateInitialize(masm);
}
static void Generate_KeyedLoadIC_Slow(MacroAssembler* masm) {
KeyedLoadIC::GenerateRuntimeGetProperty(masm);
}
static void Generate_KeyedLoadIC_Miss(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm, MISS);
}
static void Generate_KeyedLoadIC_MissForceGeneric(MacroAssembler* masm) {
KeyedLoadIC::GenerateMiss(masm, MISS_FORCE_GENERIC);
}
static void Generate_KeyedLoadIC_Generic(MacroAssembler* masm) {
KeyedLoadIC::GenerateGeneric(masm);
}
static void Generate_KeyedLoadIC_String(MacroAssembler* masm) {
KeyedLoadIC::GenerateString(masm);
}
static void Generate_KeyedLoadIC_PreMonomorphic(MacroAssembler* masm) {
KeyedLoadIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedLoadIC_IndexedInterceptor(MacroAssembler* masm) {
KeyedLoadIC::GenerateIndexedInterceptor(masm);
}
static void Generate_KeyedLoadIC_NonStrictArguments(MacroAssembler* masm) {
KeyedLoadIC::GenerateNonStrictArguments(masm);
}
static void Generate_StoreIC_Slow(MacroAssembler* masm) {
StoreIC::GenerateSlow(masm);
}
static void Generate_StoreIC_Initialize(MacroAssembler* masm) {
StoreIC::GenerateInitialize(masm);
}
static void Generate_StoreIC_Initialize_Strict(MacroAssembler* masm) {
StoreIC::GenerateInitialize(masm);
}
static void Generate_StoreIC_PreMonomorphic(MacroAssembler* masm) {
StoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
StoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_StoreIC_Miss(MacroAssembler* masm) {
StoreIC::GenerateMiss(masm);
}
static void Generate_StoreIC_Normal(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Normal_Strict(MacroAssembler* masm) {
StoreIC::GenerateNormal(masm);
}
static void Generate_StoreIC_Megamorphic(MacroAssembler* masm) {
StoreIC::GenerateMegamorphic(masm, kNonStrictMode);
}
static void Generate_StoreIC_Megamorphic_Strict(MacroAssembler* masm) {
StoreIC::GenerateMegamorphic(masm, kStrictMode);
}
static void Generate_StoreIC_GlobalProxy(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kNonStrictMode);
}
static void Generate_StoreIC_GlobalProxy_Strict(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kStrictMode);
}
static void Generate_StoreIC_Setter_ForDeopt(MacroAssembler* masm) {
StoreStubCompiler::GenerateStoreViaSetter(masm, Handle<JSFunction>());
}
static void Generate_StoreIC_Generic(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kNonStrictMode);
}
static void Generate_StoreIC_Generic_Strict(MacroAssembler* masm) {
StoreIC::GenerateRuntimeSetProperty(masm, kStrictMode);
}
static void Generate_KeyedStoreIC_Generic(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm, kNonStrictMode);
}
static void Generate_KeyedStoreIC_Generic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateGeneric(masm, kStrictMode);
}
static void Generate_KeyedStoreIC_Miss(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm, MISS);
}
static void Generate_KeyedStoreIC_MissForceGeneric(MacroAssembler* masm) {
KeyedStoreIC::GenerateMiss(masm, MISS_FORCE_GENERIC);
}
static void Generate_KeyedStoreIC_Slow(MacroAssembler* masm) {
KeyedStoreIC::GenerateSlow(masm);
}
static void Generate_KeyedStoreIC_Initialize(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_Initialize_Strict(MacroAssembler* masm) {
KeyedStoreIC::GenerateInitialize(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_PreMonomorphic_Strict(MacroAssembler* masm) {
KeyedStoreIC::GeneratePreMonomorphic(masm);
}
static void Generate_KeyedStoreIC_NonStrictArguments(MacroAssembler* masm) {
KeyedStoreIC::GenerateNonStrictArguments(masm);
}
#ifdef ENABLE_DEBUGGER_SUPPORT
static void Generate_LoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateLoadICDebugBreak(masm);
}
static void Generate_StoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateStoreICDebugBreak(masm);
}
static void Generate_KeyedLoadIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedLoadICDebugBreak(masm);
}
static void Generate_KeyedStoreIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateKeyedStoreICDebugBreak(masm);
}
static void Generate_CompareNilIC_DebugBreak(MacroAssembler* masm) {
Debug::GenerateCompareNilICDebugBreak(masm);
}
static void Generate_Return_DebugBreak(MacroAssembler* masm) {
Debug::GenerateReturnDebugBreak(masm);
}
static void Generate_CallFunctionStub_DebugBreak(MacroAssembler* masm) {
Debug::GenerateCallFunctionStubDebugBreak(masm);
}
static void Generate_CallFunctionStub_Recording_DebugBreak(
MacroAssembler* masm) {
Debug::GenerateCallFunctionStubRecordDebugBreak(masm);
}
static void Generate_CallConstructStub_DebugBreak(MacroAssembler* masm) {
Debug::GenerateCallConstructStubDebugBreak(masm);
}
static void Generate_CallConstructStub_Recording_DebugBreak(
MacroAssembler* masm) {
Debug::GenerateCallConstructStubRecordDebugBreak(masm);
}
static void Generate_Slot_DebugBreak(MacroAssembler* masm) {
Debug::GenerateSlotDebugBreak(masm);
}
static void Generate_PlainReturn_LiveEdit(MacroAssembler* masm) {
Debug::GeneratePlainReturnLiveEdit(masm);
}
static void Generate_FrameDropper_LiveEdit(MacroAssembler* masm) {
Debug::GenerateFrameDropperLiveEdit(masm);
}
#endif
Builtins::Builtins() : initialized_(false) {
memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count);
memset(names_, 0, sizeof(names_[0]) * builtin_count);
}
Builtins::~Builtins() {
}
#define DEF_ENUM_C(name, ignore) FUNCTION_ADDR(Builtin_##name),
Address const Builtins::c_functions_[cfunction_count] = {
BUILTIN_LIST_C(DEF_ENUM_C)
};
#undef DEF_ENUM_C
#define DEF_JS_NAME(name, ignore) #name,
#define DEF_JS_ARGC(ignore, argc) argc,
const char* const Builtins::javascript_names_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_NAME)
};
int const Builtins::javascript_argc_[id_count] = {
BUILTINS_LIST_JS(DEF_JS_ARGC)
};
#undef DEF_JS_NAME
#undef DEF_JS_ARGC
struct BuiltinDesc {
byte* generator;
byte* c_code;
const char* s_name; // name is only used for generating log information.
int name;
Code::Flags flags;
BuiltinExtraArguments extra_args;
};
#define BUILTIN_FUNCTION_TABLE_INIT { V8_ONCE_INIT, {} }
class BuiltinFunctionTable {
public:
BuiltinDesc* functions() {
CallOnce(&once_, &Builtins::InitBuiltinFunctionTable);
return functions_;
}
OnceType once_;
BuiltinDesc functions_[Builtins::builtin_count + 1];
friend class Builtins;
};
static BuiltinFunctionTable builtin_function_table =
BUILTIN_FUNCTION_TABLE_INIT;
// Define array of pointers to generators and C builtin functions.
// We do this in a sort of roundabout way so that we can do the initialization
// within the lexical scope of Builtins:: and within a context where
// Code::Flags names a non-abstract type.
void Builtins::InitBuiltinFunctionTable() {
BuiltinDesc* functions = builtin_function_table.functions_;
functions[builtin_count].generator = NULL;
functions[builtin_count].c_code = NULL;
functions[builtin_count].s_name = NULL;
functions[builtin_count].name = builtin_count;
functions[builtin_count].flags = static_cast<Code::Flags>(0);
functions[builtin_count].extra_args = NO_EXTRA_ARGUMENTS;
#define DEF_FUNCTION_PTR_C(aname, aextra_args) \
functions->generator = FUNCTION_ADDR(Generate_Adaptor); \
functions->c_code = FUNCTION_ADDR(Builtin_##aname); \
functions->s_name = #aname; \
functions->name = c_##aname; \
functions->flags = Code::ComputeFlags(Code::BUILTIN); \
functions->extra_args = aextra_args; \
++functions;
#define DEF_FUNCTION_PTR_A(aname, kind, state, extra) \
functions->generator = FUNCTION_ADDR(Generate_##aname); \
functions->c_code = NULL; \
functions->s_name = #aname; \
functions->name = k##aname; \
functions->flags = Code::ComputeFlags(Code::kind, \
state, \
extra); \
functions->extra_args = NO_EXTRA_ARGUMENTS; \
++functions;
BUILTIN_LIST_C(DEF_FUNCTION_PTR_C)
BUILTIN_LIST_A(DEF_FUNCTION_PTR_A)
BUILTIN_LIST_DEBUG_A(DEF_FUNCTION_PTR_A)
#undef DEF_FUNCTION_PTR_C
#undef DEF_FUNCTION_PTR_A
}
void Builtins::SetUp(Isolate* isolate, bool create_heap_objects) {
ASSERT(!initialized_);
Heap* heap = isolate->heap();
// Create a scope for the handles in the builtins.
