You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6611 lines
218 KiB

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "accessors.h"
#include "api.h"
#include "bootstrapper.h"
#include "codegen.h"
#include "compilation-cache.h"
#include "debug.h"
#include "deoptimizer.h"
#include "global-handles.h"
#include "heap-profiler.h"
#include "incremental-marking.h"
#include "liveobjectlist-inl.h"
#include "mark-compact.h"
#include "natives.h"
#include "objects-visiting.h"
#include "objects-visiting-inl.h"
#include "runtime-profiler.h"
#include "scopeinfo.h"
#include "snapshot.h"
#include "store-buffer.h"
#include "v8threads.h"
#include "vm-state-inl.h"
#if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP
#include "regexp-macro-assembler.h"
#include "arm/regexp-macro-assembler-arm.h"
#endif
#if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP
#include "regexp-macro-assembler.h"
#include "mips/regexp-macro-assembler-mips.h"
#endif
namespace v8 {
namespace internal {
static Mutex* gc_initializer_mutex = OS::CreateMutex();
Heap::Heap()
: isolate_(NULL),
// semispace_size_ should be a power of 2 and old_generation_size_ should be
// a multiple of Page::kPageSize.
#if defined(ANDROID)
#define LUMP_OF_MEMORY (128 * KB)
code_range_size_(0),
#elif defined(V8_TARGET_ARCH_X64)
#define LUMP_OF_MEMORY (2 * MB)
code_range_size_(512*MB),
#else
#define LUMP_OF_MEMORY MB
code_range_size_(0),
#endif
reserved_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
max_semispace_size_(8 * Max(LUMP_OF_MEMORY, Page::kPageSize)),
initial_semispace_size_(Page::kPageSize),
max_old_generation_size_(700ul * LUMP_OF_MEMORY),
max_executable_size_(128l * LUMP_OF_MEMORY),
// Variables set based on semispace_size_ and old_generation_size_ in
// ConfigureHeap (survived_since_last_expansion_, external_allocation_limit_)
// Will be 4 * reserved_semispace_size_ to ensure that young
// generation can be aligned to its size.
survived_since_last_expansion_(0),
sweep_generation_(0),
always_allocate_scope_depth_(0),
linear_allocation_scope_depth_(0),
contexts_disposed_(0),
scan_on_scavenge_pages_(0),
new_space_(this),
old_pointer_space_(NULL),
old_data_space_(NULL),
code_space_(NULL),
map_space_(NULL),
cell_space_(NULL),
lo_space_(NULL),
gc_state_(NOT_IN_GC),
gc_post_processing_depth_(0),
ms_count_(0),
gc_count_(0),
unflattened_strings_length_(0),
#ifdef DEBUG
allocation_allowed_(true),
allocation_timeout_(0),
disallow_allocation_failure_(false),
debug_utils_(NULL),
#endif // DEBUG
new_space_high_promotion_mode_active_(false),
old_gen_promotion_limit_(kMinimumPromotionLimit),
old_gen_allocation_limit_(kMinimumAllocationLimit),
old_gen_limit_factor_(1),
size_of_old_gen_at_last_old_space_gc_(0),
external_allocation_limit_(0),
amount_of_external_allocated_memory_(0),
amount_of_external_allocated_memory_at_last_global_gc_(0),
old_gen_exhausted_(false),
store_buffer_rebuilder_(store_buffer()),
hidden_symbol_(NULL),
global_gc_prologue_callback_(NULL),
global_gc_epilogue_callback_(NULL),
gc_safe_size_of_old_object_(NULL),
total_regexp_code_generated_(0),
tracer_(NULL),
young_survivors_after_last_gc_(0),
high_survival_rate_period_length_(0),
survival_rate_(0),
previous_survival_rate_trend_(Heap::STABLE),
survival_rate_trend_(Heap::STABLE),
max_gc_pause_(0),
max_alive_after_gc_(0),
min_in_mutator_(kMaxInt),
alive_after_last_gc_(0),
last_gc_end_timestamp_(0.0),
store_buffer_(this),
marking_(this),
incremental_marking_(this),
number_idle_notifications_(0),
last_idle_notification_gc_count_(0),
last_idle_notification_gc_count_init_(false),
idle_notification_will_schedule_next_gc_(false),
mark_sweeps_since_idle_round_started_(0),
ms_count_at_last_idle_notification_(0),
gc_count_at_last_idle_gc_(0),
scavenges_since_last_idle_round_(kIdleScavengeThreshold),
promotion_queue_(this),
configured_(false),
chunks_queued_for_free_(NULL) {
// Allow build-time customization of the max semispace size. Building
// V8 with snapshots and a non-default max semispace size is much
// easier if you can define it as part of the build environment.
#if defined(V8_MAX_SEMISPACE_SIZE)
max_semispace_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE;
#endif
intptr_t max_virtual = OS::MaxVirtualMemory();
if (max_virtual > 0) {
if (code_range_size_ > 0) {
// Reserve no more than 1/8 of the memory for the code range.
code_range_size_ = Min(code_range_size_, max_virtual >> 3);
}
}
memset(roots_, 0, sizeof(roots_[0]) * kRootListLength);
global_contexts_list_ = NULL;
mark_compact_collector_.heap_ = this;
external_string_table_.heap_ = this;
}
intptr_t Heap::Capacity() {
if (!HasBeenSetup()) return 0;
return new_space_.Capacity() +
old_pointer_space_->Capacity() +
old_data_space_->Capacity() +
code_space_->Capacity() +
map_space_->Capacity() +
cell_space_->Capacity();
}
intptr_t Heap::CommittedMemory() {
if (!HasBeenSetup()) return 0;
return new_space_.CommittedMemory() +
old_pointer_space_->CommittedMemory() +
old_data_space_->CommittedMemory() +
code_space_->CommittedMemory() +
map_space_->CommittedMemory() +
cell_space_->CommittedMemory() +
lo_space_->Size();
}
intptr_t Heap::CommittedMemoryExecutable() {
if (!HasBeenSetup()) return 0;
return isolate()->memory_allocator()->SizeExecutable();
}
intptr_t Heap::Available() {
if (!HasBeenSetup()) return 0;
return new_space_.Available() +
old_pointer_space_->Available() +
old_data_space_->Available() +
code_space_->Available() +
map_space_->Available() +
cell_space_->Available();
}
bool Heap::HasBeenSetup() {
return old_pointer_space_ != NULL &&
old_data_space_ != NULL &&
code_space_ != NULL &&
map_space_ != NULL &&
cell_space_ != NULL &&
lo_space_ != NULL;
}
int Heap::GcSafeSizeOfOldObject(HeapObject* object) {
if (IntrusiveMarking::IsMarked(object)) {
return IntrusiveMarking::SizeOfMarkedObject(object);
}
return object->SizeFromMap(object->map());
}
GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space) {
// Is global GC requested?
if (space != NEW_SPACE || FLAG_gc_global) {
isolate_->counters()->gc_compactor_caused_by_request()->Increment();
return MARK_COMPACTOR;
}
// Is enough data promoted to justify a global GC?
if (OldGenerationPromotionLimitReached()) {
isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment();
return MARK_COMPACTOR;
}
// Have allocation in OLD and LO failed?
if (old_gen_exhausted_) {
isolate_->counters()->
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
return MARK_COMPACTOR;
}
// Is there enough space left in OLD to guarantee that a scavenge can
// succeed?
//
// Note that MemoryAllocator->MaxAvailable() undercounts the memory available
// for object promotion. It counts only the bytes that the memory
// allocator has not yet allocated from the OS and assigned to any space,
// and does not count available bytes already in the old space or code
// space. Undercounting is safe---we may get an unrequested full GC when
// a scavenge would have succeeded.
if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) {
isolate_->counters()->
gc_compactor_caused_by_oldspace_exhaustion()->Increment();
return MARK_COMPACTOR;
}
// Default
return SCAVENGER;
}
// TODO(1238405): Combine the infrastructure for --heap-stats and
// --log-gc to avoid the complicated preprocessor and flag testing.
void Heap::ReportStatisticsBeforeGC() {
// Heap::ReportHeapStatistics will also log NewSpace statistics when
// compiled --log-gc is set. The following logic is used to avoid
// double logging.
#ifdef DEBUG
if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics();
if (FLAG_heap_stats) {
ReportHeapStatistics("Before GC");
} else if (FLAG_log_gc) {
new_space_.ReportStatistics();
}
if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms();
#else
if (FLAG_log_gc) {
new_space_.CollectStatistics();
new_space_.ReportStatistics();
new_space_.ClearHistograms();
}
#endif // DEBUG
}
void Heap::PrintShortHeapStatistics() {
if (!FLAG_trace_gc_verbose) return;
PrintF("Memory allocator, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d\n",
isolate_->memory_allocator()->Size(),
isolate_->memory_allocator()->Available());
PrintF("New space, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d\n",
Heap::new_space_.Size(),
new_space_.Available());
PrintF("Old pointers, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d"
", waste: %8" V8_PTR_PREFIX "d\n",
old_pointer_space_->Size(),
old_pointer_space_->Available(),
old_pointer_space_->Waste());
PrintF("Old data space, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d"
", waste: %8" V8_PTR_PREFIX "d\n",
old_data_space_->Size(),
old_data_space_->Available(),
old_data_space_->Waste());
PrintF("Code space, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d"
", waste: %8" V8_PTR_PREFIX "d\n",
code_space_->Size(),
code_space_->Available(),
code_space_->Waste());
PrintF("Map space, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d"
", waste: %8" V8_PTR_PREFIX "d\n",
map_space_->Size(),
map_space_->Available(),
map_space_->Waste());
PrintF("Cell space, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d"
", waste: %8" V8_PTR_PREFIX "d\n",
cell_space_->Size(),
cell_space_->Available(),
cell_space_->Waste());
PrintF("Large object space, used: %8" V8_PTR_PREFIX "d"
", available: %8" V8_PTR_PREFIX "d\n",
lo_space_->Size(),
lo_space_->Available());
}
// TODO(1238405): Combine the infrastructure for --heap-stats and
// --log-gc to avoid the complicated preprocessor and flag testing.
void Heap::ReportStatisticsAfterGC() {
// Similar to the before GC, we use some complicated logic to ensure that
// NewSpace statistics are logged exactly once when --log-gc is turned on.
#if defined(DEBUG)
if (FLAG_heap_stats) {
new_space_.CollectStatistics();
ReportHeapStatistics("After GC");
} else if (FLAG_log_gc) {
new_space_.ReportStatistics();
}
#else
if (FLAG_log_gc) new_space_.ReportStatistics();
#endif // DEBUG
}
void Heap::GarbageCollectionPrologue() {
isolate_->transcendental_cache()->Clear();
ClearJSFunctionResultCaches();
gc_count_++;
unflattened_strings_length_ = 0;
#ifdef DEBUG
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
allow_allocation(false);
if (FLAG_verify_heap) {
Verify();
}
if (FLAG_gc_verbose) Print();
#endif // DEBUG
#if defined(DEBUG)
ReportStatisticsBeforeGC();
#endif // DEBUG
LiveObjectList::GCPrologue();
store_buffer()->GCPrologue();
}
intptr_t Heap::SizeOfObjects() {
intptr_t total = 0;
AllSpaces spaces;
for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
total += space->SizeOfObjects();
}
return total;
}
void Heap::GarbageCollectionEpilogue() {
store_buffer()->GCEpilogue();
LiveObjectList::GCEpilogue();
#ifdef DEBUG
allow_allocation(true);
ZapFromSpace();
if (FLAG_verify_heap) {
Verify();
}
if (FLAG_print_global_handles) isolate_->global_handles()->Print();
if (FLAG_print_handles) PrintHandles();
if (FLAG_gc_verbose) Print();
if (FLAG_code_stats) ReportCodeStatistics("After GC");
#endif
isolate_->counters()->alive_after_last_gc()->Set(
static_cast<int>(SizeOfObjects()));
isolate_->counters()->symbol_table_capacity()->Set(
symbol_table()->Capacity());
isolate_->counters()->number_of_symbols()->Set(
symbol_table()->NumberOfElements());
#if defined(DEBUG)
ReportStatisticsAfterGC();
#endif // DEBUG
#ifdef ENABLE_DEBUGGER_SUPPORT
isolate_->debug()->AfterGarbageCollection();
#endif // ENABLE_DEBUGGER_SUPPORT
}
void Heap::CollectAllGarbage(int flags) {
// Since we are ignoring the return value, the exact choice of space does
// not matter, so long as we do not specify NEW_SPACE, which would not
// cause a full GC.
mark_compact_collector_.SetFlags(flags);
CollectGarbage(OLD_POINTER_SPACE);
mark_compact_collector_.SetFlags(kNoGCFlags);
}
void Heap::CollectAllAvailableGarbage() {
// Since we are ignoring the return value, the exact choice of space does
// not matter, so long as we do not specify NEW_SPACE, which would not
// cause a full GC.
// Major GC would invoke weak handle callbacks on weakly reachable
// handles, but won't collect weakly reachable objects until next
// major GC. Therefore if we collect aggressively and weak handle callback
// has been invoked, we rerun major GC to release objects which become
// garbage.
// Note: as weak callbacks can execute arbitrary code, we cannot
// hope that eventually there will be no weak callbacks invocations.
// Therefore stop recollecting after several attempts.
mark_compact_collector()->SetFlags(kMakeHeapIterableMask);
isolate_->compilation_cache()->Clear();
const int kMaxNumberOfAttempts = 7;
for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) {
if (!CollectGarbage(OLD_POINTER_SPACE, MARK_COMPACTOR)) {
break;
}
}
mark_compact_collector()->SetFlags(kNoGCFlags);
new_space_.Shrink();
incremental_marking()->UncommitMarkingDeque();
}
bool Heap::CollectGarbage(AllocationSpace space, GarbageCollector collector) {
// The VM is in the GC state until exiting this function.
VMState state(isolate_, GC);
#ifdef DEBUG
// Reset the allocation timeout to the GC interval, but make sure to
// allow at least a few allocations after a collection. The reason
// for this is that we have a lot of allocation sequences and we
// assume that a garbage collection will allow the subsequent
// allocation attempts to go through.
allocation_timeout_ = Max(6, FLAG_gc_interval);
#endif
if (collector == SCAVENGER && !incremental_marking()->IsStopped()) {
if (FLAG_trace_incremental_marking) {
PrintF("[IncrementalMarking] Scavenge during marking.\n");
}
}
if (collector == MARK_COMPACTOR &&
!mark_compact_collector()->PreciseSweepingRequired() &&
!incremental_marking()->IsStopped() &&
!incremental_marking()->should_hurry() &&
FLAG_incremental_marking_steps) {
if (FLAG_trace_incremental_marking) {
PrintF("[IncrementalMarking] Delaying MarkSweep.\n");
}
collector = SCAVENGER;
}
bool next_gc_likely_to_collect_more = false;
{ GCTracer tracer(this);
GarbageCollectionPrologue();
// The GC count was incremented in the prologue. Tell the tracer about
// it.
tracer.set_gc_count(gc_count_);
// Tell the tracer which collector we've selected.
tracer.set_collector(collector);
HistogramTimer* rate = (collector == SCAVENGER)
? isolate_->counters()->gc_scavenger()
: isolate_->counters()->gc_compactor();
rate->Start();
next_gc_likely_to_collect_more =
PerformGarbageCollection(collector, &tracer);
rate->Stop();
GarbageCollectionEpilogue();
}
ASSERT(collector == SCAVENGER || incremental_marking()->IsStopped());
if (incremental_marking()->IsStopped()) {
if (incremental_marking()->WorthActivating() && NextGCIsLikelyToBeFull()) {
incremental_marking()->Start();
}
}
return next_gc_likely_to_collect_more;
}
void Heap::PerformScavenge() {
GCTracer tracer(this);
if (incremental_marking()->IsStopped()) {
PerformGarbageCollection(SCAVENGER, &tracer);
} else {
PerformGarbageCollection(MARK_COMPACTOR, &tracer);
}
}
#ifdef DEBUG
// Helper class for verifying the symbol table.
class SymbolTableVerifier : public ObjectVisitor {
public:
void VisitPointers(Object** start, Object** end) {
// Visit all HeapObject pointers in [start, end).
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject()) {
// Check that the symbol is actually a symbol.
ASSERT((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsSymbol());
}
}
}
};
#endif // DEBUG
static void VerifySymbolTable() {
#ifdef DEBUG
SymbolTableVerifier verifier;
HEAP->symbol_table()->IterateElements(&verifier);
#endif // DEBUG
}
void Heap::ReserveSpace(
int new_space_size,
int pointer_space_size,
int data_space_size,
int code_space_size,
int map_space_size,
int cell_space_size,
int large_object_size) {
NewSpace* new_space = Heap::new_space();
PagedSpace* old_pointer_space = Heap::old_pointer_space();
PagedSpace* old_data_space = Heap::old_data_space();
PagedSpace* code_space = Heap::code_space();
PagedSpace* map_space = Heap::map_space();
PagedSpace* cell_space = Heap::cell_space();
LargeObjectSpace* lo_space = Heap::lo_space();
bool gc_performed = true;
while (gc_performed) {
gc_performed = false;
if (!new_space->ReserveSpace(new_space_size)) {
Heap::CollectGarbage(NEW_SPACE);
gc_performed = true;
}
if (!old_pointer_space->ReserveSpace(pointer_space_size)) {
Heap::CollectGarbage(OLD_POINTER_SPACE);
gc_performed = true;
}
if (!(old_data_space->ReserveSpace(data_space_size))) {
Heap::CollectGarbage(OLD_DATA_SPACE);
gc_performed = true;
}
if (!(code_space->ReserveSpace(code_space_size))) {
Heap::CollectGarbage(CODE_SPACE);
gc_performed = true;
}
if (!(map_space->ReserveSpace(map_space_size))) {
Heap::CollectGarbage(MAP_SPACE);
gc_performed = true;
}
if (!(cell_space->ReserveSpace(cell_space_size))) {
Heap::CollectGarbage(CELL_SPACE);
gc_performed = true;
}
// We add a slack-factor of 2 in order to have space for a series of
// large-object allocations that are only just larger than the page size.
large_object_size *= 2;
// The ReserveSpace method on the large object space checks how much
// we can expand the old generation. This includes expansion caused by
// allocation in the other spaces.
large_object_size += cell_space_size + map_space_size + code_space_size +
data_space_size + pointer_space_size;
if (!(lo_space->ReserveSpace(large_object_size))) {
Heap::CollectGarbage(LO_SPACE);
gc_performed = true;
}
}
}
void Heap::EnsureFromSpaceIsCommitted() {
if (new_space_.CommitFromSpaceIfNeeded()) return;
// Committing memory to from space failed.
// Try shrinking and try again.
Shrink();
if (new_space_.CommitFromSpaceIfNeeded()) return;
// Committing memory to from space failed again.
// Memory is exhausted and we will die.
V8::FatalProcessOutOfMemory("Committing semi space failed.");
}
void Heap::ClearJSFunctionResultCaches() {
if (isolate_->bootstrapper()->IsActive()) return;
Object* context = global_contexts_list_;
while (!context->IsUndefined()) {
// Get the caches for this context. GC can happen when the context
// is not fully initialized, so the caches can be undefined.
Object* caches_or_undefined =
Context::cast(context)->get(Context::JSFUNCTION_RESULT_CACHES_INDEX);
if (!caches_or_undefined->IsUndefined()) {
FixedArray* caches = FixedArray::cast(caches_or_undefined);
// Clear the caches:
int length = caches->length();
for (int i = 0; i < length; i++) {
JSFunctionResultCache::cast(caches->get(i))->Clear();
}
}
// Get the next context:
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
void Heap::ClearNormalizedMapCaches() {
if (isolate_->bootstrapper()->IsActive() &&
!incremental_marking()->IsMarking()) {
return;
}
Object* context = global_contexts_list_;
while (!context->IsUndefined()) {
// GC can happen when the context is not fully initialized,
// so the cache can be undefined.
Object* cache =
Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX);
if (!cache->IsUndefined()) {
NormalizedMapCache::cast(cache)->Clear();
}
context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK);
}
}
void Heap::UpdateSurvivalRateTrend(int start_new_space_size) {
double survival_rate =
(static_cast<double>(young_survivors_after_last_gc_) * 100) /
start_new_space_size;
if (survival_rate > kYoungSurvivalRateThreshold) {
high_survival_rate_period_length_++;
} else {
high_survival_rate_period_length_ = 0;
}
double survival_rate_diff = survival_rate_ - survival_rate;
if (survival_rate_diff > kYoungSurvivalRateAllowedDeviation) {
set_survival_rate_trend(DECREASING);
} else if (survival_rate_diff < -kYoungSurvivalRateAllowedDeviation) {
set_survival_rate_trend(INCREASING);
} else {
set_survival_rate_trend(STABLE);
}
survival_rate_ = survival_rate;
}
bool Heap::PerformGarbageCollection(GarbageCollector collector,
GCTracer* tracer) {
bool next_gc_likely_to_collect_more = false;
if (collector != SCAVENGER) {
PROFILE(isolate_, CodeMovingGCEvent());
}
if (FLAG_verify_heap) {
VerifySymbolTable();
}
if (collector == MARK_COMPACTOR && global_gc_prologue_callback_) {
ASSERT(!allocation_allowed_);
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
global_gc_prologue_callback_();
}
GCType gc_type =
collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge;
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
if (gc_type & gc_prologue_callbacks_[i].gc_type) {
gc_prologue_callbacks_[i].callback(gc_type, kNoGCCallbackFlags);
}
}
EnsureFromSpaceIsCommitted();
int start_new_space_size = Heap::new_space()->SizeAsInt();
if (IsHighSurvivalRate()) {
// We speed up the incremental marker if it is running so that it
// does not fall behind the rate of promotion, which would cause a
// constantly growing old space.
incremental_marking()->NotifyOfHighPromotionRate();
}
if (collector == MARK_COMPACTOR) {
// Perform mark-sweep with optional compaction.
MarkCompact(tracer);
sweep_generation_++;
bool high_survival_rate_during_scavenges = IsHighSurvivalRate() &&
IsStableOrIncreasingSurvivalTrend();
UpdateSurvivalRateTrend(start_new_space_size);
if (!new_space_high_promotion_mode_active_ &&
new_space_.Capacity() == new_space_.MaximumCapacity() &&
IsStableOrIncreasingSurvivalTrend() &&
IsHighSurvivalRate()) {
// Stable high survival rates even though young generation is at
// maximum capacity indicates that most objects will be promoted.
// To decrease scavenger pauses and final mark-sweep pauses, we
// have to limit maximal capacity of the young generation.
new_space_high_promotion_mode_active_ = true;
if (FLAG_trace_gc) {
PrintF("Limited new space size due to high promotion rate: %d MB\n",
new_space_.InitialCapacity() / MB);
}
} else if (new_space_high_promotion_mode_active_ &&
IsDecreasingSurvivalTrend() &&
!IsHighSurvivalRate()) {
// Decreasing low survival rates might indicate that the above high
// promotion mode is over and we should allow the young generation
// to grow again.
new_space_high_promotion_mode_active_ = false;
if (FLAG_trace_gc) {
PrintF("Unlimited new space size due to low promotion rate: %d MB\n",
new_space_.MaximumCapacity() / MB);
}
}
size_of_old_gen_at_last_old_space_gc_ = PromotedSpaceSize();
if (high_survival_rate_during_scavenges &&
IsStableOrIncreasingSurvivalTrend()) {
// Stable high survival rates of young objects both during partial and
// full collection indicate that mutator is either building or modifying
// a structure with a long lifetime.
// In this case we aggressively raise old generation memory limits to
// postpone subsequent mark-sweep collection and thus trade memory
// space for the mutation speed.
old_gen_limit_factor_ = 2;
} else {
old_gen_limit_factor_ = 1;
}
old_gen_promotion_limit_ =
OldGenPromotionLimit(size_of_old_gen_at_last_old_space_gc_);
old_gen_allocation_limit_ =
OldGenAllocationLimit(size_of_old_gen_at_last_old_space_gc_);
old_gen_exhausted_ = false;
} else {
tracer_ = tracer;
Scavenge();
tracer_ = NULL;
UpdateSurvivalRateTrend(start_new_space_size);
}
if (new_space_high_promotion_mode_active_ &&
new_space_.Capacity() > new_space_.InitialCapacity()) {
new_space_.Shrink();
}
isolate_->counters()->objs_since_last_young()->Set(0);
gc_post_processing_depth_++;
{ DisableAssertNoAllocation allow_allocation;
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
next_gc_likely_to_collect_more =
isolate_->global_handles()->PostGarbageCollectionProcessing(collector);
}
gc_post_processing_depth_--;
// Update relocatables.
Relocatable::PostGarbageCollectionProcessing();
if (collector == MARK_COMPACTOR) {
// Register the amount of external allocated memory.
amount_of_external_allocated_memory_at_last_global_gc_ =
amount_of_external_allocated_memory_;
}
GCCallbackFlags callback_flags = kNoGCCallbackFlags;
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
if (gc_type & gc_epilogue_callbacks_[i].gc_type) {
gc_epilogue_callbacks_[i].callback(gc_type, callback_flags);
}
}
if (collector == MARK_COMPACTOR && global_gc_epilogue_callback_) {
ASSERT(!allocation_allowed_);
GCTracer::Scope scope(tracer, GCTracer::Scope::EXTERNAL);
global_gc_epilogue_callback_();
}
if (FLAG_verify_heap) {
VerifySymbolTable();
}
return next_gc_likely_to_collect_more;
}
void Heap::MarkCompact(GCTracer* tracer) {
gc_state_ = MARK_COMPACT;
LOG(isolate_, ResourceEvent("markcompact", "begin"));
mark_compact_collector_.Prepare(tracer);
ms_count_++;
tracer->set_full_gc_count(ms_count_);
MarkCompactPrologue();
mark_compact_collector_.CollectGarbage();
LOG(isolate_, ResourceEvent("markcompact", "end"));
gc_state_ = NOT_IN_GC;
isolate_->counters()->objs_since_last_full()->Set(0);
contexts_disposed_ = 0;
}
void Heap::MarkCompactPrologue() {
// At any old GC clear the keyed lookup cache to enable collection of unused
// maps.
isolate_->keyed_lookup_cache()->Clear();
isolate_->context_slot_cache()->Clear();
isolate_->descriptor_lookup_cache()->Clear();
StringSplitCache::Clear(string_split_cache());
isolate_->compilation_cache()->MarkCompactPrologue();
CompletelyClearInstanceofCache();
// TODO(1605) select heuristic for flushing NumberString cache with
// FlushNumberStringCache
if (FLAG_cleanup_code_caches_at_gc) {
polymorphic_code_cache()->set_cache(undefined_value());
}
ClearNormalizedMapCaches();
}
Object* Heap::FindCodeObject(Address a) {
return isolate()->inner_pointer_to_code_cache()->
GcSafeFindCodeForInnerPointer(a);
}
// Helper class for copying HeapObjects
class ScavengeVisitor: public ObjectVisitor {
public:
explicit ScavengeVisitor(Heap* heap) : heap_(heap) {}
void VisitPointer(Object** p) { ScavengePointer(p); }
void VisitPointers(Object** start, Object** end) {
// Copy all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) ScavengePointer(p);
}
private:
void ScavengePointer(Object** p) {
Object* object = *p;
if (!heap_->InNewSpace(object)) return;
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
reinterpret_cast<HeapObject*>(object));
}
Heap* heap_;
};
#ifdef DEBUG
// Visitor class to verify pointers in code or data space do not point into
// new space.
class VerifyNonPointerSpacePointersVisitor: public ObjectVisitor {
public:
void VisitPointers(Object** start, Object**end) {
for (Object** current = start; current < end; current++) {
if ((*current)->IsHeapObject()) {
ASSERT(!HEAP->InNewSpace(HeapObject::cast(*current)));
}
}
}
};
static void VerifyNonPointerSpacePointers() {
// Verify that there are no pointers to new space in spaces where we
// do not expect them.
VerifyNonPointerSpacePointersVisitor v;
HeapObjectIterator code_it(HEAP->code_space());
for (HeapObject* object = code_it.Next();
object != NULL; object = code_it.Next())
object->Iterate(&v);
// The old data space was normally swept conservatively so that the iterator
// doesn't work, so we normally skip the next bit.
if (!HEAP->old_data_space()->was_swept_conservatively()) {
HeapObjectIterator data_it(HEAP->old_data_space());
for (HeapObject* object = data_it.Next();
object != NULL; object = data_it.Next())
object->Iterate(&v);
}
}
#endif
void Heap::CheckNewSpaceExpansionCriteria() {
if (new_space_.Capacity() < new_space_.MaximumCapacity() &&
survived_since_last_expansion_ > new_space_.Capacity() &&
!new_space_high_promotion_mode_active_) {
// Grow the size of new space if there is room to grow, enough data
// has survived scavenge since the last expansion and we are not in
// high promotion mode.
new_space_.Grow();
survived_since_last_expansion_ = 0;
}
}
static bool IsUnscavengedHeapObject(Heap* heap, Object** p) {
return heap->InNewSpace(*p) &&
!HeapObject::cast(*p)->map_word().IsForwardingAddress();
}
void Heap::ScavengeStoreBufferCallback(
Heap* heap,
MemoryChunk* page,
StoreBufferEvent event) {
heap->store_buffer_rebuilder_.Callback(page, event);
}
void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) {
if (event == kStoreBufferStartScanningPagesEvent) {
start_of_current_page_ = NULL;
current_page_ = NULL;
} else if (event == kStoreBufferScanningPageEvent) {
if (current_page_ != NULL) {
// If this page already overflowed the store buffer during this iteration.
if (current_page_->scan_on_scavenge()) {
// Then we should wipe out the entries that have been added for it.
store_buffer_->SetTop(start_of_current_page_);
} else if (store_buffer_->Top() - start_of_current_page_ >=
(store_buffer_->Limit() - store_buffer_->Top()) >> 2) {
// Did we find too many pointers in the previous page? The heuristic is
// that no page can take more then 1/5 the remaining slots in the store
// buffer.
current_page_->set_scan_on_scavenge(true);
store_buffer_->SetTop(start_of_current_page_);
} else {
// In this case the page we scanned took a reasonable number of slots in
// the store buffer. It has now been rehabilitated and is no longer
// marked scan_on_scavenge.
ASSERT(!current_page_->scan_on_scavenge());
}
}
start_of_current_page_ = store_buffer_->Top();
current_page_ = page;
} else if (event == kStoreBufferFullEvent) {
// The current page overflowed the store buffer again. Wipe out its entries
// in the store buffer and mark it scan-on-scavenge again. This may happen
// several times while scanning.
if (current_page_ == NULL) {
// Store Buffer overflowed while scanning promoted objects. These are not
// in any particular page, though they are likely to be clustered by the
// allocation routines.
store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize);
} else {
// Store Buffer overflowed while scanning a particular old space page for
// pointers to new space.
ASSERT(current_page_ == page);
ASSERT(page != NULL);
current_page_->set_scan_on_scavenge(true);
ASSERT(start_of_current_page_ != store_buffer_->Top());
store_buffer_->SetTop(start_of_current_page_);
}
} else {
UNREACHABLE();
}
}
void PromotionQueue::Initialize() {
// Assumes that a NewSpacePage exactly fits a number of promotion queue
// entries (where each is a pair of intptr_t). This allows us to simplify
// the test fpr when to switch pages.
ASSERT((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize)
== 0);
limit_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceStart());
front_ = rear_ =
reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd());
emergency_stack_ = NULL;
guard_ = false;
}
void PromotionQueue::RelocateQueueHead() {
ASSERT(emergency_stack_ == NULL);
Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
intptr_t* head_start = rear_;
intptr_t* head_end =
Min(front_, reinterpret_cast<intptr_t*>(p->body_limit()));
int entries_count =
static_cast<int>(head_end - head_start) / kEntrySizeInWords;
emergency_stack_ = new List<Entry>(2 * entries_count);
while (head_start != head_end) {
int size = static_cast<int>(*(head_start++));
HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++));
emergency_stack_->Add(Entry(obj, size));
}
rear_ = head_end;
}
void Heap::Scavenge() {
#ifdef DEBUG
if (FLAG_verify_heap) VerifyNonPointerSpacePointers();
#endif
gc_state_ = SCAVENGE;
// Implements Cheney's copying algorithm
LOG(isolate_, ResourceEvent("scavenge", "begin"));
// Clear descriptor cache.
isolate_->descriptor_lookup_cache()->Clear();
// Used for updating survived_since_last_expansion_ at function end.
intptr_t survived_watermark = PromotedSpaceSize();
CheckNewSpaceExpansionCriteria();
SelectScavengingVisitorsTable();
incremental_marking()->PrepareForScavenge();
AdvanceSweepers(static_cast<int>(new_space_.Size()));
// Flip the semispaces. After flipping, to space is empty, from space has
// live objects.
new_space_.Flip();
new_space_.ResetAllocationInfo();
// We need to sweep newly copied objects which can be either in the
// to space or promoted to the old generation. For to-space
// objects, we treat the bottom of the to space as a queue. Newly
// copied and unswept objects lie between a 'front' mark and the
// allocation pointer.
//
// Promoted objects can go into various old-generation spaces, and
// can be allocated internally in the spaces (from the free list).
// We treat the top of the to space as a queue of addresses of
// promoted objects. The addresses of newly promoted and unswept
// objects lie between a 'front' mark and a 'rear' mark that is
// updated as a side effect of promoting an object.
//
// There is guaranteed to be enough room at the top of the to space
// for the addresses of promoted objects: every object promoted
// frees up its size in bytes from the top of the new space, and
// objects are at least one pointer in size.
Address new_space_front = new_space_.ToSpaceStart();
promotion_queue_.Initialize();
#ifdef DEBUG
store_buffer()->Clean();
#endif
ScavengeVisitor scavenge_visitor(this);
// Copy roots.
IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE);
// Copy objects reachable from the old generation.
{
StoreBufferRebuildScope scope(this,
store_buffer(),
&ScavengeStoreBufferCallback);
store_buffer()->IteratePointersToNewSpace(&ScavengeObject);
}
// Copy objects reachable from cells by scavenging cell values directly.
HeapObjectIterator cell_iterator(cell_space_);
for (HeapObject* cell = cell_iterator.Next();
cell != NULL; cell = cell_iterator.Next()) {
if (cell->IsJSGlobalPropertyCell()) {
Address value_address =
reinterpret_cast<Address>(cell) +
(JSGlobalPropertyCell::kValueOffset - kHeapObjectTag);
scavenge_visitor.VisitPointer(reinterpret_cast<Object**>(value_address));
}
}
// Scavenge object reachable from the global contexts list directly.
scavenge_visitor.VisitPointer(BitCast<Object**>(&global_contexts_list_));
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
isolate_->global_handles()->IdentifyNewSpaceWeakIndependentHandles(
&IsUnscavengedHeapObject);
isolate_->global_handles()->IterateNewSpaceWeakIndependentRoots(
&scavenge_visitor);
new_space_front = DoScavenge(&scavenge_visitor, new_space_front);
UpdateNewSpaceReferencesInExternalStringTable(
&UpdateNewSpaceReferenceInExternalStringTableEntry);
promotion_queue_.Destroy();
LiveObjectList::UpdateReferencesForScavengeGC();
isolate()->runtime_profiler()->UpdateSamplesAfterScavenge();
incremental_marking()->UpdateMarkingDequeAfterScavenge();
ASSERT(new_space_front == new_space_.top());
// Set age mark.
new_space_.set_age_mark(new_space_.top());
new_space_.LowerInlineAllocationLimit(
new_space_.inline_allocation_limit_step());
// Update how much has survived scavenge.
IncrementYoungSurvivorsCounter(static_cast<int>(
(PromotedSpaceSize() - survived_watermark) + new_space_.Size()));
LOG(isolate_, ResourceEvent("scavenge", "end"));
gc_state_ = NOT_IN_GC;
scavenges_since_last_idle_round_++;
}
String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap,
Object** p) {
MapWord first_word = HeapObject::cast(*p)->map_word();
if (!first_word.IsForwardingAddress()) {
// Unreachable external string can be finalized.
heap->FinalizeExternalString(String::cast(*p));
return NULL;
}
// String is still reachable.
return String::cast(first_word.ToForwardingAddress());
}
void Heap::UpdateNewSpaceReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func) {
if (FLAG_verify_heap) {
external_string_table_.Verify();
}
if (external_string_table_.new_space_strings_.is_empty()) return;
Object** start = &external_string_table_.new_space_strings_[0];
Object** end = start + external_string_table_.new_space_strings_.length();
Object** last = start;
for (Object** p = start; p < end; ++p) {
ASSERT(InFromSpace(*p));
String* target = updater_func(this, p);
if (target == NULL) continue;
ASSERT(target->IsExternalString());
if (InNewSpace(target)) {
// String is still in new space. Update the table entry.
*last = target;
++last;
} else {
// String got promoted. Move it to the old string list.
external_string_table_.AddOldString(target);
}
}
ASSERT(last <= end);
external_string_table_.ShrinkNewStrings(static_cast<int>(last - start));
}
void Heap::UpdateReferencesInExternalStringTable(
ExternalStringTableUpdaterCallback updater_func) {
// Update old space string references.
if (external_string_table_.old_space_strings_.length() > 0) {
Object** start = &external_string_table_.old_space_strings_[0];
Object** end = start + external_string_table_.old_space_strings_.length();
for (Object** p = start; p < end; ++p) *p = updater_func(this, p);
}
UpdateNewSpaceReferencesInExternalStringTable(updater_func);
}
static Object* ProcessFunctionWeakReferences(Heap* heap,
Object* function,
WeakObjectRetainer* retainer) {
Object* undefined = heap->undefined_value();
Object* head = undefined;
JSFunction* tail = NULL;
Object* candidate = function;
while (candidate != undefined) {
// Check whether to keep the candidate in the list.
JSFunction* candidate_function = reinterpret_cast<JSFunction*>(candidate);
Object* retain = retainer->RetainAs(candidate);
if (retain != NULL) {
if (head == undefined) {
// First element in the list.
head = retain;
} else {
// Subsequent elements in the list.
ASSERT(tail != NULL);
tail->set_next_function_link(retain);
}
// Retained function is new tail.
candidate_function = reinterpret_cast<JSFunction*>(retain);
tail = candidate_function;
ASSERT(retain->IsUndefined() || retain->IsJSFunction());
if (retain == undefined) break;
}
// Move to next element in the list.
candidate = candidate_function->next_function_link();
}
// Terminate the list if there is one or more elements.
if (tail != NULL) {
tail->set_next_function_link(undefined);
}
return head;
}
void Heap::ProcessWeakReferences(WeakObjectRetainer* retainer) {
Object* undefined = undefined_value();
Object* head = undefined;
Context* tail = NULL;
Object* candidate = global_contexts_list_;
while (candidate != undefined) {
// Check whether to keep the candidate in the list.
Context* candidate_context = reinterpret_cast<Context*>(candidate);
Object* retain = retainer->RetainAs(candidate);
if (retain != NULL) {
if (head == undefined) {
// First element in the list.
head = retain;
} else {
// Subsequent elements in the list.
ASSERT(tail != NULL);
tail->set_unchecked(this,
Context::NEXT_CONTEXT_LINK,
retain,
UPDATE_WRITE_BARRIER);
}
// Retained context is new tail.
candidate_context = reinterpret_cast<Context*>(retain);
tail = candidate_context;
if (retain == undefined) break;
// Process the weak list of optimized functions for the context.
Object* function_list_head =
ProcessFunctionWeakReferences(
this,
candidate_context->get(Context::OPTIMIZED_FUNCTIONS_LIST),
retainer);
candidate_context->set_unchecked(this,
Context::OPTIMIZED_FUNCTIONS_LIST,
function_list_head,
UPDATE_WRITE_BARRIER);
}
// Move to next element in the list.
candidate = candidate_context->get(Context::NEXT_CONTEXT_LINK);
}
// Terminate the list if there is one or more elements.
if (tail != NULL) {
tail->set_unchecked(this,
Context::NEXT_CONTEXT_LINK,
Heap::undefined_value(),
UPDATE_WRITE_BARRIER);
}
// Update the head of the list of contexts.
global_contexts_list_ = head;
}
class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> {
public:
static inline void VisitPointer(Heap* heap, Object** p) {
Object* object = *p;
if (!heap->InNewSpace(object)) return;
Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p),
reinterpret_cast<HeapObject*>(object));
}
};
Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor,
Address new_space_front) {
do {
SemiSpace::AssertValidRange(new_space_front, new_space_.top());
// The addresses new_space_front and new_space_.top() define a
// queue of unprocessed copied objects. Process them until the
// queue is empty.
while (new_space_front != new_space_.top()) {
if (!NewSpacePage::IsAtEnd(new_space_front)) {
HeapObject* object = HeapObject::FromAddress(new_space_front);
new_space_front +=
NewSpaceScavenger::IterateBody(object->map(), object);
} else {
new_space_front =
NewSpacePage::FromLimit(new_space_front)->next_page()->body();
}
}
// Promote and process all the to-be-promoted objects.
{
StoreBufferRebuildScope scope(this,
store_buffer(),
&ScavengeStoreBufferCallback);
while (!promotion_queue()->is_empty()) {
HeapObject* target;
int size;
promotion_queue()->remove(&target, &size);
// Promoted object might be already partially visited
// during old space pointer iteration. Thus we search specificly
// for pointers to from semispace instead of looking for pointers
// to new space.