HandleScope scope(isolate);
const BuiltinDesc* functions = builtin_function_table.functions();
// For now we generate builtin adaptor code into a stack-allocated
// buffer, before copying it into individual code objects. Be careful
// with alignment, some platforms don't like unaligned code.
union { int force_alignment; byte buffer[8*KB]; } u;
// Traverse the list of builtins and generate an adaptor in a
// separate code object for each one.
for (int i = 0; i < builtin_count; i++) {
if (create_heap_objects) {
MacroAssembler masm(isolate, u.buffer, sizeof u.buffer);
// Generate the code/adaptor.
typedef void (*Generator)(MacroAssembler*, int, BuiltinExtraArguments);
Generator g = FUNCTION_CAST<Generator>(functions[i].generator);
// We pass all arguments to the generator, but it may not use all of
// them. This works because the first arguments are on top of the
// stack.
ASSERT(!masm.has_frame());
g(&masm, functions[i].name, functions[i].extra_args);
// Move the code into the object heap.
CodeDesc desc;
masm.GetCode(&desc);
Code::Flags flags = functions[i].flags;
Object* code = NULL;
{
// During startup it's OK to always allocate and defer GC to later.
// This simplifies things because we don't need to retry.
AlwaysAllocateScope __scope__;
{ MaybeObject* maybe_code =
heap->CreateCode(desc, flags, masm.CodeObject());
if (!maybe_code->ToObject(&code)) {
v8::internal::V8::FatalProcessOutOfMemory("CreateCode");
}
}
}
// Log the event and add the code to the builtins array.
PROFILE(isolate,
CodeCreateEvent(Logger::BUILTIN_TAG,
Code::cast(code),
functions[i].s_name));
GDBJIT(AddCode(GDBJITInterface::BUILTIN,
functions[i].s_name,
Code::cast(code)));
builtins_[i] = code;
#ifdef ENABLE_DISASSEMBLER
if (FLAG_print_builtin_code) {
PrintF("Builtin: %s\n", functions[i].s_name);
Code::cast(code)->Disassemble(functions[i].s_name);
PrintF("\n");
}
#endif
} else {
// Deserializing. The values will be filled in during IterateBuiltins.
builtins_[i] = NULL;
}
names_[i] = functions[i].s_name;
}
// Mark as initialized.
initialized_ = true;
}
void Builtins::TearDown() {
initialized_ = false;
}
void Builtins::IterateBuiltins(ObjectVisitor* v) {
v->VisitPointers(&builtins_[0], &builtins_[0] + builtin_count);
}
const char* Builtins::Lookup(byte* pc) {
// may be called during initialization (disassembler!)
if (initialized_) {
for (int i = 0; i < builtin_count; i++) {
Code* entry = Code::cast(builtins_[i]);
if (entry->contains(pc)) {
return names_[i];
}
}
}
return NULL;
}
void Builtins::Generate_InterruptCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kInterrupt, 0, 1);
}
void Builtins::Generate_StackCheck(MacroAssembler* masm) {
masm->TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
#define DEFINE_BUILTIN_ACCESSOR_C(name, ignore) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
#define DEFINE_BUILTIN_ACCESSOR_A(name, kind, state, extra) \
Handle<Code> Builtins::name() { \
Code** code_address = \
reinterpret_cast<Code**>(builtin_address(k##name)); \
return Handle<Code>(code_address); \
}
BUILTIN_LIST_C(DEFINE_BUILTIN_ACCESSOR_C)
BUILTIN_LIST_A(DEFINE_BUILTIN_ACCESSOR_A)
BUILTIN_LIST_DEBUG_A(DEFINE_BUILTIN_ACCESSOR_A)
#undef DEFINE_BUILTIN_ACCESSOR_C
#undef DEFINE_BUILTIN_ACCESSOR_A
} } // namespace v8::internal