ASSERT(!target->IsMap());
IterateAndMarkPointersToFromSpace(target->address(),
target->address() + size,
&ScavengeObject);
}
}
// Take another spin if there are now unswept objects in new space
// (there are currently no more unswept promoted objects).
} while (new_space_front != new_space_.top());
return new_space_front;
}
enum LoggingAndProfiling {
LOGGING_AND_PROFILING_ENABLED,
LOGGING_AND_PROFILING_DISABLED
};
enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS };
template<MarksHandling marks_handling,
LoggingAndProfiling logging_and_profiling_mode>
class ScavengingVisitor : public StaticVisitorBase {
public:
static void Initialize() {
table_.Register(kVisitSeqAsciiString, &EvacuateSeqAsciiString);
table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString);
table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate);
table_.Register(kVisitByteArray, &EvacuateByteArray);
table_.Register(kVisitFixedArray, &EvacuateFixedArray);
table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray);
table_.Register(kVisitGlobalContext,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<Context::kSize>);
table_.Register(kVisitConsString,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<ConsString::kSize>);
table_.Register(kVisitSlicedString,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<SlicedString::kSize>);
table_.Register(kVisitSharedFunctionInfo,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<SharedFunctionInfo::kSize>);
table_.Register(kVisitJSWeakMap,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
table_.Register(kVisitJSRegExp,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
Visit);
if (marks_handling == IGNORE_MARKS) {
table_.Register(kVisitJSFunction,
&ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<JSFunction::kSize>);
} else {
table_.Register(kVisitJSFunction, &EvacuateJSFunction);
}
table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>,
kVisitDataObject,
kVisitDataObjectGeneric>();
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
kVisitJSObject,
kVisitJSObjectGeneric>();
table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>,
kVisitStruct,
kVisitStructGeneric>();
}
static VisitorDispatchTable<ScavengingCallback>* GetTable() {
return &table_;
}
private:
enum ObjectContents { DATA_OBJECT, POINTER_OBJECT };
enum SizeRestriction { SMALL, UNKNOWN_SIZE };
static void RecordCopiedObject(Heap* heap, HeapObject* obj) {
bool should_record = false;
#ifdef DEBUG
should_record = FLAG_heap_stats;
#endif
should_record = should_record || FLAG_log_gc;
if (should_record) {
if (heap->new_space()->Contains(obj)) {
heap->new_space()->RecordAllocation(obj);
} else {
heap->new_space()->RecordPromotion(obj);
}
}
}
// Helper function used by CopyObject to copy a source object to an
// allocated target object and update the forwarding pointer in the source
// object. Returns the target object.
INLINE(static void MigrateObject(Heap* heap,
HeapObject* source,
HeapObject* target,
int size)) {
// Copy the content of source to target.
heap->CopyBlock(target->address(), source->address(), size);
// Set the forwarding address.
source->set_map_word(MapWord::FromForwardingAddress(target));
if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) {
// Update NewSpace stats if necessary.
RecordCopiedObject(heap, target);
HEAP_PROFILE(heap, ObjectMoveEvent(source->address(), target->address()));
Isolate* isolate = heap->isolate();
if (isolate->logger()->is_logging() ||
CpuProfiler::is_profiling(isolate)) {
if (target->IsSharedFunctionInfo()) {
PROFILE(isolate, SharedFunctionInfoMoveEvent(
source->address(), target->address()));
}
}
}
if (marks_handling == TRANSFER_MARKS) {
if (Marking::TransferColor(source, target)) {
MemoryChunk::IncrementLiveBytes(target->address(), size);
}
}
}
template<ObjectContents object_contents, SizeRestriction size_restriction>
static inline void EvacuateObject(Map* map,
HeapObject** slot,
HeapObject* object,
int object_size) {
SLOW_ASSERT((size_restriction != SMALL) ||
(object_size <= Page::kMaxHeapObjectSize));
SLOW_ASSERT(object->Size() == object_size);
Heap* heap = map->GetHeap();
if (heap->ShouldBePromoted(object->address(), object_size)) {
MaybeObject* maybe_result;
if ((size_restriction != SMALL) &&
(object_size > Page::kMaxHeapObjectSize)) {
maybe_result = heap->lo_space()->AllocateRaw(object_size,
NOT_EXECUTABLE);
} else {
if (object_contents == DATA_OBJECT) {
maybe_result = heap->old_data_space()->AllocateRaw(object_size);
} else {
maybe_result = heap->old_pointer_space()->AllocateRaw(object_size);
}
}
Object* result = NULL; // Initialization to please compiler.
if (maybe_result->ToObject(&result)) {
HeapObject* target = HeapObject::cast(result);
// Order is important: slot might be inside of the target if target
// was allocated over a dead object and slot comes from the store
// buffer.
*slot = target;
MigrateObject(heap, object, target, object_size);
if (object_contents == POINTER_OBJECT) {
heap->promotion_queue()->insert(target, object_size);
}
heap->tracer()->increment_promoted_objects_size(object_size);
return;
}
}
MaybeObject* allocation = heap->new_space()->AllocateRaw(object_size);
heap->promotion_queue()->SetNewLimit(heap->new_space()->top());
Object* result = allocation->ToObjectUnchecked();
HeapObject* target = HeapObject::cast(result);
// Order is important: slot might be inside of the target if target
// was allocated over a dead object and slot comes from the store
// buffer.
*slot = target;
MigrateObject(heap, object, target, object_size);
return;
}
static inline void EvacuateJSFunction(Map* map,
HeapObject** slot,
HeapObject* object) {
ObjectEvacuationStrategy<POINTER_OBJECT>::
template VisitSpecialized<JSFunction::kSize>(map, slot, object);
HeapObject* target = *slot;
MarkBit mark_bit = Marking::MarkBitFrom(target);
if (Marking::IsBlack(mark_bit)) {
// This object is black and it might not be rescanned by marker.
// We should explicitly record code entry slot for compaction because
// promotion queue processing (IterateAndMarkPointersToFromSpace) will
// miss it as it is not HeapObject-tagged.
Address code_entry_slot =
target->address() + JSFunction::kCodeEntryOffset;
Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot));
map->GetHeap()->mark_compact_collector()->
RecordCodeEntrySlot(code_entry_slot, code);
}
}
static inline void EvacuateFixedArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = FixedArray::BodyDescriptor::SizeOf(map, object);
EvacuateObject<POINTER_OBJECT, UNKNOWN_SIZE>(map,
slot,
object,
object_size);
}
static inline void EvacuateFixedDoubleArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int length = reinterpret_cast<FixedDoubleArray*>(object)->length();
int object_size = FixedDoubleArray::SizeFor(length);
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map,
slot,
object,
object_size);
}
static inline void EvacuateByteArray(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize();
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
}
static inline void EvacuateSeqAsciiString(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = SeqAsciiString::cast(object)->
SeqAsciiStringSize(map->instance_type());
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
}
static inline void EvacuateSeqTwoByteString(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = SeqTwoByteString::cast(object)->
SeqTwoByteStringSize(map->instance_type());
EvacuateObject<DATA_OBJECT, UNKNOWN_SIZE>(map, slot, object, object_size);
}
static inline bool IsShortcutCandidate(int type) {
return ((type & kShortcutTypeMask) == kShortcutTypeTag);
}
static inline void EvacuateShortcutCandidate(Map* map,
HeapObject** slot,
HeapObject* object) {
ASSERT(IsShortcutCandidate(map->instance_type()));
Heap* heap = map->GetHeap();
if (marks_handling == IGNORE_MARKS &&
ConsString::cast(object)->unchecked_second() ==
heap->empty_string()) {
HeapObject* first =
HeapObject::cast(ConsString::cast(object)->unchecked_first());
*slot = first;
if (!heap->InNewSpace(first)) {
object->set_map_word(MapWord::FromForwardingAddress(first));
return;
}
MapWord first_word = first->map_word();
if (first_word.IsForwardingAddress()) {
HeapObject* target = first_word.ToForwardingAddress();
*slot = target;
object->set_map_word(MapWord::FromForwardingAddress(target));
return;
}
heap->DoScavengeObject(first->map(), slot, first);
object->set_map_word(MapWord::FromForwardingAddress(*slot));
return;
}
int object_size = ConsString::kSize;
EvacuateObject<POINTER_OBJECT, SMALL>(map, slot, object, object_size);
}
template<ObjectContents object_contents>
class ObjectEvacuationStrategy {
public:
template<int object_size>
static inline void VisitSpecialized(Map* map,
HeapObject** slot,
HeapObject* object) {
EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
}
static inline void Visit(Map* map,
HeapObject** slot,
HeapObject* object) {
int object_size = map->instance_size();
EvacuateObject<object_contents, SMALL>(map, slot, object, object_size);
}
};
static VisitorDispatchTable<ScavengingCallback> table_;
};
template<MarksHandling marks_handling,
LoggingAndProfiling logging_and_profiling_mode>
VisitorDispatchTable<ScavengingCallback>
ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_;
static void InitializeScavengingVisitorsTables() {
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_DISABLED>::Initialize();
ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize();
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_ENABLED>::Initialize();
ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize();
}
void Heap::SelectScavengingVisitorsTable() {
bool logging_and_profiling =
isolate()->logger()->is_logging() ||
CpuProfiler::is_profiling(isolate()) ||
(isolate()->heap_profiler() != NULL &&
isolate()->heap_profiler()->is_profiling());
if (!incremental_marking()->IsMarking()) {
if (!logging_and_profiling) {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<IGNORE_MARKS,
LOGGING_AND_PROFILING_DISABLED>::GetTable());
} else {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<IGNORE_MARKS,
LOGGING_AND_PROFILING_ENABLED>::GetTable());
}
} else {
if (!logging_and_profiling) {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_DISABLED>::GetTable());
} else {
scavenging_visitors_table_.CopyFrom(
ScavengingVisitor<TRANSFER_MARKS,
LOGGING_AND_PROFILING_ENABLED>::GetTable());
}
if (incremental_marking()->IsCompacting()) {
// When compacting forbid short-circuiting of cons-strings.
// Scavenging code relies on the fact that new space object
// can't be evacuated into evacuation candidate but
// short-circuiting violates this assumption.
scavenging_visitors_table_.Register(
StaticVisitorBase::kVisitShortcutCandidate,
scavenging_visitors_table_.GetVisitorById(
StaticVisitorBase::kVisitConsString));
}
}
}
void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) {
SLOW_ASSERT(HEAP->InFromSpace(object));
MapWord first_word = object->map_word();
SLOW_ASSERT(!first_word.IsForwardingAddress());
Map* map = first_word.ToMap();
map->GetHeap()->DoScavengeObject(map, p, object);
}
MaybeObject* Heap::AllocatePartialMap(InstanceType instance_type,
int instance_size) {
Object* result;
{ MaybeObject* maybe_result = AllocateRawMap();
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Map::cast cannot be used due to uninitialized map field.
reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map());
reinterpret_cast<Map*>(result)->set_instance_type(instance_type);
reinterpret_cast<Map*>(result)->set_instance_size(instance_size);
reinterpret_cast<Map*>(result)->set_visitor_id(
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
reinterpret_cast<Map*>(result)->set_inobject_properties(0);
reinterpret_cast<Map*>(result)->set_pre_allocated_property_fields(0);
reinterpret_cast<Map*>(result)->set_unused_property_fields(0);
reinterpret_cast<Map*>(result)->set_bit_field(0);
reinterpret_cast<Map*>(result)->set_bit_field2(0);
return result;
}
MaybeObject* Heap::AllocateMap(InstanceType instance_type,
int instance_size,
ElementsKind elements_kind) {
Object* result;
{ MaybeObject* maybe_result = AllocateRawMap();
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Map* map = reinterpret_cast<Map*>(result);
map->set_map_no_write_barrier(meta_map());
map->set_instance_type(instance_type);
map->set_visitor_id(
StaticVisitorBase::GetVisitorId(instance_type, instance_size));
map->set_prototype(null_value(), SKIP_WRITE_BARRIER);
map->set_constructor(null_value(), SKIP_WRITE_BARRIER);
map->set_instance_size(instance_size);
map->set_inobject_properties(0);
map->set_pre_allocated_property_fields(0);
map->init_instance_descriptors();
map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
map->set_prototype_transitions(empty_fixed_array(), SKIP_WRITE_BARRIER);
map->set_unused_property_fields(0);
map->set_bit_field(0);
map->set_bit_field2(1 << Map::kIsExtensible);
map->set_elements_kind(elements_kind);
// If the map object is aligned fill the padding area with Smi 0 objects.
if (Map::kPadStart < Map::kSize) {
memset(reinterpret_cast<byte*>(map) + Map::kPadStart - kHeapObjectTag,
0,
Map::kSize - Map::kPadStart);
}
return map;
}
MaybeObject* Heap::AllocateCodeCache() {
Object* result;
{ MaybeObject* maybe_result = AllocateStruct(CODE_CACHE_TYPE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
CodeCache* code_cache = CodeCache::cast(result);
code_cache->set_default_cache(empty_fixed_array(), SKIP_WRITE_BARRIER);
code_cache->set_normal_type_cache(undefined_value(), SKIP_WRITE_BARRIER);
return code_cache;
}
MaybeObject* Heap::AllocatePolymorphicCodeCache() {
return AllocateStruct(POLYMORPHIC_CODE_CACHE_TYPE);
}
const Heap::StringTypeTable Heap::string_type_table[] = {
#define STRING_TYPE_ELEMENT(type, size, name, camel_name) \
{type, size, k##camel_name##MapRootIndex},
STRING_TYPE_LIST(STRING_TYPE_ELEMENT)
#undef STRING_TYPE_ELEMENT
};
const Heap::ConstantSymbolTable Heap::constant_symbol_table[] = {
#define CONSTANT_SYMBOL_ELEMENT(name, contents) \
{contents, k##name##RootIndex},
SYMBOL_LIST(CONSTANT_SYMBOL_ELEMENT)
#undef CONSTANT_SYMBOL_ELEMENT
};
const Heap::StructTable Heap::struct_table[] = {
#define STRUCT_TABLE_ELEMENT(NAME, Name, name) \
{ NAME##_TYPE, Name::kSize, k##Name##MapRootIndex },
STRUCT_LIST(STRUCT_TABLE_ELEMENT)
#undef STRUCT_TABLE_ELEMENT
};
bool Heap::CreateInitialMaps() {
Object* obj;
{ MaybeObject* maybe_obj = AllocatePartialMap(MAP_TYPE, Map::kSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
// Map::cast cannot be used due to uninitialized map field.
Map* new_meta_map = reinterpret_cast<Map*>(obj);
set_meta_map(new_meta_map);
new_meta_map->set_map(new_meta_map);
{ MaybeObject* maybe_obj =
AllocatePartialMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_fixed_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocatePartialMap(ODDBALL_TYPE, Oddball::kSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_oddball_map(Map::cast(obj));
// Allocate the empty array.
{ MaybeObject* maybe_obj = AllocateEmptyFixedArray();
if (!maybe_obj->ToObject(&obj)) return false;
}
set_empty_fixed_array(FixedArray::cast(obj));
{ MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_null_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kNull);
{ MaybeObject* maybe_obj = Allocate(oddball_map(), OLD_POINTER_SPACE);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_undefined_value(Oddball::cast(obj));
Oddball::cast(obj)->set_kind(Oddball::kUndefined);
ASSERT(!InNewSpace(undefined_value()));
// Allocate the empty descriptor array.
{ MaybeObject* maybe_obj = AllocateEmptyFixedArray();
if (!maybe_obj->ToObject(&obj)) return false;
}
set_empty_descriptor_array(DescriptorArray::cast(obj));
// Fix the instance_descriptors for the existing maps.
meta_map()->init_instance_descriptors();
meta_map()->set_code_cache(empty_fixed_array());
meta_map()->set_prototype_transitions(empty_fixed_array());
fixed_array_map()->init_instance_descriptors();
fixed_array_map()->set_code_cache(empty_fixed_array());
fixed_array_map()->set_prototype_transitions(empty_fixed_array());
oddball_map()->init_instance_descriptors();
oddball_map()->set_code_cache(empty_fixed_array());
oddball_map()->set_prototype_transitions(empty_fixed_array());
// Fix prototype object for existing maps.
meta_map()->set_prototype(null_value());
meta_map()->set_constructor(null_value());
fixed_array_map()->set_prototype(null_value());
fixed_array_map()->set_constructor(null_value());
oddball_map()->set_prototype(null_value());
oddball_map()->set_constructor(null_value());
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_fixed_cow_array_map(Map::cast(obj));
ASSERT(fixed_array_map() != fixed_cow_array_map());
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_scope_info_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(HEAP_NUMBER_TYPE, HeapNumber::kSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_heap_number_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(FOREIGN_TYPE, Foreign::kSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_foreign_map(Map::cast(obj));
for (unsigned i = 0; i < ARRAY_SIZE(string_type_table); i++) {
const StringTypeTable& entry = string_type_table[i];
{ MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
if (!maybe_obj->ToObject(&obj)) return false;
}
roots_[entry.index] = Map::cast(obj);
}
{ MaybeObject* maybe_obj = AllocateMap(STRING_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_undetectable_string_map(Map::cast(obj));
Map::cast(obj)->set_is_undetectable();
{ MaybeObject* maybe_obj =
AllocateMap(ASCII_STRING_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_undetectable_ascii_string_map(Map::cast(obj));
Map::cast(obj)->set_is_undetectable();
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_DOUBLE_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_fixed_double_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(BYTE_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_byte_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FREE_SPACE_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_free_space_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateByteArray(0, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_empty_byte_array(ByteArray::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(EXTERNAL_PIXEL_ARRAY_TYPE, ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_pixel_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_BYTE_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_byte_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_BYTE_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_unsigned_byte_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_SHORT_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_short_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_SHORT_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_unsigned_short_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_INT_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_int_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_UNSIGNED_INT_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_unsigned_int_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_FLOAT_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_float_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_non_strict_arguments_elements_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(EXTERNAL_DOUBLE_ARRAY_TYPE,
ExternalArray::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_external_double_array_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(CODE_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_code_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(JS_GLOBAL_PROPERTY_CELL_TYPE,
JSGlobalPropertyCell::kSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_global_property_cell_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, kPointerSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_one_pointer_filler_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(FILLER_TYPE, 2 * kPointerSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_two_pointer_filler_map(Map::cast(obj));
for (unsigned i = 0; i < ARRAY_SIZE(struct_table); i++) {
const StructTable& entry = struct_table[i];
{ MaybeObject* maybe_obj = AllocateMap(entry.type, entry.size);
if (!maybe_obj->ToObject(&obj)) return false;
}
roots_[entry.index] = Map::cast(obj);
}
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_hash_table_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_function_context_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_catch_context_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_with_context_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_block_context_map(Map::cast(obj));
{ MaybeObject* maybe_obj =
AllocateMap(FIXED_ARRAY_TYPE, kVariableSizeSentinel);
if (!maybe_obj->ToObject(&obj)) return false;
}
Map* global_context_map = Map::cast(obj);
global_context_map->set_visitor_id(StaticVisitorBase::kVisitGlobalContext);
set_global_context_map(global_context_map);
{ MaybeObject* maybe_obj = AllocateMap(SHARED_FUNCTION_INFO_TYPE,
SharedFunctionInfo::kAlignedSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_shared_function_info_map(Map::cast(obj));
{ MaybeObject* maybe_obj = AllocateMap(JS_MESSAGE_OBJECT_TYPE,
JSMessageObject::kSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_message_object_map(Map::cast(obj));
ASSERT(!InNewSpace(empty_fixed_array()));
return true;
}
MaybeObject* Heap::AllocateHeapNumber(double value, PretenureFlag pretenure) {
// Statically ensure that it is safe to allocate heap numbers in paged
// spaces.
STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
Object* result;
{ MaybeObject* maybe_result =
AllocateRaw(HeapNumber::kSize, space, OLD_DATA_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
HeapNumber::cast(result)->set_value(value);
return result;
}
MaybeObject* Heap::AllocateHeapNumber(double value) {
// Use general version, if we're forced to always allocate.
if (always_allocate()) return AllocateHeapNumber(value, TENURED);
// This version of AllocateHeapNumber is optimized for
// allocation in new space.
STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxHeapObjectSize);
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
Object* result;
{ MaybeObject* maybe_result = new_space_.AllocateRaw(HeapNumber::kSize);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
HeapObject::cast(result)->set_map_no_write_barrier(heap_number_map());
HeapNumber::cast(result)->set_value(value);
return result;
}
MaybeObject* Heap::AllocateJSGlobalPropertyCell(Object* value) {
Object* result;
{ MaybeObject* maybe_result = AllocateRawCell();
if (!maybe_result->ToObject(&result)) return maybe_result;
}
HeapObject::cast(result)->set_map_no_write_barrier(
global_property_cell_map());
JSGlobalPropertyCell::cast(result)->set_value(value);
return result;
}
MaybeObject* Heap::CreateOddball(const char* to_string,
Object* to_number,
byte kind) {
Object* result;
{ MaybeObject* maybe_result = Allocate(oddball_map(), OLD_POINTER_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
return Oddball::cast(result)->Initialize(to_string, to_number, kind);
}
bool Heap::CreateApiObjects() {
Object* obj;
{ MaybeObject* maybe_obj = AllocateMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
// Don't use Smi-only elements optimizations for objects with the neander
// map. There are too many cases where element values are set directly with a
// bottleneck to trap the Smi-only -> fast elements transition, and there
// appears to be no benefit for optimize this case.
Map* new_neander_map = Map::cast(obj);
new_neander_map->set_elements_kind(FAST_ELEMENTS);
set_neander_map(new_neander_map);
{ MaybeObject* maybe_obj = AllocateJSObjectFromMap(neander_map());
if (!maybe_obj->ToObject(&obj)) return false;
}
Object* elements;
{ MaybeObject* maybe_elements = AllocateFixedArray(2);
if (!maybe_elements->ToObject(&elements)) return false;
}
FixedArray::cast(elements)->set(0, Smi::FromInt(0));
JSObject::cast(obj)->set_elements(FixedArray::cast(elements));
set_message_listeners(JSObject::cast(obj));
return true;
}
void Heap::CreateJSEntryStub() {
JSEntryStub stub;
set_js_entry_code(*stub.GetCode());
}
void Heap::CreateJSConstructEntryStub() {
JSConstructEntryStub stub;
set_js_construct_entry_code(*stub.GetCode());
}
void Heap::CreateFixedStubs() {
// Here we create roots for fixed stubs. They are needed at GC
// for cooking and uncooking (check out frames.cc).
// The eliminates the need for doing dictionary lookup in the
// stub cache for these stubs.
HandleScope scope;
// gcc-4.4 has problem generating correct code of following snippet:
// { JSEntryStub stub;
// js_entry_code_ = *stub.GetCode();
// }
// { JSConstructEntryStub stub;
// js_construct_entry_code_ = *stub.GetCode();
// }
// To workaround the problem, make separate functions without inlining.
Heap::CreateJSEntryStub();
Heap::CreateJSConstructEntryStub();
// Create stubs that should be there, so we don't unexpectedly have to
// create them if we need them during the creation of another stub.
// Stub creation mixes raw pointers and handles in an unsafe manner so
// we cannot create stubs while we are creating stubs.
CodeStub::GenerateStubsAheadOfTime();
}
bool Heap::CreateInitialObjects() {
Object* obj;
// The -0 value must be set before NumberFromDouble works.
{ MaybeObject* maybe_obj = AllocateHeapNumber(-0.0, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_minus_zero_value(HeapNumber::cast(obj));
ASSERT(signbit(minus_zero_value()->Number()) != 0);
{ MaybeObject* maybe_obj = AllocateHeapNumber(OS::nan_value(), TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_nan_value(HeapNumber::cast(obj));
{ MaybeObject* maybe_obj = AllocateHeapNumber(V8_INFINITY, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_infinity_value(HeapNumber::cast(obj));
// Allocate initial symbol table.
{ MaybeObject* maybe_obj = SymbolTable::Allocate(kInitialSymbolTableSize);
if (!maybe_obj->ToObject(&obj)) return false;
}
// Don't use set_symbol_table() due to asserts.
roots_[kSymbolTableRootIndex] = obj;
// Finish initializing oddballs after creating symboltable.
{ MaybeObject* maybe_obj =
undefined_value()->Initialize("undefined",
nan_value(),
Oddball::kUndefined);
if (!maybe_obj->ToObject(&obj)) return false;
}
// Initialize the null_value.
{ MaybeObject* maybe_obj =
null_value()->Initialize("null", Smi::FromInt(0), Oddball::kNull);
if (!maybe_obj->ToObject(&obj)) return false;
}
{ MaybeObject* maybe_obj = CreateOddball("true",
Smi::FromInt(1),
Oddball::kTrue);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_true_value(Oddball::cast(obj));
{ MaybeObject* maybe_obj = CreateOddball("false",
Smi::FromInt(0),
Oddball::kFalse);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_false_value(Oddball::cast(obj));
{ MaybeObject* maybe_obj = CreateOddball("hole",
Smi::FromInt(-1),
Oddball::kTheHole);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_the_hole_value(Oddball::cast(obj));
{ MaybeObject* maybe_obj = CreateOddball("arguments_marker",
Smi::FromInt(-2),
Oddball::kArgumentMarker);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_arguments_marker(Oddball::cast(obj));
{ MaybeObject* maybe_obj = CreateOddball("no_interceptor_result_sentinel",
Smi::FromInt(-3),
Oddball::kOther);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_no_interceptor_result_sentinel(obj);
{ MaybeObject* maybe_obj = CreateOddball("termination_exception",
Smi::FromInt(-4),
Oddball::kOther);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_termination_exception(obj);
{ MaybeObject* maybe_obj = CreateOddball("frame_alignment_marker",
Smi::FromInt(-5),
Oddball::kOther);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_frame_alignment_marker(Oddball::cast(obj));
STATIC_ASSERT(Oddball::kLeastHiddenOddballNumber == -5);
// Allocate the empty string.
{ MaybeObject* maybe_obj = AllocateRawAsciiString(0, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_empty_string(String::cast(obj));
for (unsigned i = 0; i < ARRAY_SIZE(constant_symbol_table); i++) {
{ MaybeObject* maybe_obj =
LookupAsciiSymbol(constant_symbol_table[i].contents);
if (!maybe_obj->ToObject(&obj)) return false;
}
roots_[constant_symbol_table[i].index] = String::cast(obj);
}
// Allocate the hidden symbol which is used to identify the hidden properties
// in JSObjects. The hash code has a special value so that it will not match
// the empty string when searching for the property. It cannot be part of the
// loop above because it needs to be allocated manually with the special
// hash code in place. The hash code for the hidden_symbol is zero to ensure
// that it will always be at the first entry in property descriptors.
{ MaybeObject* maybe_obj =
AllocateSymbol(CStrVector(""), 0, String::kZeroHash);
if (!maybe_obj->ToObject(&obj)) return false;
}
hidden_symbol_ = String::cast(obj);
// Allocate the foreign for __proto__.
{ MaybeObject* maybe_obj =
AllocateForeign((Address) &Accessors::ObjectPrototype);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_prototype_accessors(Foreign::cast(obj));
// Allocate the code_stubs dictionary. The initial size is set to avoid
// expanding the dictionary during bootstrapping.
{ MaybeObject* maybe_obj = NumberDictionary::Allocate(128);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_code_stubs(NumberDictionary::cast(obj));
// Allocate the non_monomorphic_cache used in stub-cache.cc. The initial size
// is set to avoid expanding the dictionary during bootstrapping.
{ MaybeObject* maybe_obj = NumberDictionary::Allocate(64);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_non_monomorphic_cache(NumberDictionary::cast(obj));
{ MaybeObject* maybe_obj = AllocatePolymorphicCodeCache();
if (!maybe_obj->ToObject(&obj)) return false;
}
set_polymorphic_code_cache(PolymorphicCodeCache::cast(obj));
set_instanceof_cache_function(Smi::FromInt(0));
set_instanceof_cache_map(Smi::FromInt(0));
set_instanceof_cache_answer(Smi::FromInt(0));
CreateFixedStubs();
// Allocate the dictionary of intrinsic function names.
{ MaybeObject* maybe_obj = StringDictionary::Allocate(Runtime::kNumFunctions);
if (!maybe_obj->ToObject(&obj)) return false;
}
{ MaybeObject* maybe_obj = Runtime::InitializeIntrinsicFunctionNames(this,
obj);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_intrinsic_function_names(StringDictionary::cast(obj));
if (InitializeNumberStringCache()->IsFailure()) return false;
// Allocate cache for single character ASCII strings.
{ MaybeObject* maybe_obj =
AllocateFixedArray(String::kMaxAsciiCharCode + 1, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_single_character_string_cache(FixedArray::cast(obj));
// Allocate cache for string split.
{ MaybeObject* maybe_obj =
AllocateFixedArray(StringSplitCache::kStringSplitCacheSize, TENURED);
if (!maybe_obj->ToObject(&obj)) return false;
}
set_string_split_cache(FixedArray::cast(obj));
// Allocate cache for external strings pointing to native source code.
{ MaybeObject* maybe_obj = AllocateFixedArray(Natives::GetBuiltinsCount());
if (!maybe_obj->ToObject(&obj)) return false;
}
set_natives_source_cache(FixedArray::cast(obj));
// Handling of script id generation is in FACTORY->NewScript.
set_last_script_id(undefined_value());
// Initialize keyed lookup cache.
isolate_->keyed_lookup_cache()->Clear();
// Initialize context slot cache.
isolate_->context_slot_cache()->Clear();
// Initialize descriptor cache.
isolate_->descriptor_lookup_cache()->Clear();
// Initialize compilation cache.
isolate_->compilation_cache()->Clear();
return true;
}
Object* StringSplitCache::Lookup(
FixedArray* cache, String* string, String* pattern) {
if (!string->IsSymbol() || !pattern->IsSymbol()) return Smi::FromInt(0);
uint32_t hash = string->Hash();
uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
~(kArrayEntriesPerCacheEntry - 1));
if (cache->get(index + kStringOffset) == string &&
cache->get(index + kPatternOffset) == pattern) {
return cache->get(index + kArrayOffset);
}
index = ((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
if (cache->get(index + kStringOffset) == string &&
cache->get(index + kPatternOffset) == pattern) {
return cache->get(index + kArrayOffset);
}
return Smi::FromInt(0);
}
void StringSplitCache::Enter(Heap* heap,
FixedArray* cache,
String* string,
String* pattern,
FixedArray* array) {
if (!string->IsSymbol() || !pattern->IsSymbol()) return;
uint32_t hash = string->Hash();
uint32_t index = ((hash & (kStringSplitCacheSize - 1)) &
~(kArrayEntriesPerCacheEntry - 1));
if (cache->get(index + kStringOffset) == Smi::FromInt(0)) {
cache->set(index + kStringOffset, string);
cache->set(index + kPatternOffset, pattern);
cache->set(index + kArrayOffset, array);
} else {
uint32_t index2 =
((index + kArrayEntriesPerCacheEntry) & (kStringSplitCacheSize - 1));
if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) {
cache->set(index2 + kStringOffset, string);
cache->set(index2 + kPatternOffset, pattern);
cache->set(index2 + kArrayOffset, array);
} else {
cache->set(index2 + kStringOffset, Smi::FromInt(0));
cache->set(index2 + kPatternOffset, Smi::FromInt(0));
cache->set(index2 + kArrayOffset, Smi::FromInt(0));
cache->set(index + kStringOffset, string);
cache->set(index + kPatternOffset, pattern);
cache->set(index + kArrayOffset, array);
}
}
if (array->length() < 100) { // Limit how many new symbols we want to make.
for (int i = 0; i < array->length(); i++) {
String* str = String::cast(array->get(i));
Object* symbol;
MaybeObject* maybe_symbol = heap->LookupSymbol(str);
if (maybe_symbol->ToObject(&symbol)) {
array->set(i, symbol);
}
}
}
array->set_map_no_write_barrier(heap->fixed_cow_array_map());
}
void StringSplitCache::Clear(FixedArray* cache) {
for (int i = 0; i < kStringSplitCacheSize; i++) {
cache->set(i, Smi::FromInt(0));
}
}
MaybeObject* Heap::InitializeNumberStringCache() {
// Compute the size of the number string cache based on the max heap size.
// max_semispace_size_ == 512 KB => number_string_cache_size = 32.
// max_semispace_size_ == 8 MB => number_string_cache_size = 16KB.
int number_string_cache_size = max_semispace_size_ / 512;
number_string_cache_size = Max(32, Min(16*KB, number_string_cache_size));
Object* obj;
MaybeObject* maybe_obj =
AllocateFixedArray(number_string_cache_size * 2, TENURED);
if (maybe_obj->ToObject(&obj)) set_number_string_cache(FixedArray::cast(obj));
return maybe_obj;
}
void Heap::FlushNumberStringCache() {
// Flush the number to string cache.
int len = number_string_cache()->length();
for (int i = 0; i < len; i++) {
number_string_cache()->set_undefined(this, i);
}
}
static inline int double_get_hash(double d) {
DoubleRepresentation rep(d);
return static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32);
}
static inline int smi_get_hash(Smi* smi) {
return smi->value();
}
Object* Heap::GetNumberStringCache(Object* number) {
int hash;
int mask = (number_string_cache()->length() >> 1) - 1;
if (number->IsSmi()) {
hash = smi_get_hash(Smi::cast(number)) & mask;
} else {
hash = double_get_hash(number->Number()) & mask;
}
Object* key = number_string_cache()->get(hash * 2);
if (key == number) {
return String::cast(number_string_cache()->get(hash * 2 + 1));
} else if (key->IsHeapNumber() &&
number->IsHeapNumber() &&
key->Number() == number->Number()) {
return String::cast(number_string_cache()->get(hash * 2 + 1));
}
return undefined_value();
}
void Heap::SetNumberStringCache(Object* number, String* string) {
int hash;
int mask = (number_string_cache()->length() >> 1) - 1;
if (number->IsSmi()) {
hash = smi_get_hash(Smi::cast(number)) & mask;
number_string_cache()->set(hash * 2, Smi::cast(number));
} else {
hash = double_get_hash(number->Number()) & mask;
number_string_cache()->set(hash * 2, number);
}
number_string_cache()->set(hash * 2 + 1, string);
}
MaybeObject* Heap::NumberToString(Object* number,
bool check_number_string_cache) {
isolate_->counters()->number_to_string_runtime()->Increment();
if (check_number_string_cache) {
Object* cached = GetNumberStringCache(number);
if (cached != undefined_value()) {
return cached;
}
}
char arr[100];
Vector<char> buffer(arr, ARRAY_SIZE(arr));
const char* str;
if (number->IsSmi()) {
int num = Smi::cast(number)->value();
str = IntToCString(num, buffer);
} else {
double num = HeapNumber::cast(number)->value();
str = DoubleToCString(num, buffer);
}
Object* js_string;
MaybeObject* maybe_js_string = AllocateStringFromAscii(CStrVector(str));
if (maybe_js_string->ToObject(&js_string)) {
SetNumberStringCache(number, String::cast(js_string));
}
return maybe_js_string;
}
MaybeObject* Heap::Uint32ToString(uint32_t value,
bool check_number_string_cache) {
Object* number;
MaybeObject* maybe = NumberFromUint32(value);
if (!maybe->To<Object>(&number)) return maybe;
return NumberToString(number, check_number_string_cache);
}
Map* Heap::MapForExternalArrayType(ExternalArrayType array_type) {
return Map::cast(roots_[RootIndexForExternalArrayType(array_type)]);
}
Heap::RootListIndex Heap::RootIndexForExternalArrayType(
ExternalArrayType array_type) {
switch (array_type) {
case kExternalByteArray:
return kExternalByteArrayMapRootIndex;
case kExternalUnsignedByteArray:
return kExternalUnsignedByteArrayMapRootIndex;
case kExternalShortArray:
return kExternalShortArrayMapRootIndex;
case kExternalUnsignedShortArray:
return kExternalUnsignedShortArrayMapRootIndex;
case kExternalIntArray:
return kExternalIntArrayMapRootIndex;
case kExternalUnsignedIntArray:
return kExternalUnsignedIntArrayMapRootIndex;
case kExternalFloatArray:
return kExternalFloatArrayMapRootIndex;
case kExternalDoubleArray:
return kExternalDoubleArrayMapRootIndex;
case kExternalPixelArray:
return kExternalPixelArrayMapRootIndex;
default:
UNREACHABLE();
return kUndefinedValueRootIndex;
}
}
MaybeObject* Heap::NumberFromDouble(double value, PretenureFlag pretenure) {
// We need to distinguish the minus zero value and this cannot be
// done after conversion to int. Doing this by comparing bit
// patterns is faster than using fpclassify() et al.
static const DoubleRepresentation minus_zero(-0.0);
DoubleRepresentation rep(value);
if (rep.bits == minus_zero.bits) {
return AllocateHeapNumber(-0.0, pretenure);
}
int int_value = FastD2I(value);
if (value == int_value && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
// Materialize the value in the heap.
return AllocateHeapNumber(value, pretenure);
}
MaybeObject* Heap::AllocateForeign(Address address, PretenureFlag pretenure) {
// Statically ensure that it is safe to allocate foreigns in paged spaces.
STATIC_ASSERT(Foreign::kSize <= Page::kMaxHeapObjectSize);
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
Foreign* result;
MaybeObject* maybe_result = Allocate(foreign_map(), space);
if (!maybe_result->To(&result)) return maybe_result;
result->set_foreign_address(address);
return result;
}
MaybeObject* Heap::AllocateSharedFunctionInfo(Object* name) {
SharedFunctionInfo* share;
MaybeObject* maybe = Allocate(shared_function_info_map(), OLD_POINTER_SPACE);
if (!maybe->To<SharedFunctionInfo>(&share)) return maybe;
// Set pointer fields.
share->set_name(name);
Code* illegal = isolate_->builtins()->builtin(Builtins::kIllegal);
share->set_code(illegal);
share->set_scope_info(ScopeInfo::Empty());
Code* construct_stub =
isolate_->builtins()->builtin(Builtins::kJSConstructStubGeneric);
share->set_construct_stub(construct_stub);
share->set_instance_class_name(Object_symbol());
share->set_function_data(undefined_value(), SKIP_WRITE_BARRIER);
share->set_script(undefined_value(), SKIP_WRITE_BARRIER);
share->set_debug_info(undefined_value(), SKIP_WRITE_BARRIER);
share->set_inferred_name(empty_string(), SKIP_WRITE_BARRIER);
share->set_initial_map(undefined_value(), SKIP_WRITE_BARRIER);
share->set_this_property_assignments(undefined_value(), SKIP_WRITE_BARRIER);
share->set_deopt_counter(Smi::FromInt(FLAG_deopt_every_n_times));
// Set integer fields (smi or int, depending on the architecture).
share->set_length(0);
share->set_formal_parameter_count(0);
share->set_expected_nof_properties(0);
share->set_num_literals(0);
share->set_start_position_and_type(0);
share->set_end_position(0);
share->set_function_token_position(0);
// All compiler hints default to false or 0.
share->set_compiler_hints(0);
share->set_this_property_assignments_count(0);
share->set_opt_count(0);
return share;
}
MaybeObject* Heap::AllocateJSMessageObject(String* type,
JSArray* arguments,
int start_position,
int end_position,
Object* script,
Object* stack_trace,
Object* stack_frames) {
Object* result;
{ MaybeObject* maybe_result = Allocate(message_object_map(), NEW_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
JSMessageObject* message = JSMessageObject::cast(result);
message->set_properties(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
message->set_elements(Heap::empty_fixed_array(), SKIP_WRITE_BARRIER);
message->set_type(type);
message->set_arguments(arguments);
message->set_start_position(start_position);
message->set_end_position(end_position);
message->set_script(script);
message->set_stack_trace(stack_trace);
message->set_stack_frames(stack_frames);
return result;
}
// Returns true for a character in a range. Both limits are inclusive.
static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
// This makes uses of the the unsigned wraparound.
return character - from <= to - from;
}
MUST_USE_RESULT static inline MaybeObject* MakeOrFindTwoCharacterString(
Heap* heap,
uint32_t c1,
uint32_t c2) {
String* symbol;
// Numeric strings have a different hash algorithm not known by
// LookupTwoCharsSymbolIfExists, so we skip this step for such strings.
if ((!Between(c1, '0', '9') || !Between(c2, '0', '9')) &&
heap->symbol_table()->LookupTwoCharsSymbolIfExists(c1, c2, &symbol)) {
return symbol;
// Now we know the length is 2, we might as well make use of that fact
// when building the new string.
} else if ((c1 | c2) <= String::kMaxAsciiCharCodeU) { // We can do this
ASSERT(IsPowerOf2(String::kMaxAsciiCharCodeU + 1)); // because of this.
Object* result;
{ MaybeObject* maybe_result = heap->AllocateRawAsciiString(2);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
char* dest = SeqAsciiString::cast(result)->GetChars();
dest[0] = c1;
dest[1] = c2;
return result;
} else {
Object* result;
{ MaybeObject* maybe_result = heap->AllocateRawTwoByteString(2);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
dest[0] = c1;
dest[1] = c2;
return result;
}
}
MaybeObject* Heap::AllocateConsString(String* first, String* second) {
int first_length = first->length();
if (first_length == 0) {
return second;
}
int second_length = second->length();
if (second_length == 0) {
return first;
}
int length = first_length + second_length;
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the symbol
// table to prevent creation of many unneccesary strings.
if (length == 2) {
unsigned c1 = first->Get(0);
unsigned c2 = second->Get(0);
return MakeOrFindTwoCharacterString(this, c1, c2);
}
bool first_is_ascii = first->IsAsciiRepresentation();
bool second_is_ascii = second->IsAsciiRepresentation();
bool is_ascii = first_is_ascii && second_is_ascii;
// Make sure that an out of memory exception is thrown if the length
// of the new cons string is too large.
if (length > String::kMaxLength || length < 0) {
isolate()->context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
bool is_ascii_data_in_two_byte_string = false;
if (!is_ascii) {
// At least one of the strings uses two-byte representation so we
// can't use the fast case code for short ascii strings below, but
// we can try to save memory if all chars actually fit in ascii.
is_ascii_data_in_two_byte_string =
first->HasOnlyAsciiChars() && second->HasOnlyAsciiChars();
if (is_ascii_data_in_two_byte_string) {
isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
}
}
// If the resulting string is small make a flat string.
if (length < String::kMinNonFlatLength) {
// Note that neither of the two inputs can be a slice because:
STATIC_ASSERT(String::kMinNonFlatLength <= SlicedString::kMinLength);
ASSERT(first->IsFlat());
ASSERT(second->IsFlat());
if (is_ascii) {
Object* result;
{ MaybeObject* maybe_result = AllocateRawAsciiString(length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Copy the characters into the new object.
char* dest = SeqAsciiString::cast(result)->GetChars();
// Copy first part.
const char* src;
if (first->IsExternalString()) {
src = ExternalAsciiString::cast(first)->GetChars();
} else {
src = SeqAsciiString::cast(first)->GetChars();
}
for (int i = 0; i < first_length; i++) *dest++ = src[i];
// Copy second part.
if (second->IsExternalString()) {
src = ExternalAsciiString::cast(second)->GetChars();
} else {
src = SeqAsciiString::cast(second)->GetChars();
}
for (int i = 0; i < second_length; i++) *dest++ = src[i];
return result;
} else {
if (is_ascii_data_in_two_byte_string) {
Object* result;
{ MaybeObject* maybe_result = AllocateRawAsciiString(length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Copy the characters into the new object.
char* dest = SeqAsciiString::cast(result)->GetChars();
String::WriteToFlat(first, dest, 0, first_length);
String::WriteToFlat(second, dest + first_length, 0, second_length);
isolate_->counters()->string_add_runtime_ext_to_ascii()->Increment();
return result;
}
Object* result;
{ MaybeObject* maybe_result = AllocateRawTwoByteString(length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Copy the characters into the new object.
uc16* dest = SeqTwoByteString::cast(result)->GetChars();
String::WriteToFlat(first, dest, 0, first_length);
String::WriteToFlat(second, dest + first_length, 0, second_length);
return result;
}
}
Map* map = (is_ascii || is_ascii_data_in_two_byte_string) ?
cons_ascii_string_map() : cons_string_map();
Object* result;
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
AssertNoAllocation no_gc;
ConsString* cons_string = ConsString::cast(result);
WriteBarrierMode mode = cons_string->GetWriteBarrierMode(no_gc);
cons_string->set_length(length);
cons_string->set_hash_field(String::kEmptyHashField);
cons_string->set_first(first, mode);
cons_string->set_second(second, mode);
return result;
}
MaybeObject* Heap::AllocateSubString(String* buffer,
int start,
int end,
PretenureFlag pretenure) {
int length = end - start;
if (length == 0) {
return empty_string();
} else if (length == 1) {
return LookupSingleCharacterStringFromCode(buffer->Get(start));
} else if (length == 2) {
// Optimization for 2-byte strings often used as keys in a decompression
// dictionary. Check whether we already have the string in the symbol
// table to prevent creation of many unneccesary strings.
unsigned c1 = buffer->Get(start);
unsigned c2 = buffer->Get(start + 1);
return MakeOrFindTwoCharacterString(this, c1, c2);
}
// Make an attempt to flatten the buffer to reduce access time.
buffer = buffer->TryFlattenGetString();
if (!FLAG_string_slices ||
!buffer->IsFlat() ||
length < SlicedString::kMinLength ||
pretenure == TENURED) {
Object* result;
// WriteToFlat takes care of the case when an indirect string has a
// different encoding from its underlying string. These encodings may
// differ because of externalization.
bool is_ascii = buffer->IsAsciiRepresentation();
{ MaybeObject* maybe_result = is_ascii
? AllocateRawAsciiString(length, pretenure)
: AllocateRawTwoByteString(length, pretenure);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
String* string_result = String::cast(result);
// Copy the characters into the new object.
if (is_ascii) {
ASSERT(string_result->IsAsciiRepresentation());
char* dest = SeqAsciiString::cast(string_result)->GetChars();
String::WriteToFlat(buffer, dest, start, end);
} else {
ASSERT(string_result->IsTwoByteRepresentation());
uc16* dest = SeqTwoByteString::cast(string_result)->GetChars();
String::WriteToFlat(buffer, dest, start, end);
}
return result;
}
ASSERT(buffer->IsFlat());
#if DEBUG
if (FLAG_verify_heap) {
buffer->StringVerify();
}
#endif
Object* result;
// When slicing an indirect string we use its encoding for a newly created
// slice and don't check the encoding of the underlying string. This is safe
// even if the encodings are different because of externalization. If an
// indirect ASCII string is pointing to a two-byte string, the two-byte char
// codes of the underlying string must still fit into ASCII (because
// externalization must not change char codes).
{ Map* map = buffer->IsAsciiRepresentation()
? sliced_ascii_string_map()
: sliced_string_map();
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
AssertNoAllocation no_gc;
SlicedString* sliced_string = SlicedString::cast(result);
sliced_string->set_length(length);
sliced_string->set_hash_field(String::kEmptyHashField);
if (buffer->IsConsString()) {
ConsString* cons = ConsString::cast(buffer);
ASSERT(cons->second()->length() == 0);
sliced_string->set_parent(cons->first());
sliced_string->set_offset(start);
} else if (buffer->IsSlicedString()) {
// Prevent nesting sliced strings.
SlicedString* parent_slice = SlicedString::cast(buffer);
sliced_string->set_parent(parent_slice->parent());
sliced_string->set_offset(start + parent_slice->offset());
} else {
sliced_string->set_parent(buffer);
sliced_string->set_offset(start);
}
ASSERT(sliced_string->parent()->IsSeqString() ||
sliced_string->parent()->IsExternalString());
return result;
}
MaybeObject* Heap::AllocateExternalStringFromAscii(
const ExternalAsciiString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
isolate()->context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
Map* map = external_ascii_string_map();
Object* result;
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
ExternalAsciiString* external_string = ExternalAsciiString::cast(result);
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->set_resource(resource);
return result;
}
MaybeObject* Heap::AllocateExternalStringFromTwoByte(
const ExternalTwoByteString::Resource* resource) {
size_t length = resource->length();
if (length > static_cast<size_t>(String::kMaxLength)) {
isolate()->context()->mark_out_of_memory();
return Failure::OutOfMemoryException();
}
// For small strings we check whether the resource contains only
// ASCII characters. If yes, we use a different string map.
static const size_t kAsciiCheckLengthLimit = 32;
bool is_ascii = length <= kAsciiCheckLengthLimit &&
String::IsAscii(resource->data(), static_cast<int>(length));
Map* map = is_ascii ?
external_string_with_ascii_data_map() : external_string_map();
Object* result;
{ MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
ExternalTwoByteString* external_string = ExternalTwoByteString::cast(result);
external_string->set_length(static_cast<int>(length));
external_string->set_hash_field(String::kEmptyHashField);
external_string->set_resource(resource);
return result;
}
MaybeObject* Heap::LookupSingleCharacterStringFromCode(uint16_t code) {
if (code <= String::kMaxAsciiCharCode) {
Object* value = single_character_string_cache()->get(code);
if (value != undefined_value()) return value;
char buffer[1];
buffer[0] = static_cast<char>(code);
Object* result;
MaybeObject* maybe_result = LookupSymbol(Vector<const char>(buffer, 1));
if (!maybe_result->ToObject(&result)) return maybe_result;
single_character_string_cache()->set(code, result);
return result;
}
Object* result;
{ MaybeObject* maybe_result = AllocateRawTwoByteString(1);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
String* answer = String::cast(result);
answer->Set(0, code);
return answer;
}
MaybeObject* Heap::AllocateByteArray(int length, PretenureFlag pretenure) {
if (length < 0 || length > ByteArray::kMaxLength) {
return Failure::OutOfMemoryException();
}
if (pretenure == NOT_TENURED) {
return AllocateByteArray(length);
}
int size = ByteArray::SizeFor(length);
Object* result;
{ MaybeObject* maybe_result = (size <= MaxObjectSizeInPagedSpace())
? old_data_space_->AllocateRaw(size)
: lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
byte_array_map());
reinterpret_cast<ByteArray*>(result)->set_length(length);
return result;
}
MaybeObject* Heap::AllocateByteArray(int length) {
if (length < 0 || length > ByteArray::kMaxLength) {
return Failure::OutOfMemoryException();
}
int size = ByteArray::SizeFor(length);
AllocationSpace space =
(size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : NEW_SPACE;
Object* result;
{ MaybeObject* maybe_result = AllocateRaw(size, space, OLD_DATA_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast<ByteArray*>(result)->set_map_no_write_barrier(
byte_array_map());
reinterpret_cast<ByteArray*>(result)->set_length(length);
return result;
}
void Heap::CreateFillerObjectAt(Address addr, int size) {
if (size == 0) return;
HeapObject* filler = HeapObject::FromAddress(addr);
if (size == kPointerSize) {
filler->set_map_no_write_barrier(one_pointer_filler_map());
} else if (size == 2 * kPointerSize) {
filler->set_map_no_write_barrier(two_pointer_filler_map());
} else {
filler->set_map_no_write_barrier(free_space_map());
FreeSpace::cast(filler)->set_size(size);
}
}
MaybeObject* Heap::AllocateExternalArray(int length,
ExternalArrayType array_type,
void* external_pointer,
PretenureFlag pretenure) {
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
Object* result;
{ MaybeObject* maybe_result = AllocateRaw(ExternalArray::kAlignedSize,
space,
OLD_DATA_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast<ExternalArray*>(result)->set_map_no_write_barrier(
MapForExternalArrayType(array_type));
reinterpret_cast<ExternalArray*>(result)->set_length(length);
reinterpret_cast<ExternalArray*>(result)->set_external_pointer(
external_pointer);
return result;
}
MaybeObject* Heap::CreateCode(const CodeDesc& desc,
Code::Flags flags,
Handle<Object> self_reference,
bool immovable) {
// Allocate ByteArray before the Code object, so that we do not risk
// leaving uninitialized Code object (and breaking the heap).
ByteArray* reloc_info;
MaybeObject* maybe_reloc_info = AllocateByteArray(desc.reloc_size, TENURED);
if (!maybe_reloc_info->To(&reloc_info)) return maybe_reloc_info;
// Compute size.
int body_size = RoundUp(desc.instr_size, kObjectAlignment);
int obj_size = Code::SizeFor(body_size);
ASSERT(IsAligned(static_cast<intptr_t>(obj_size), kCodeAlignment));
MaybeObject* maybe_result;
// Large code objects and code objects which should stay at a fixed address
// are allocated in large object space.
if (obj_size > MaxObjectSizeInPagedSpace() || immovable) {
maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
} else {
maybe_result = code_space_->AllocateRaw(obj_size);
}
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// Initialize the object
HeapObject::cast(result)->set_map_no_write_barrier(code_map());
Code* code = Code::cast(result);
ASSERT(!isolate_->code_range()->exists() ||
isolate_->code_range()->contains(code->address()));
code->set_instruction_size(desc.instr_size);
code->set_relocation_info(reloc_info);
code->set_flags(flags);
if (code->is_call_stub() || code->is_keyed_call_stub()) {
code->set_check_type(RECEIVER_MAP_CHECK);
}
code->set_deoptimization_data(empty_fixed_array(), SKIP_WRITE_BARRIER);
code->set_handler_table(empty_fixed_array(), SKIP_WRITE_BARRIER);
code->set_next_code_flushing_candidate(undefined_value());
// Allow self references to created code object by patching the handle to
// point to the newly allocated Code object.
if (!self_reference.is_null()) {
*(self_reference.location()) = code;
}
// Migrate generated code.
// The generated code can contain Object** values (typically from handles)
// that are dereferenced during the copy to point directly to the actual heap
// objects. These pointers can include references to the code object itself,
// through the self_reference parameter.
code->CopyFrom(desc);
#ifdef DEBUG
if (FLAG_verify_heap) {
code->Verify();
}
#endif
return code;
}
MaybeObject* Heap::CopyCode(Code* code) {
// Allocate an object the same size as the code object.
int obj_size = code->Size();
MaybeObject* maybe_result;
if (obj_size > MaxObjectSizeInPagedSpace()) {
maybe_result = lo_space_->AllocateRaw(obj_size, EXECUTABLE);
} else {
maybe_result = code_space_->AllocateRaw(obj_size);
}
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// Copy code object.
Address old_addr = code->address();
Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
CopyBlock(new_addr, old_addr, obj_size);
// Relocate the copy.
Code* new_code = Code::cast(result);
ASSERT(!isolate_->code_range()->exists() ||
isolate_->code_range()->contains(code->address()));
new_code->Relocate(new_addr - old_addr);
return new_code;
}
MaybeObject* Heap::CopyCode(Code* code, Vector<byte> reloc_info) {
// Allocate ByteArray before the Code object, so that we do not risk
// leaving uninitialized Code object (and breaking the heap).
Object* reloc_info_array;
{ MaybeObject* maybe_reloc_info_array =
AllocateByteArray(reloc_info.length(), TENURED);
if (!maybe_reloc_info_array->ToObject(&reloc_info_array)) {
return maybe_reloc_info_array;
}
}
int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment);
int new_obj_size = Code::SizeFor(new_body_size);
Address old_addr = code->address();
size_t relocation_offset =
static_cast<size_t>(code->instruction_end() - old_addr);
MaybeObject* maybe_result;
if (new_obj_size > MaxObjectSizeInPagedSpace()) {
maybe_result = lo_space_->AllocateRaw(new_obj_size, EXECUTABLE);
} else {
maybe_result = code_space_->AllocateRaw(new_obj_size);
}
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// Copy code object.
Address new_addr = reinterpret_cast<HeapObject*>(result)->address();
// Copy header and instructions.
memcpy(new_addr, old_addr, relocation_offset);
Code* new_code = Code::cast(result);
new_code->set_relocation_info(ByteArray::cast(reloc_info_array));
// Copy patched rinfo.
memcpy(new_code->relocation_start(), reloc_info.start(), reloc_info.length());
// Relocate the copy.
ASSERT(!isolate_->code_range()->exists() ||
isolate_->code_range()->contains(code->address()));
new_code->Relocate(new_addr - old_addr);
#ifdef DEBUG
if (FLAG_verify_heap) {
code->Verify();
}
#endif
return new_code;
}
MaybeObject* Heap::Allocate(Map* map, AllocationSpace space) {
ASSERT(gc_state_ == NOT_IN_GC);
ASSERT(map->instance_type() != MAP_TYPE);
// If allocation failures are disallowed, we may allocate in a different
// space when new space is full and the object is not a large object.
AllocationSpace retry_space =
(space != NEW_SPACE) ? space : TargetSpaceId(map->instance_type());
Object* result;
{ MaybeObject* maybe_result =
AllocateRaw(map->instance_size(), space, retry_space);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// No need for write barrier since object is white and map is in old space.
HeapObject::cast(result)->set_map_no_write_barrier(map);
return result;
}
void Heap::InitializeFunction(JSFunction* function,
SharedFunctionInfo* shared,
Object* prototype) {
ASSERT(!prototype->IsMap());
function->initialize_properties();
function->initialize_elements();
function->set_shared(shared);
function->set_code(shared->code());
function->set_prototype_or_initial_map(prototype);
function->set_context(undefined_value());
function->set_literals_or_bindings(empty_fixed_array());
function->set_next_function_link(undefined_value());
}
MaybeObject* Heap::AllocateFunctionPrototype(JSFunction* function) {
// Allocate the prototype. Make sure to use the object function
// from the function's context, since the function can be from a
// different context.
JSFunction* object_function =
function->context()->global_context()->object_function();
// Each function prototype gets a copy of the object function map.
// This avoid unwanted sharing of maps between prototypes of different
// constructors.
Map* new_map;
ASSERT(object_function->has_initial_map());
{ MaybeObject* maybe_map =
object_function->initial_map()->CopyDropTransitions();
if (!maybe_map->To<Map>(&new_map)) return maybe_map;
}
Object* prototype;
{ MaybeObject* maybe_prototype = AllocateJSObjectFromMap(new_map);
if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
}
// When creating the prototype for the function we must set its
// constructor to the function.
Object* result;
{ MaybeObject* maybe_result =
JSObject::cast(prototype)->SetLocalPropertyIgnoreAttributes(
constructor_symbol(), function, DONT_ENUM);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
return prototype;
}
MaybeObject* Heap::AllocateFunction(Map* function_map,
SharedFunctionInfo* shared,
Object* prototype,
PretenureFlag pretenure) {
AllocationSpace space =
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
Object* result;
{ MaybeObject* maybe_result = Allocate(function_map, space);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
InitializeFunction(JSFunction::cast(result), shared, prototype);
return result;
}
MaybeObject* Heap::AllocateArgumentsObject(Object* callee, int length) {
// To get fast allocation and map sharing for arguments objects we
// allocate them based on an arguments boilerplate.
JSObject* boilerplate;
int arguments_object_size;
bool strict_mode_callee = callee->IsJSFunction() &&
!JSFunction::cast(callee)->shared()->is_classic_mode();
if (strict_mode_callee) {
boilerplate =
isolate()->context()->global_context()->
strict_mode_arguments_boilerplate();
arguments_object_size = kArgumentsObjectSizeStrict;
} else {
boilerplate =
isolate()->context()->global_context()->arguments_boilerplate();
arguments_object_size = kArgumentsObjectSize;
}
// This calls Copy directly rather than using Heap::AllocateRaw so we
// duplicate the check here.
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
// Check that the size of the boilerplate matches our
// expectations. The ArgumentsAccessStub::GenerateNewObject relies
// on the size being a known constant.
ASSERT(arguments_object_size == boilerplate->map()->instance_size());
// Do the allocation.
Object* result;
{ MaybeObject* maybe_result =
AllocateRaw(arguments_object_size, NEW_SPACE, OLD_POINTER_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Copy the content. The arguments boilerplate doesn't have any
// fields that point to new space so it's safe to skip the write
// barrier here.
CopyBlock(HeapObject::cast(result)->address(),
boilerplate->address(),
JSObject::kHeaderSize);
// Set the length property.
JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsLengthIndex,
Smi::FromInt(length),
SKIP_WRITE_BARRIER);
// Set the callee property for non-strict mode arguments object only.
if (!strict_mode_callee) {
JSObject::cast(result)->InObjectPropertyAtPut(kArgumentsCalleeIndex,
callee);
}
// Check the state of the object
ASSERT(JSObject::cast(result)->HasFastProperties());
ASSERT(JSObject::cast(result)->HasFastElements());
return result;
}
static bool HasDuplicates(DescriptorArray* descriptors) {
int count = descriptors->number_of_descriptors();
if (count > 1) {
String* prev_key = descriptors->GetKey(0);
for (int i = 1; i != count; i++) {
String* current_key = descriptors->GetKey(i);
if (prev_key == current_key) return true;
prev_key = current_key;
}
}
return false;
}
MaybeObject* Heap::AllocateInitialMap(JSFunction* fun) {
ASSERT(!fun->has_initial_map());
// First create a new map with the size and number of in-object properties
// suggested by the function.
int instance_size = fun->shared()->CalculateInstanceSize();
int in_object_properties = fun->shared()->CalculateInObjectProperties();
Object* map_obj;
{ MaybeObject* maybe_map_obj = AllocateMap(JS_OBJECT_TYPE, instance_size);
if (!maybe_map_obj->ToObject(&map_obj)) return maybe_map_obj;
}
// Fetch or allocate prototype.
Object* prototype;
if (fun->has_instance_prototype()) {
prototype = fun->instance_prototype();
} else {
{ MaybeObject* maybe_prototype = AllocateFunctionPrototype(fun);
if (!maybe_prototype->ToObject(&prototype)) return maybe_prototype;
}
}
Map* map = Map::cast(map_obj);
map->set_inobject_properties(in_object_properties);
map->set_unused_property_fields(in_object_properties);
map->set_prototype(prototype);
ASSERT(map->has_fast_elements());
// If the function has only simple this property assignments add
// field descriptors for these to the initial map as the object
// cannot be constructed without having these properties. Guard by
// the inline_new flag so we only change the map if we generate a
// specialized construct stub.
ASSERT(in_object_properties <= Map::kMaxPreAllocatedPropertyFields);
if (fun->shared()->CanGenerateInlineConstructor(prototype)) {
int count = fun->shared()->this_property_assignments_count();
if (count > in_object_properties) {
// Inline constructor can only handle inobject properties.
fun->shared()->ForbidInlineConstructor();
} else {
DescriptorArray* descriptors;
{ MaybeObject* maybe_descriptors_obj = DescriptorArray::Allocate(count);
if (!maybe_descriptors_obj->To<DescriptorArray>(&descriptors)) {
return maybe_descriptors_obj;
}
}
DescriptorArray::WhitenessWitness witness(descriptors);
for (int i = 0; i < count; i++) {
String* name = fun->shared()->GetThisPropertyAssignmentName(i);
ASSERT(name->IsSymbol());
FieldDescriptor field(name, i, NONE);
field.SetEnumerationIndex(i);
descriptors->Set(i, &field, witness);
}
descriptors->SetNextEnumerationIndex(count);
descriptors->SortUnchecked(witness);
// The descriptors may contain duplicates because the compiler does not
// guarantee the uniqueness of property names (it would have required
// quadratic time). Once the descriptors are sorted we can check for
// duplicates in linear time.
if (HasDuplicates(descriptors)) {
fun->shared()->ForbidInlineConstructor();
} else {
map->set_instance_descriptors(descriptors);
map->set_pre_allocated_property_fields(count);
map->set_unused_property_fields(in_object_properties - count);
}
}
}
fun->shared()->StartInobjectSlackTracking(map);
return map;
}
void Heap::InitializeJSObjectFromMap(JSObject* obj,
FixedArray* properties,
Map* map) {
obj->set_properties(properties);
obj->initialize_elements();
// TODO(1240798): Initialize the object's body using valid initial values
// according to the object's initial map. For example, if the map's
// instance type is JS_ARRAY_TYPE, the length field should be initialized
// to a number (eg, Smi::FromInt(0)) and the elements initialized to a
// fixed array (eg, Heap::empty_fixed_array()). Currently, the object
// verification code has to cope with (temporarily) invalid objects. See
// for example, JSArray::JSArrayVerify).
Object* filler;
// We cannot always fill with one_pointer_filler_map because objects
// created from API functions expect their internal fields to be initialized
// with undefined_value.
// Pre-allocated fields need to be initialized with undefined_value as well
// so that object accesses before the constructor completes (e.g. in the
// debugger) will not cause a crash.
if (map->constructor()->IsJSFunction() &&
JSFunction::cast(map->constructor())->shared()->
IsInobjectSlackTrackingInProgress()) {
// We might want to shrink the object later.
ASSERT(obj->GetInternalFieldCount() == 0);
filler = Heap::one_pointer_filler_map();
} else {
filler = Heap::undefined_value();
}
obj->InitializeBody(map, Heap::undefined_value(), filler);
}
MaybeObject* Heap::AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure) {
// JSFunctions should be allocated using AllocateFunction to be
// properly initialized.
ASSERT(map->instance_type() != JS_FUNCTION_TYPE);
// Both types of global objects should be allocated using
// AllocateGlobalObject to be properly initialized.
ASSERT(map->instance_type() != JS_GLOBAL_OBJECT_TYPE);
ASSERT(map->instance_type() != JS_BUILTINS_OBJECT_TYPE);
// Allocate the backing storage for the properties.
int prop_size =
map->pre_allocated_property_fields() +
map->unused_property_fields() -
map->inobject_properties();
ASSERT(prop_size >= 0);
Object* properties;
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, pretenure);
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
}
// Allocate the JSObject.
AllocationSpace space =
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
if (map->instance_size() > MaxObjectSizeInPagedSpace()) space = LO_SPACE;
Object* obj;
{ MaybeObject* maybe_obj = Allocate(map, space);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Initialize the JSObject.
InitializeJSObjectFromMap(JSObject::cast(obj),
FixedArray::cast(properties),
map);
ASSERT(JSObject::cast(obj)->HasFastSmiOnlyElements() ||
JSObject::cast(obj)->HasFastElements());
return obj;
}
MaybeObject* Heap::AllocateJSObject(JSFunction* constructor,
PretenureFlag pretenure) {
// Allocate the initial map if absent.
if (!constructor->has_initial_map()) {
Object* initial_map;
{ MaybeObject* maybe_initial_map = AllocateInitialMap(constructor);
if (!maybe_initial_map->ToObject(&initial_map)) return maybe_initial_map;
}
constructor->set_initial_map(Map::cast(initial_map));
Map::cast(initial_map)->set_constructor(constructor);
}
// Allocate the object based on the constructors initial map.
MaybeObject* result =
AllocateJSObjectFromMap(constructor->initial_map(), pretenure);
#ifdef DEBUG
// Make sure result is NOT a global object if valid.
Object* non_failure;
ASSERT(!result->ToObject(&non_failure) || !non_failure->IsGlobalObject());
#endif
return result;
}
MaybeObject* Heap::AllocateJSProxy(Object* handler, Object* prototype) {
// Allocate map.
// TODO(rossberg): Once we optimize proxies, think about a scheme to share
// maps. Will probably depend on the identity of the handler object, too.
Map* map;
MaybeObject* maybe_map_obj = AllocateMap(JS_PROXY_TYPE, JSProxy::kSize);
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
map->set_prototype(prototype);
// Allocate the proxy object.
JSProxy* result;
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
if (!maybe_result->To<JSProxy>(&result)) return maybe_result;
result->InitializeBody(map->instance_size(), Smi::FromInt(0));
result->set_handler(handler);
result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
return result;
}
MaybeObject* Heap::AllocateJSFunctionProxy(Object* handler,
Object* call_trap,
Object* construct_trap,
Object* prototype) {
// Allocate map.
// TODO(rossberg): Once we optimize proxies, think about a scheme to share
// maps. Will probably depend on the identity of the handler object, too.
Map* map;
MaybeObject* maybe_map_obj =
AllocateMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
if (!maybe_map_obj->To<Map>(&map)) return maybe_map_obj;
map->set_prototype(prototype);
// Allocate the proxy object.
JSFunctionProxy* result;
MaybeObject* maybe_result = Allocate(map, NEW_SPACE);
if (!maybe_result->To<JSFunctionProxy>(&result)) return maybe_result;
result->InitializeBody(map->instance_size(), Smi::FromInt(0));
result->set_handler(handler);
result->set_hash(undefined_value(), SKIP_WRITE_BARRIER);
result->set_call_trap(call_trap);
result->set_construct_trap(construct_trap);
return result;
}
MaybeObject* Heap::AllocateGlobalObject(JSFunction* constructor) {
ASSERT(constructor->has_initial_map());
Map* map = constructor->initial_map();
// Make sure no field properties are described in the initial map.
// This guarantees us that normalizing the properties does not
// require us to change property values to JSGlobalPropertyCells.
ASSERT(map->NextFreePropertyIndex() == 0);
// Make sure we don't have a ton of pre-allocated slots in the
// global objects. They will be unused once we normalize the object.
ASSERT(map->unused_property_fields() == 0);
ASSERT(map->inobject_properties() == 0);
// Initial size of the backing store to avoid resize of the storage during
// bootstrapping. The size differs between the JS global object ad the
// builtins object.
int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
// Allocate a dictionary object for backing storage.
Object* obj;
{ MaybeObject* maybe_obj =
StringDictionary::Allocate(
map->NumberOfDescribedProperties() * 2 + initial_size);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
StringDictionary* dictionary = StringDictionary::cast(obj);
// The global object might be created from an object template with accessors.
// Fill these accessors into the dictionary.
DescriptorArray* descs = map->instance_descriptors();
for (int i = 0; i < descs->number_of_descriptors(); i++) {
PropertyDetails details(descs->GetDetails(i));
ASSERT(details.type() == CALLBACKS); // Only accessors are expected.
PropertyDetails d =
PropertyDetails(details.attributes(), CALLBACKS, details.index());
Object* value = descs->GetCallbacksObject(i);
{ MaybeObject* maybe_value = AllocateJSGlobalPropertyCell(value);
if (!maybe_value->ToObject(&value)) return maybe_value;
}
Object* result;
{ MaybeObject* maybe_result = dictionary->Add(descs->GetKey(i), value, d);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
dictionary = StringDictionary::cast(result);
}
// Allocate the global object and initialize it with the backing store.
{ MaybeObject* maybe_obj = Allocate(map, OLD_POINTER_SPACE);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
JSObject* global = JSObject::cast(obj);
InitializeJSObjectFromMap(global, dictionary, map);
// Create a new map for the global object.
{ MaybeObject* maybe_obj = map->CopyDropDescriptors();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
Map* new_map = Map::cast(obj);
// Setup the global object as a normalized object.
global->set_map(new_map);
global->map()->clear_instance_descriptors();
global->set_properties(dictionary);
// Make sure result is a global object with properties in dictionary.
ASSERT(global->IsGlobalObject());
ASSERT(!global->HasFastProperties());
return global;
}
MaybeObject* Heap::CopyJSObject(JSObject* source) {
// Never used to copy functions. If functions need to be copied we
// have to be careful to clear the literals array.
SLOW_ASSERT(!source->IsJSFunction());
// Make the clone.
Map* map = source->map();
int object_size = map->instance_size();
Object* clone;
WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER;
// If we're forced to always allocate, we use the general allocation
// functions which may leave us with an object in old space.
if (always_allocate()) {
{ MaybeObject* maybe_clone =
AllocateRaw(object_size, NEW_SPACE, OLD_POINTER_SPACE);
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
}
Address clone_address = HeapObject::cast(clone)->address();
CopyBlock(clone_address,
source->address(),
object_size);
// Update write barrier for all fields that lie beyond the header.
RecordWrites(clone_address,
JSObject::kHeaderSize,
(object_size - JSObject::kHeaderSize) / kPointerSize);
} else {
wb_mode = SKIP_WRITE_BARRIER;
{ MaybeObject* maybe_clone = new_space_.AllocateRaw(object_size);
if (!maybe_clone->ToObject(&clone)) return maybe_clone;
}
SLOW_ASSERT(InNewSpace(clone));
// Since we know the clone is allocated in new space, we can copy
// the contents without worrying about updating the write barrier.
CopyBlock(HeapObject::cast(clone)->address(),
source->address(),
object_size);
}
SLOW_ASSERT(
JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind());
FixedArrayBase* elements = FixedArrayBase::cast(source->elements());
FixedArray* properties = FixedArray::cast(source->properties());
// Update elements if necessary.
if (elements->length() > 0) {
Object* elem;
{ MaybeObject* maybe_elem;
if (elements->map() == fixed_cow_array_map()) {
maybe_elem = FixedArray::cast(elements);
} else if (source->HasFastDoubleElements()) {
maybe_elem = CopyFixedDoubleArray(FixedDoubleArray::cast(elements));
} else {
maybe_elem = CopyFixedArray(FixedArray::cast(elements));
}
if (!maybe_elem->ToObject(&elem)) return maybe_elem;
}
JSObject::cast(clone)->set_elements(FixedArrayBase::cast(elem), wb_mode);
}
// Update properties if necessary.
if (properties->length() > 0) {
Object* prop;
{ MaybeObject* maybe_prop = CopyFixedArray(properties);
if (!maybe_prop->ToObject(&prop)) return maybe_prop;
}
JSObject::cast(clone)->set_properties(FixedArray::cast(prop), wb_mode);
}
// Return the new clone.
return clone;
}
MaybeObject* Heap::ReinitializeJSReceiver(
JSReceiver* object, InstanceType type, int size) {
ASSERT(type >= FIRST_JS_OBJECT_TYPE);
// Allocate fresh map.
// TODO(rossberg): Once we optimize proxies, cache these maps.
Map* map;
MaybeObject* maybe = AllocateMap(type, size);
if (!maybe->To<Map>(&map)) return maybe;
// Check that the receiver has at least the size of the fresh object.
int size_difference = object->map()->instance_size() - map->instance_size();
ASSERT(size_difference >= 0);
map->set_prototype(object->map()->prototype());
// Allocate the backing storage for the properties.
int prop_size = map->unused_property_fields() - map->inobject_properties();
Object* properties;
maybe = AllocateFixedArray(prop_size, TENURED);
if (!maybe->ToObject(&properties)) return maybe;
// Functions require some allocation, which might fail here.
SharedFunctionInfo* shared = NULL;
if (type == JS_FUNCTION_TYPE) {
String* name;
maybe = LookupAsciiSymbol("<freezing call trap>");
if (!maybe->To<String>(&name)) return maybe;
maybe = AllocateSharedFunctionInfo(name);
if (!maybe->To<SharedFunctionInfo>(&shared)) return maybe;
}
// Because of possible retries of this function after failure,
// we must NOT fail after this point, where we have changed the type!
// Reset the map for the object.
object->set_map(map);
JSObject* jsobj = JSObject::cast(object);
// Reinitialize the object from the constructor map.
InitializeJSObjectFromMap(jsobj, FixedArray::cast(properties), map);
// Functions require some minimal initialization.
if (type == JS_FUNCTION_TYPE) {
map->set_function_with_prototype(true);
InitializeFunction(JSFunction::cast(object), shared, the_hole_value());
JSFunction::cast(object)->set_context(
isolate()->context()->global_context());
}
// Put in filler if the new object is smaller than the old.
if (size_difference > 0) {
CreateFillerObjectAt(
object->address() + map->instance_size(), size_difference);
}
return object;
}
MaybeObject* Heap::ReinitializeJSGlobalProxy(JSFunction* constructor,
JSGlobalProxy* object) {
ASSERT(constructor->has_initial_map());
Map* map = constructor->initial_map();
// Check that the already allocated object has the same size and type as
// objects allocated using the constructor.
ASSERT(map->instance_size() == object->map()->instance_size());
ASSERT(map->instance_type() == object->map()->instance_type());
// Allocate the backing storage for the properties.
int prop_size = map->unused_property_fields() - map->inobject_properties();
Object* properties;
{ MaybeObject* maybe_properties = AllocateFixedArray(prop_size, TENURED);
if (!maybe_properties->ToObject(&properties)) return maybe_properties;
}
// Reset the map for the object.
object->set_map(constructor->initial_map());
// Reinitialize the object from the constructor map.
InitializeJSObjectFromMap(object, FixedArray::cast(properties), map);
return object;
}
MaybeObject* Heap::AllocateStringFromAscii(Vector<const char> string,
PretenureFlag pretenure) {
if (string.length() == 1) {
return Heap::LookupSingleCharacterStringFromCode(string[0]);
}
Object* result;
{ MaybeObject* maybe_result =
AllocateRawAsciiString(string.length(), pretenure);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Copy the characters into the new object.
SeqAsciiString* string_result = SeqAsciiString::cast(result);
for (int i = 0; i < string.length(); i++) {
string_result->SeqAsciiStringSet(i, string[i]);
}
return result;
}
MaybeObject* Heap::AllocateStringFromUtf8Slow(Vector<const char> string,
PretenureFlag pretenure) {
// V8 only supports characters in the Basic Multilingual Plane.
const uc32 kMaxSupportedChar = 0xFFFF;
// Count the number of characters in the UTF-8 string and check if
// it is an ASCII string.
Access<UnicodeCache::Utf8Decoder>
decoder(isolate_->unicode_cache()->utf8_decoder());
decoder->Reset(string.start(), string.length());
int chars = 0;
while (decoder->has_more()) {
decoder->GetNext();
chars++;
}
Object* result;
{ MaybeObject* maybe_result = AllocateRawTwoByteString(chars, pretenure);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Convert and copy the characters into the new object.
String* string_result = String::cast(result);
decoder->Reset(string.start(), string.length());
for (int i = 0; i < chars; i++) {
uc32 r = decoder->GetNext();
if (r > kMaxSupportedChar) { r = unibrow::Utf8::kBadChar; }
string_result->Set(i, r);
}
return result;
}
MaybeObject* Heap::AllocateStringFromTwoByte(Vector<const uc16> string,
PretenureFlag pretenure) {
// Check if the string is an ASCII string.
MaybeObject* maybe_result;
if (String::IsAscii(string.start(), string.length())) {
maybe_result = AllocateRawAsciiString(string.length(), pretenure);
} else { // It's not an ASCII string.
maybe_result = AllocateRawTwoByteString(string.length(), pretenure);
}
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// Copy the characters into the new object, which may be either ASCII or
// UTF-16.
String* string_result = String::cast(result);
for (int i = 0; i < string.length(); i++) {
string_result->Set(i, string[i]);
}
return result;
}
Map* Heap::SymbolMapForString(String* string) {
// If the string is in new space it cannot be used as a symbol.
if (InNewSpace(string)) return NULL;
// Find the corresponding symbol map for strings.
switch (string->map()->instance_type()) {
case STRING_TYPE: return symbol_map();
case ASCII_STRING_TYPE: return ascii_symbol_map();
case CONS_STRING_TYPE: return cons_symbol_map();
case CONS_ASCII_STRING_TYPE: return cons_ascii_symbol_map();
case EXTERNAL_STRING_TYPE: return external_symbol_map();
case EXTERNAL_ASCII_STRING_TYPE: return external_ascii_symbol_map();
case EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
return external_symbol_with_ascii_data_map();
case SHORT_EXTERNAL_STRING_TYPE: return short_external_symbol_map();
case SHORT_EXTERNAL_ASCII_STRING_TYPE:
return short_external_ascii_symbol_map();
case SHORT_EXTERNAL_STRING_WITH_ASCII_DATA_TYPE:
return short_external_symbol_with_ascii_data_map();
default: return NULL; // No match found.
}
}
MaybeObject* Heap::AllocateInternalSymbol(unibrow::CharacterStream* buffer,
int chars,
uint32_t hash_field) {
ASSERT(chars >= 0);
// Ensure the chars matches the number of characters in the buffer.
ASSERT(static_cast<unsigned>(chars) == buffer->Length());
// Determine whether the string is ascii.
bool is_ascii = true;
while (buffer->has_more()) {
if (buffer->GetNext() > unibrow::Utf8::kMaxOneByteChar) {
is_ascii = false;
break;
}
}
buffer->Rewind();
// Compute map and object size.
int size;
Map* map;
if (is_ascii) {
if (chars > SeqAsciiString::kMaxLength) {
return Failure::OutOfMemoryException();
}
map = ascii_symbol_map();
size = SeqAsciiString::SizeFor(chars);
} else {
if (chars > SeqTwoByteString::kMaxLength) {
return Failure::OutOfMemoryException();
}
map = symbol_map();
size = SeqTwoByteString::SizeFor(chars);
}
// Allocate string.
Object* result;
{ MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(chars);
answer->set_hash_field(hash_field);
ASSERT_EQ(size, answer->Size());
// Fill in the characters.
for (int i = 0; i < chars; i++) {
answer->Set(i, buffer->GetNext());
}
return answer;
}
MaybeObject* Heap::AllocateRawAsciiString(int length, PretenureFlag pretenure) {
if (length < 0 || length > SeqAsciiString::kMaxLength) {
return Failure::OutOfMemoryException();
}
int size = SeqAsciiString::SizeFor(length);
ASSERT(size <= SeqAsciiString::kMaxSize);
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
AllocationSpace retry_space = OLD_DATA_SPACE;
if (space == NEW_SPACE) {
if (size > kMaxObjectSizeInNewSpace) {
// Allocate in large object space, retry space will be ignored.
space = LO_SPACE;
} else if (size > MaxObjectSizeInPagedSpace()) {
// Allocate in new space, retry in large object space.
retry_space = LO_SPACE;
}
} else if (space == OLD_DATA_SPACE && size > MaxObjectSizeInPagedSpace()) {
space = LO_SPACE;
}
Object* result;
{ MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Partially initialize the object.
HeapObject::cast(result)->set_map_no_write_barrier(ascii_string_map());
String::cast(result)->set_length(length);
String::cast(result)->set_hash_field(String::kEmptyHashField);
ASSERT_EQ(size, HeapObject::cast(result)->Size());
return result;
}
MaybeObject* Heap::AllocateRawTwoByteString(int length,
PretenureFlag pretenure) {
if (length < 0 || length > SeqTwoByteString::kMaxLength) {
return Failure::OutOfMemoryException();
}
int size = SeqTwoByteString::SizeFor(length);
ASSERT(size <= SeqTwoByteString::kMaxSize);
AllocationSpace space = (pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
AllocationSpace retry_space = OLD_DATA_SPACE;
if (space == NEW_SPACE) {
if (size > kMaxObjectSizeInNewSpace) {
// Allocate in large object space, retry space will be ignored.
space = LO_SPACE;
} else if (size > MaxObjectSizeInPagedSpace()) {
// Allocate in new space, retry in large object space.
retry_space = LO_SPACE;
}
} else if (space == OLD_DATA_SPACE && size > MaxObjectSizeInPagedSpace()) {
space = LO_SPACE;
}
Object* result;
{ MaybeObject* maybe_result = AllocateRaw(size, space, retry_space);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Partially initialize the object.
HeapObject::cast(result)->set_map_no_write_barrier(string_map());
String::cast(result)->set_length(length);
String::cast(result)->set_hash_field(String::kEmptyHashField);
ASSERT_EQ(size, HeapObject::cast(result)->Size());
return result;
}
MaybeObject* Heap::AllocateEmptyFixedArray() {
int size = FixedArray::SizeFor(0);
Object* result;
{ MaybeObject* maybe_result =
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Initialize the object.
reinterpret_cast<FixedArray*>(result)->set_map_no_write_barrier(
fixed_array_map());
reinterpret_cast<FixedArray*>(result)->set_length(0);
return result;
}
MaybeObject* Heap::AllocateRawFixedArray(int length) {
if (length < 0 || length > FixedArray::kMaxLength) {
return Failure::OutOfMemoryException();
}
ASSERT(length > 0);
// Use the general function if we're forced to always allocate.
if (always_allocate()) return AllocateFixedArray(length, TENURED);
// Allocate the raw data for a fixed array.
int size = FixedArray::SizeFor(length);
return size <= kMaxObjectSizeInNewSpace
? new_space_.AllocateRaw(size)
: lo_space_->AllocateRaw(size, NOT_EXECUTABLE);
}
MaybeObject* Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) {
int len = src->length();
Object* obj;
{ MaybeObject* maybe_obj = AllocateRawFixedArray(len);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
if (InNewSpace(obj)) {
HeapObject* dst = HeapObject::cast(obj);
dst->set_map_no_write_barrier(map);
CopyBlock(dst->address() + kPointerSize,
src->address() + kPointerSize,
FixedArray::SizeFor(len) - kPointerSize);
return obj;
}
HeapObject::cast(obj)->set_map_no_write_barrier(map);
FixedArray* result = FixedArray::cast(obj);
result->set_length(len);
// Copy the content
AssertNoAllocation no_gc;
WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
for (int i = 0; i < len; i++) result->set(i, src->get(i), mode);
return result;
}
MaybeObject* Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src,
Map* map) {
int len = src->length();
Object* obj;
{ MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(len, NOT_TENURED);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
HeapObject* dst = HeapObject::cast(obj);
dst->set_map_no_write_barrier(map);
CopyBlock(
dst->address() + FixedDoubleArray::kLengthOffset,
src->address() + FixedDoubleArray::kLengthOffset,
FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset);
return obj;
}
MaybeObject* Heap::AllocateFixedArray(int length) {
ASSERT(length >= 0);
if (length == 0) return empty_fixed_array();
Object* result;
{ MaybeObject* maybe_result = AllocateRawFixedArray(length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Initialize header.
FixedArray* array = reinterpret_cast<FixedArray*>(result);
array->set_map_no_write_barrier(fixed_array_map());
array->set_length(length);
// Initialize body.
ASSERT(!InNewSpace(undefined_value()));
MemsetPointer(array->data_start(), undefined_value(), length);
return result;
}
MaybeObject* Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) {
if (length < 0 || length > FixedArray::kMaxLength) {
return Failure::OutOfMemoryException();
}
AllocationSpace space =
(pretenure == TENURED) ? OLD_POINTER_SPACE : NEW_SPACE;
int size = FixedArray::SizeFor(length);
if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
// Too big for new space.
space = LO_SPACE;
} else if (space == OLD_POINTER_SPACE &&
size > MaxObjectSizeInPagedSpace()) {
// Too big for old pointer space.
space = LO_SPACE;
}
AllocationSpace retry_space =
(size <= MaxObjectSizeInPagedSpace()) ? OLD_POINTER_SPACE : LO_SPACE;
return AllocateRaw(size, space, retry_space);
}
MUST_USE_RESULT static MaybeObject* AllocateFixedArrayWithFiller(
Heap* heap,
int length,
PretenureFlag pretenure,
Object* filler) {
ASSERT(length >= 0);
ASSERT(heap->empty_fixed_array()->IsFixedArray());
if (length == 0) return heap->empty_fixed_array();
ASSERT(!heap->InNewSpace(filler));
Object* result;
{ MaybeObject* maybe_result = heap->AllocateRawFixedArray(length, pretenure);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
HeapObject::cast(result)->set_map_no_write_barrier(heap->fixed_array_map());
FixedArray* array = FixedArray::cast(result);
array->set_length(length);
MemsetPointer(array->data_start(), filler, length);
return array;
}
MaybeObject* Heap::AllocateFixedArray(int length, PretenureFlag pretenure) {
return AllocateFixedArrayWithFiller(this,
length,
pretenure,
undefined_value());
}
MaybeObject* Heap::AllocateFixedArrayWithHoles(int length,
PretenureFlag pretenure) {
return AllocateFixedArrayWithFiller(this,
length,
pretenure,
the_hole_value());
}
MaybeObject* Heap::AllocateUninitializedFixedArray(int length) {
if (length == 0) return empty_fixed_array();
Object* obj;
{ MaybeObject* maybe_obj = AllocateRawFixedArray(length);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
reinterpret_cast<FixedArray*>(obj)->set_map_no_write_barrier(
fixed_array_map());
FixedArray::cast(obj)->set_length(length);
return obj;
}
MaybeObject* Heap::AllocateEmptyFixedDoubleArray() {
int size = FixedDoubleArray::SizeFor(0);
Object* result;
{ MaybeObject* maybe_result =
AllocateRaw(size, OLD_DATA_SPACE, OLD_DATA_SPACE);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
// Initialize the object.
reinterpret_cast<FixedDoubleArray*>(result)->set_map_no_write_barrier(
fixed_double_array_map());
reinterpret_cast<FixedDoubleArray*>(result)->set_length(0);
return result;
}
MaybeObject* Heap::AllocateUninitializedFixedDoubleArray(
int length,
PretenureFlag pretenure) {
if (length == 0) return empty_fixed_double_array();
Object* obj;
{ MaybeObject* maybe_obj = AllocateRawFixedDoubleArray(length, pretenure);
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
reinterpret_cast<FixedDoubleArray*>(obj)->set_map_no_write_barrier(
fixed_double_array_map());
FixedDoubleArray::cast(obj)->set_length(length);
return obj;
}
MaybeObject* Heap::AllocateRawFixedDoubleArray(int length,
PretenureFlag pretenure) {
if (length < 0 || length > FixedDoubleArray::kMaxLength) {
return Failure::OutOfMemoryException();
}
AllocationSpace space =
(pretenure == TENURED) ? OLD_DATA_SPACE : NEW_SPACE;
int size = FixedDoubleArray::SizeFor(length);
if (space == NEW_SPACE && size > kMaxObjectSizeInNewSpace) {
// Too big for new space.
space = LO_SPACE;
} else if (space == OLD_DATA_SPACE &&
size > MaxObjectSizeInPagedSpace()) {
// Too big for old data space.
space = LO_SPACE;
}
AllocationSpace retry_space =
(size <= MaxObjectSizeInPagedSpace()) ? OLD_DATA_SPACE : LO_SPACE;
return AllocateRaw(size, space, retry_space);
}
MaybeObject* Heap::AllocateHashTable(int length, PretenureFlag pretenure) {
Object* result;
{ MaybeObject* maybe_result = AllocateFixedArray(length, pretenure);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast<HeapObject*>(result)->set_map_no_write_barrier(
hash_table_map());
ASSERT(result->IsHashTable());
return result;
}
MaybeObject* Heap::AllocateGlobalContext() {
Object* result;
{ MaybeObject* maybe_result =
AllocateFixedArray(Context::GLOBAL_CONTEXT_SLOTS);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Context* context = reinterpret_cast<Context*>(result);
context->set_map_no_write_barrier(global_context_map());
ASSERT(context->IsGlobalContext());
ASSERT(result->IsContext());
return result;
}
MaybeObject* Heap::AllocateFunctionContext(int length, JSFunction* function) {
ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
Object* result;
{ MaybeObject* maybe_result = AllocateFixedArray(length);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Context* context = reinterpret_cast<Context*>(result);
context->set_map_no_write_barrier(function_context_map());
context->set_closure(function);
context->set_previous(function->context());
context->set_extension(NULL);
context->set_global(function->context()->global());
return context;
}
MaybeObject* Heap::AllocateCatchContext(JSFunction* function,
Context* previous,
String* name,
Object* thrown_object) {
STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
Object* result;
{ MaybeObject* maybe_result =
AllocateFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Context* context = reinterpret_cast<Context*>(result);
context->set_map_no_write_barrier(catch_context_map());
context->set_closure(function);
context->set_previous(previous);
context->set_extension(name);
context->set_global(previous->global());
context->set(Context::THROWN_OBJECT_INDEX, thrown_object);
return context;
}
MaybeObject* Heap::AllocateWithContext(JSFunction* function,
Context* previous,
JSObject* extension) {
Object* result;
{ MaybeObject* maybe_result = AllocateFixedArray(Context::MIN_CONTEXT_SLOTS);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Context* context = reinterpret_cast<Context*>(result);
context->set_map_no_write_barrier(with_context_map());
context->set_closure(function);
context->set_previous(previous);
context->set_extension(extension);
context->set_global(previous->global());
return context;
}
MaybeObject* Heap::AllocateBlockContext(JSFunction* function,
Context* previous,
ScopeInfo* scope_info) {
Object* result;
{ MaybeObject* maybe_result =
AllocateFixedArrayWithHoles(scope_info->ContextLength());
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Context* context = reinterpret_cast<Context*>(result);
context->set_map_no_write_barrier(block_context_map());
context->set_closure(function);
context->set_previous(previous);
context->set_extension(scope_info);
context->set_global(previous->global());
return context;
}
MaybeObject* Heap::AllocateScopeInfo(int length) {
FixedArray* scope_info;
MaybeObject* maybe_scope_info = AllocateFixedArray(length, TENURED);
if (!maybe_scope_info->To(&scope_info)) return maybe_scope_info;
scope_info->set_map_no_write_barrier(scope_info_map());
return scope_info;
}
MaybeObject* Heap::AllocateStruct(InstanceType type) {
Map* map;
switch (type) {
#define MAKE_CASE(NAME, Name, name) \
case NAME##_TYPE: map = name##_map(); break;
STRUCT_LIST(MAKE_CASE)
#undef MAKE_CASE
default:
UNREACHABLE();
return Failure::InternalError();
}
int size = map->instance_size();
AllocationSpace space =
(size > MaxObjectSizeInPagedSpace()) ? LO_SPACE : OLD_POINTER_SPACE;
Object* result;
{ MaybeObject* maybe_result = Allocate(map, space);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
Struct::cast(result)->InitializeBody(size);
return result;
}
bool Heap::IsHeapIterable() {
return (!old_pointer_space()->was_swept_conservatively() &&
!old_data_space()->was_swept_conservatively());
}
void Heap::EnsureHeapIsIterable() {
ASSERT(IsAllocationAllowed());
if (!IsHeapIterable()) {
CollectAllGarbage(kMakeHeapIterableMask);
}
ASSERT(IsHeapIterable());
}
bool Heap::IdleNotification(int hint) {
if (hint >= 1000) return IdleGlobalGC();
if (contexts_disposed_ > 0 || !FLAG_incremental_marking ||
FLAG_expose_gc || Serializer::enabled()) {
return true;
}
// By doing small chunks of GC work in each IdleNotification,
// perform a round of incremental GCs and after that wait until
// the mutator creates enough garbage to justify a new round.
// An incremental GC progresses as follows:
// 1. many incremental marking steps,
// 2. one old space mark-sweep-compact,
// 3. many lazy sweep steps.
// Use mark-sweep-compact events to count incremental GCs in a round.
intptr_t size_factor = Min(Max(hint, 30), 1000) / 10;
// The size factor is in range [3..100].
intptr_t step_size = size_factor * IncrementalMarking::kAllocatedThreshold;
if (incremental_marking()->IsStopped()) {
if (!IsSweepingComplete() &&
!AdvanceSweepers(static_cast<int>(step_size))) {
return false;
}
}
if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
if (EnoughGarbageSinceLastIdleRound()) {
StartIdleRound();
} else {
return true;
}
}
int new_mark_sweeps = ms_count_ - ms_count_at_last_idle_notification_;
mark_sweeps_since_idle_round_started_ += new_mark_sweeps;
ms_count_at_last_idle_notification_ = ms_count_;
if (mark_sweeps_since_idle_round_started_ >= kMaxMarkSweepsInIdleRound) {
FinishIdleRound();
return true;
}
if (incremental_marking()->IsStopped()) {
if (hint < 1000 && !WorthStartingGCWhenIdle()) {
FinishIdleRound();
return true;
}
incremental_marking()->Start();
}
// This flag prevents incremental marking from requesting GC via stack guard
idle_notification_will_schedule_next_gc_ = true;
incremental_marking()->Step(step_size);
idle_notification_will_schedule_next_gc_ = false;
if (incremental_marking()->IsComplete()) {
bool uncommit = false;
if (gc_count_at_last_idle_gc_ == gc_count_) {
// No GC since the last full GC, the mutator is probably not active.
isolate_->compilation_cache()->Clear();
uncommit = true;
}
CollectAllGarbage(kNoGCFlags);
gc_count_at_last_idle_gc_ = gc_count_;
if (uncommit) {
new_space_.Shrink();
UncommitFromSpace();
}
}
return false;
}
bool Heap::IdleGlobalGC() {
static const int kIdlesBeforeScavenge = 4;
static const int kIdlesBeforeMarkSweep = 7;
static const int kIdlesBeforeMarkCompact = 8;
static const int kMaxIdleCount = kIdlesBeforeMarkCompact + 1;
static const unsigned int kGCsBetweenCleanup = 4;
if (!last_idle_notification_gc_count_init_) {
last_idle_notification_gc_count_ = gc_count_;
last_idle_notification_gc_count_init_ = true;
}
bool uncommit = true;
bool finished = false;
// Reset the number of idle notifications received when a number of
// GCs have taken place. This allows another round of cleanup based
// on idle notifications if enough work has been carried out to
// provoke a number of garbage collections.
if (gc_count_ - last_idle_notification_gc_count_ < kGCsBetweenCleanup) {
number_idle_notifications_ =
Min(number_idle_notifications_ + 1, kMaxIdleCount);
} else {
number_idle_notifications_ = 0;
last_idle_notification_gc_count_ = gc_count_;
}
if (number_idle_notifications_ == kIdlesBeforeScavenge) {
if (contexts_disposed_ > 0) {
HistogramTimerScope scope(isolate_->counters()->gc_context());
CollectAllGarbage(kNoGCFlags);
} else {
CollectGarbage(NEW_SPACE);
}
new_space_.Shrink();
last_idle_notification_gc_count_ = gc_count_;
} else if (number_idle_notifications_ == kIdlesBeforeMarkSweep) {
// Before doing the mark-sweep collections we clear the
// compilation cache to avoid hanging on to source code and
// generated code for cached functions.
isolate_->compilation_cache()->Clear();
CollectAllGarbage(kNoGCFlags);
new_space_.Shrink();
last_idle_notification_gc_count_ = gc_count_;
} else if (number_idle_notifications_ == kIdlesBeforeMarkCompact) {
CollectAllGarbage(kNoGCFlags);
new_space_.Shrink();
last_idle_notification_gc_count_ = gc_count_;
number_idle_notifications_ = 0;
finished = true;
} else if (contexts_disposed_ > 0) {
if (FLAG_expose_gc) {
contexts_disposed_ = 0;
} else {
HistogramTimerScope scope(isolate_->counters()->gc_context());
CollectAllGarbage(kNoGCFlags);
last_idle_notification_gc_count_ = gc_count_;
}
// If this is the first idle notification, we reset the
// notification count to avoid letting idle notifications for
// context disposal garbage collections start a potentially too
// aggressive idle GC cycle.
if (number_idle_notifications_ <= 1) {
number_idle_notifications_ = 0;
uncommit = false;
}
} else if (number_idle_notifications_ > kIdlesBeforeMarkCompact) {
// If we have received more than kIdlesBeforeMarkCompact idle
// notifications we do not perform any cleanup because we don't
// expect to gain much by doing so.
finished = true;
}
// Make sure that we have no pending context disposals and
// conditionally uncommit from space.
// Take into account that we might have decided to delay full collection
// because incremental marking is in progress.
ASSERT((contexts_disposed_ == 0) || !incremental_marking()->IsStopped());
if (uncommit) UncommitFromSpace();
return finished;
}
#ifdef DEBUG
void Heap::Print() {
if (!HasBeenSetup()) return;
isolate()->PrintStack();
AllSpaces spaces;
for (Space* space = spaces.next(); space != NULL; space = spaces.next())
space->Print();
}
void Heap::ReportCodeStatistics(const char* title) {
PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title);
PagedSpace::ResetCodeStatistics();
// We do not look for code in new space, map space, or old space. If code
// somehow ends up in those spaces, we would miss it here.
code_space_->CollectCodeStatistics();
lo_space_->CollectCodeStatistics();
PagedSpace::ReportCodeStatistics();
}
// This function expects that NewSpace's allocated objects histogram is
// populated (via a call to CollectStatistics or else as a side effect of a
// just-completed scavenge collection).
void Heap::ReportHeapStatistics(const char* title) {
USE(title);
PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n",
title, gc_count_);
PrintF("old_gen_promotion_limit_ %" V8_PTR_PREFIX "d\n",
old_gen_promotion_limit_);
PrintF("old_gen_allocation_limit_ %" V8_PTR_PREFIX "d\n",
old_gen_allocation_limit_);
PrintF("old_gen_limit_factor_ %d\n", old_gen_limit_factor_);
PrintF("\n");
PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles());
isolate_->global_handles()->PrintStats();
PrintF("\n");
PrintF("Heap statistics : ");
isolate_->memory_allocator()->ReportStatistics();
PrintF("To space : ");
new_space_.ReportStatistics();
PrintF("Old pointer space : ");
old_pointer_space_->ReportStatistics();
PrintF("Old data space : ");
old_data_space_->ReportStatistics();
PrintF("Code space : ");
code_space_->ReportStatistics();
PrintF("Map space : ");
map_space_->ReportStatistics();
PrintF("Cell space : ");
cell_space_->ReportStatistics();
PrintF("Large object space : ");
lo_space_->ReportStatistics();
PrintF(">>>>>> ========================================= >>>>>>\n");
}
#endif // DEBUG
bool Heap::Contains(HeapObject* value) {
return Contains(value->address());
}
bool Heap::Contains(Address addr) {
if (OS::IsOutsideAllocatedSpace(addr)) return false;
return HasBeenSetup() &&
(new_space_.ToSpaceContains(addr) ||
old_pointer_space_->Contains(addr) ||
old_data_space_->Contains(addr) ||
code_space_->Contains(addr) ||
map_space_->Contains(addr) ||
cell_space_->Contains(addr) ||
lo_space_->SlowContains(addr));
}
bool Heap::InSpace(HeapObject* value, AllocationSpace space) {
return InSpace(value->address(), space);
}
bool Heap::InSpace(Address addr, AllocationSpace space) {
if (OS::IsOutsideAllocatedSpace(addr)) return false;
if (!HasBeenSetup()) return false;
switch (space) {
case NEW_SPACE:
return new_space_.ToSpaceContains(addr);
case OLD_POINTER_SPACE:
return old_pointer_space_->Contains(addr);
case OLD_DATA_SPACE:
return old_data_space_->Contains(addr);
case CODE_SPACE:
return code_space_->Contains(addr);
case MAP_SPACE:
return map_space_->Contains(addr);
case CELL_SPACE:
return cell_space_->Contains(addr);
case LO_SPACE:
return lo_space_->SlowContains(addr);
}
return false;
}
#ifdef DEBUG
void Heap::Verify() {
ASSERT(HasBeenSetup());
store_buffer()->Verify();
VerifyPointersVisitor visitor;
IterateRoots(&visitor, VISIT_ONLY_STRONG);
new_space_.Verify();
old_pointer_space_->Verify(&visitor);
map_space_->Verify(&visitor);
VerifyPointersVisitor no_dirty_regions_visitor;
old_data_space_->Verify(&no_dirty_regions_visitor);
code_space_->Verify(&no_dirty_regions_visitor);
cell_space_->Verify(&no_dirty_regions_visitor);
lo_space_->Verify();
}
#endif // DEBUG
MaybeObject* Heap::LookupSymbol(Vector<const char> string) {
Object* symbol = NULL;
Object* new_table;
{ MaybeObject* maybe_new_table =
symbol_table()->LookupSymbol(string, &symbol);
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
}
// Can't use set_symbol_table because SymbolTable::cast knows that
// SymbolTable is a singleton and checks for identity.
roots_[kSymbolTableRootIndex] = new_table;
ASSERT(symbol != NULL);
return symbol;
}
MaybeObject* Heap::LookupAsciiSymbol(Vector<const char> string) {
Object* symbol = NULL;
Object* new_table;
{ MaybeObject* maybe_new_table =
symbol_table()->LookupAsciiSymbol(string, &symbol);
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
}
// Can't use set_symbol_table because SymbolTable::cast knows that
// SymbolTable is a singleton and checks for identity.
roots_[kSymbolTableRootIndex] = new_table;
ASSERT(symbol != NULL);
return symbol;
}
MaybeObject* Heap::LookupAsciiSymbol(Handle<SeqAsciiString> string,
int from,
int length) {
Object* symbol = NULL;
Object* new_table;
{ MaybeObject* maybe_new_table =
symbol_table()->LookupSubStringAsciiSymbol(string,
from,
length,
&symbol);
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
}
// Can't use set_symbol_table because SymbolTable::cast knows that
// SymbolTable is a singleton and checks for identity.
roots_[kSymbolTableRootIndex] = new_table;
ASSERT(symbol != NULL);
return symbol;
}
MaybeObject* Heap::LookupTwoByteSymbol(Vector<const uc16> string) {
Object* symbol = NULL;
Object* new_table;
{ MaybeObject* maybe_new_table =
symbol_table()->LookupTwoByteSymbol(string, &symbol);
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
}
// Can't use set_symbol_table because SymbolTable::cast knows that
// SymbolTable is a singleton and checks for identity.
roots_[kSymbolTableRootIndex] = new_table;
ASSERT(symbol != NULL);
return symbol;
}
MaybeObject* Heap::LookupSymbol(String* string) {
if (string->IsSymbol()) return string;
Object* symbol = NULL;
Object* new_table;
{ MaybeObject* maybe_new_table =
symbol_table()->LookupString(string, &symbol);
if (!maybe_new_table->ToObject(&new_table)) return maybe_new_table;
}
// Can't use set_symbol_table because SymbolTable::cast knows that
// SymbolTable is a singleton and checks for identity.
roots_[kSymbolTableRootIndex] = new_table;
ASSERT(symbol != NULL);
return symbol;
}
bool Heap::LookupSymbolIfExists(String* string, String** symbol) {
if (string->IsSymbol()) {
*symbol = string;
return true;
}
return symbol_table()->LookupSymbolIfExists(string, symbol);
}
#ifdef DEBUG
void Heap::ZapFromSpace() {
NewSpacePageIterator it(new_space_.FromSpaceStart(),
new_space_.FromSpaceEnd());
while (it.has_next()) {
NewSpacePage* page = it.next();
for (Address cursor = page->body(), limit = page->body_limit();
cursor < limit;
cursor += kPointerSize) {
Memory::Address_at(cursor) = kFromSpaceZapValue;
}
}
}
#endif // DEBUG
void Heap::IterateAndMarkPointersToFromSpace(Address start,
Address end,
ObjectSlotCallback callback) {
Address slot_address = start;
// We are not collecting slots on new space objects during mutation
// thus we have to scan for pointers to evacuation candidates when we
// promote objects. But we should not record any slots in non-black
// objects. Grey object's slots would be rescanned.
// White object might not survive until the end of collection
// it would be a violation of the invariant to record it's slots.
bool record_slots = false;
if (incremental_marking()->IsCompacting()) {
MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::FromAddress(start));
record_slots = Marking::IsBlack(mark_bit);
}
while (slot_address < end) {
Object** slot = reinterpret_cast<Object**>(slot_address);
Object* object = *slot;
// If the store buffer becomes overfull we mark pages as being exempt from
// the store buffer. These pages are scanned to find pointers that point
// to the new space. In that case we may hit newly promoted objects and
// fix the pointers before the promotion queue gets to them. Thus the 'if'.
if (object->IsHeapObject()) {
if (Heap::InFromSpace(object)) {
callback(reinterpret_cast<HeapObject**>(slot),
HeapObject::cast(object));
Object* new_object = *slot;
if (InNewSpace(new_object)) {
SLOW_ASSERT(Heap::InToSpace(new_object));
SLOW_ASSERT(new_object->IsHeapObject());
store_buffer_.EnterDirectlyIntoStoreBuffer(
reinterpret_cast<Address>(slot));
}
SLOW_ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_object));
} else if (record_slots &&
MarkCompactCollector::IsOnEvacuationCandidate(object)) {
mark_compact_collector()->RecordSlot(slot, slot, object);
}
}
slot_address += kPointerSize;
}
}
#ifdef DEBUG
typedef bool (*CheckStoreBufferFilter)(Object** addr);
bool IsAMapPointerAddress(Object** addr) {
uintptr_t a = reinterpret_cast<uintptr_t>(addr);
int mod = a % Map::kSize;
return mod >= Map::kPointerFieldsBeginOffset &&
mod < Map::kPointerFieldsEndOffset;
}
bool EverythingsAPointer(Object** addr) {
return true;
}
static void CheckStoreBuffer(Heap* heap,
Object** current,
Object** limit,
Object**** store_buffer_position,
Object*** store_buffer_top,
CheckStoreBufferFilter filter,
Address special_garbage_start,
Address special_garbage_end) {
Map* free_space_map = heap->free_space_map();
for ( ; current < limit; current++) {
Object* o = *current;
Address current_address = reinterpret_cast<Address>(current);
// Skip free space.
if (o == free_space_map) {
Address current_address = reinterpret_cast<Address>(current);
FreeSpace* free_space =
FreeSpace::cast(HeapObject::FromAddress(current_address));
int skip = free_space->Size();
ASSERT(current_address + skip <= reinterpret_cast<Address>(limit));
ASSERT(skip > 0);
current_address += skip - kPointerSize;
current = reinterpret_cast<Object**>(current_address);
continue;
}
// Skip the current linear allocation space between top and limit which is
// unmarked with the free space map, but can contain junk.
if (current_address == special_garbage_start &&
special_garbage_end != special_garbage_start) {
current_address = special_garbage_end - kPointerSize;
current = reinterpret_cast<Object**>(current_address);
continue;
}
if (!(*filter)(current)) continue;
ASSERT(current_address < special_garbage_start ||
current_address >= special_garbage_end);
ASSERT(reinterpret_cast<uintptr_t>(o) != kFreeListZapValue);
// We have to check that the pointer does not point into new space
// without trying to cast it to a heap object since the hash field of
// a string can contain values like 1 and 3 which are tagged null
// pointers.
if (!heap->InNewSpace(o)) continue;
while (**store_buffer_position < current &&
*store_buffer_position < store_buffer_top) {
(*store_buffer_position)++;
}
if (**store_buffer_position != current ||
*store_buffer_position == store_buffer_top) {
Object** obj_start = current;
while (!(*obj_start)->IsMap()) obj_start--;
UNREACHABLE();
}
}
}
// Check that the store buffer contains all intergenerational pointers by
// scanning a page and ensuring that all pointers to young space are in the
// store buffer.
void Heap::OldPointerSpaceCheckStoreBuffer() {
OldSpace* space = old_pointer_space();
PageIterator pages(space);
store_buffer()->SortUniq();
while (pages.has_next()) {
Page* page = pages.next();
Object** current = reinterpret_cast<Object**>(page->ObjectAreaStart());
Address end = page->ObjectAreaEnd();
Object*** store_buffer_position = store_buffer()->Start();
Object*** store_buffer_top = store_buffer()->Top();
Object** limit = reinterpret_cast<Object**>(end);
CheckStoreBuffer(this,
current,
limit,
&store_buffer_position,
store_buffer_top,
&EverythingsAPointer,
space->top(),
space->limit());
}
}
void Heap::MapSpaceCheckStoreBuffer() {
MapSpace* space = map_space();
PageIterator pages(space);
store_buffer()->SortUniq();
while (pages.has_next()) {
Page* page = pages.next();
Object** current = reinterpret_cast<Object**>(page->ObjectAreaStart());
Address end = page->ObjectAreaEnd();
Object*** store_buffer_position = store_buffer()->Start();
Object*** store_buffer_top = store_buffer()->Top();
Object** limit = reinterpret_cast<Object**>(end);
CheckStoreBuffer(this,
current,
limit,
&store_buffer_position,
store_buffer_top,
&IsAMapPointerAddress,
space->top(),
space->limit());
}
}
void Heap::LargeObjectSpaceCheckStoreBuffer() {
LargeObjectIterator it(lo_space());
for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
// We only have code, sequential strings, or fixed arrays in large
// object space, and only fixed arrays can possibly contain pointers to
// the young generation.
if (object->IsFixedArray()) {
Object*** store_buffer_position = store_buffer()->Start();
Object*** store_buffer_top = store_buffer()->Top();
Object** current = reinterpret_cast<Object**>(object->address());
Object** limit =
reinterpret_cast<Object**>(object->address() + object->Size());
CheckStoreBuffer(this,
current,
limit,
&store_buffer_position,
store_buffer_top,
&EverythingsAPointer,
NULL,
NULL);
}
}
}
#endif
void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) {
IterateStrongRoots(v, mode);
IterateWeakRoots(v, mode);
}
void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) {
v->VisitPointer(reinterpret_cast<Object**>(&roots_[kSymbolTableRootIndex]));
v->Synchronize(VisitorSynchronization::kSymbolTable);
if (mode != VISIT_ALL_IN_SCAVENGE &&
mode != VISIT_ALL_IN_SWEEP_NEWSPACE) {
// Scavenge collections have special processing for this.
external_string_table_.Iterate(v);
}
v->Synchronize(VisitorSynchronization::kExternalStringsTable);
}
void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) {
v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]);
v->Synchronize(VisitorSynchronization::kStrongRootList);
v->VisitPointer(BitCast<Object**>(&hidden_symbol_));
v->Synchronize(VisitorSynchronization::kSymbol);
isolate_->bootstrapper()->Iterate(v);
v->Synchronize(VisitorSynchronization::kBootstrapper);
isolate_->Iterate(v);
v->Synchronize(VisitorSynchronization::kTop);
Relocatable::Iterate(v);
v->Synchronize(VisitorSynchronization::kRelocatable);
#ifdef ENABLE_DEBUGGER_SUPPORT
isolate_->debug()->Iterate(v);
if (isolate_->deoptimizer_data() != NULL) {
isolate_->deoptimizer_data()->Iterate(v);
}
#endif
v->Synchronize(VisitorSynchronization::kDebug);
isolate_->compilation_cache()->Iterate(v);
v->Synchronize(VisitorSynchronization::kCompilationCache);
// Iterate over local handles in handle scopes.
isolate_->handle_scope_implementer()->Iterate(v);
v->Synchronize(VisitorSynchronization::kHandleScope);
// Iterate over the builtin code objects and code stubs in the
// heap. Note that it is not necessary to iterate over code objects
// on scavenge collections.
if (mode != VISIT_ALL_IN_SCAVENGE) {
isolate_->builtins()->IterateBuiltins(v);
}
v->Synchronize(VisitorSynchronization::kBuiltins);
// Iterate over global handles.
switch (mode) {
case VISIT_ONLY_STRONG:
isolate_->global_handles()->IterateStrongRoots(v);
break;
case VISIT_ALL_IN_SCAVENGE:
isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v);
break;
case VISIT_ALL_IN_SWEEP_NEWSPACE:
case VISIT_ALL:
isolate_->global_handles()->IterateAllRoots(v);
break;
}
v->Synchronize(VisitorSynchronization::kGlobalHandles);
// Iterate over pointers being held by inactive threads.
isolate_->thread_manager()->Iterate(v);
v->Synchronize(VisitorSynchronization::kThreadManager);
// Iterate over the pointers the Serialization/Deserialization code is
// holding.
// During garbage collection this keeps the partial snapshot cache alive.
// During deserialization of the startup snapshot this creates the partial
// snapshot cache and deserializes the objects it refers to. During
// serialization this does nothing, since the partial snapshot cache is
// empty. However the next thing we do is create the partial snapshot,
// filling up the partial snapshot cache with objects it needs as we go.
SerializerDeserializer::Iterate(v);
// We don't do a v->Synchronize call here, because in debug mode that will
// output a flag to the snapshot. However at this point the serializer and
// deserializer are deliberately a little unsynchronized (see above) so the
// checking of the sync flag in the snapshot would fail.
}
// TODO(1236194): Since the heap size is configurable on the command line
// and through the API, we should gracefully handle the case that the heap
// size is not big enough to fit all the initial objects.
bool Heap::ConfigureHeap(int max_semispace_size,
intptr_t max_old_gen_size,
intptr_t max_executable_size) {
if (HasBeenSetup()) return false;
if (max_semispace_size > 0) {
if (max_semispace_size < Page::kPageSize) {
max_semispace_size = Page::kPageSize;
if (FLAG_trace_gc) {
PrintF("Max semispace size cannot be less than %dkbytes\n",
Page::kPageSize >> 10);
}
}
max_semispace_size_ = max_semispace_size;
}
if (Snapshot::IsEnabled()) {
// If we are using a snapshot we always reserve the default amount
// of memory for each semispace because code in the snapshot has
// write-barrier code that relies on the size and alignment of new
// space. We therefore cannot use a larger max semispace size
// than the default reserved semispace size.
if (max_semispace_size_ > reserved_semispace_size_) {
max_semispace_size_ = reserved_semispace_size_;
if (FLAG_trace_gc) {
PrintF("Max semispace size cannot be more than %dkbytes\n",
reserved_semispace_size_ >> 10);
}
}
} else {
// If we are not using snapshots we reserve space for the actual
// max semispace size.
reserved_semispace_size_ = max_semispace_size_;
}
if (max_old_gen_size > 0) max_old_generation_size_ = max_old_gen_size;
if (max_executable_size > 0) {
max_executable_size_ = RoundUp(max_executable_size, Page::kPageSize);
}
// The max executable size must be less than or equal to the max old
// generation size.
if (max_executable_size_ > max_old_generation_size_) {
max_executable_size_ = max_old_generation_size_;
}
// The new space size must be a power of two to support single-bit testing
// for containment.
max_semispace_size_ = RoundUpToPowerOf2(max_semispace_size_);
reserved_semispace_size_ = RoundUpToPowerOf2(reserved_semispace_size_);
initial_semispace_size_ = Min(initial_semispace_size_, max_semispace_size_);
external_allocation_limit_ = 10 * max_semispace_size_;
// The old generation is paged and needs at least one page for each space.
int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1;
max_old_generation_size_ = Max(static_cast<intptr_t>(paged_space_count *
Page::kPageSize),
RoundUp(max_old_generation_size_,
Page::kPageSize));
configured_ = true;
return true;
}
bool Heap::ConfigureHeapDefault() {
return ConfigureHeap(static_cast<intptr_t>(FLAG_max_new_space_size / 2) * KB,
static_cast<intptr_t>(FLAG_max_old_space_size) * MB,
static_cast<intptr_t>(FLAG_max_executable_size) * MB);
}
void Heap::RecordStats(HeapStats* stats, bool take_snapshot) {
*stats->start_marker = HeapStats::kStartMarker;
*stats->end_marker = HeapStats::kEndMarker;
*stats->new_space_size = new_space_.SizeAsInt();
*stats->new_space_capacity = static_cast<int>(new_space_.Capacity());
*stats->old_pointer_space_size = old_pointer_space_->Size();
*stats->old_pointer_space_capacity = old_pointer_space_->Capacity();
*stats->old_data_space_size = old_data_space_->Size();
*stats->old_data_space_capacity = old_data_space_->Capacity();
*stats->code_space_size = code_space_->Size();
*stats->code_space_capacity = code_space_->Capacity();
*stats->map_space_size = map_space_->Size();
*stats->map_space_capacity = map_space_->Capacity();
*stats->cell_space_size = cell_space_->Size();
*stats->cell_space_capacity = cell_space_->Capacity();
*stats->lo_space_size = lo_space_->Size();
isolate_->global_handles()->RecordStats(stats);
*stats->memory_allocator_size = isolate()->memory_allocator()->Size();
*stats->memory_allocator_capacity =
isolate()->memory_allocator()->Size() +
isolate()->memory_allocator()->Available();
*stats->os_error = OS::GetLastError();
isolate()->memory_allocator()->Available();
if (take_snapshot) {
HeapIterator iterator;
for (HeapObject* obj = iterator.next();
obj != NULL;
obj = iterator.next()) {
InstanceType type = obj->map()->instance_type();
ASSERT(0 <= type && type <= LAST_TYPE);
stats->objects_per_type[type]++;
stats->size_per_type[type] += obj->Size();
}
}
}
intptr_t Heap::PromotedSpaceSize() {
return old_pointer_space_->Size()
+ old_data_space_->Size()
+ code_space_->Size()
+ map_space_->Size()
+ cell_space_->Size()
+ lo_space_->Size();
}
int Heap::PromotedExternalMemorySize() {
if (amount_of_external_allocated_memory_
<= amount_of_external_allocated_memory_at_last_global_gc_) return 0;
return amount_of_external_allocated_memory_
- amount_of_external_allocated_memory_at_last_global_gc_;
}
#ifdef DEBUG
// Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
static const int kMarkTag = 2;
class HeapDebugUtils {
public:
explicit HeapDebugUtils(Heap* heap)
: search_for_any_global_(false),
search_target_(NULL),
found_target_(false),
object_stack_(20),
heap_(heap) {
}
class MarkObjectVisitor : public ObjectVisitor {
public:
explicit MarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
void VisitPointers(Object** start, Object** end) {
// Copy all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject())
utils_->MarkObjectRecursively(p);
}
}
HeapDebugUtils* utils_;
};
void MarkObjectRecursively(Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Object* map = obj->map();
if (!map->IsHeapObject()) return; // visited before
if (found_target_) return; // stop if target found
object_stack_.Add(obj);
if ((search_for_any_global_ && obj->IsJSGlobalObject()) ||
(!search_for_any_global_ && (obj == search_target_))) {
found_target_ = true;
return;
}
// not visited yet
Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
Address map_addr = map_p->address();
obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
MarkObjectRecursively(&map);
MarkObjectVisitor mark_visitor(this);
obj->IterateBody(map_p->instance_type(), obj->SizeFromMap(map_p),
&mark_visitor);
if (!found_target_) // don't pop if found the target
object_stack_.RemoveLast();
}
class UnmarkObjectVisitor : public ObjectVisitor {
public:
explicit UnmarkObjectVisitor(HeapDebugUtils* utils) : utils_(utils) { }
void VisitPointers(Object** start, Object** end) {
// Copy all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject())
utils_->UnmarkObjectRecursively(p);
}
}
HeapDebugUtils* utils_;
};
void UnmarkObjectRecursively(Object** p) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Object* map = obj->map();
if (map->IsHeapObject()) return; // unmarked already
Address map_addr = reinterpret_cast<Address>(map);
map_addr -= kMarkTag;
ASSERT_TAG_ALIGNED(map_addr);
HeapObject* map_p = HeapObject::FromAddress(map_addr);
obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
UnmarkObjectRecursively(reinterpret_cast<Object**>(&map_p));
UnmarkObjectVisitor unmark_visitor(this);
obj->IterateBody(Map::cast(map_p)->instance_type(),
obj->SizeFromMap(Map::cast(map_p)),
&unmark_visitor);
}
void MarkRootObjectRecursively(Object** root) {
if (search_for_any_global_) {
ASSERT(search_target_ == NULL);
} else {
ASSERT(search_target_->IsHeapObject());
}
found_target_ = false;
object_stack_.Clear();
MarkObjectRecursively(root);
UnmarkObjectRecursively(root);
if (found_target_) {
PrintF("=====================================\n");
PrintF("==== Path to object ====\n");
PrintF("=====================================\n\n");
ASSERT(!object_stack_.is_empty());
for (int i = 0; i < object_stack_.length(); i++) {
if (i > 0) PrintF("\n |\n |\n V\n\n");
Object* obj = object_stack_[i];
obj->Print();
}
PrintF("=====================================\n");
}
}
// Helper class for visiting HeapObjects recursively.
class MarkRootVisitor: public ObjectVisitor {
public:
explicit MarkRootVisitor(HeapDebugUtils* utils) : utils_(utils) { }
void VisitPointers(Object** start, Object** end) {
// Visit all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject())
utils_->MarkRootObjectRecursively(p);
}
}
HeapDebugUtils* utils_;
};
bool search_for_any_global_;
Object* search_target_;
bool found_target_;
List<Object*> object_stack_;
Heap* heap_;
friend class Heap;
};
#endif
bool Heap::Setup(bool create_heap_objects) {
#ifdef DEBUG
allocation_timeout_ = FLAG_gc_interval;
debug_utils_ = new HeapDebugUtils(this);
#endif
// Initialize heap spaces and initial maps and objects. Whenever something
// goes wrong, just return false. The caller should check the results and
// call Heap::TearDown() to release allocated memory.
//
// If the heap is not yet configured (eg, through the API), configure it.
// Configuration is based on the flags new-space-size (really the semispace
// size) and old-space-size if set or the initial values of semispace_size_
// and old_generation_size_ otherwise.
if (!configured_) {
if (!ConfigureHeapDefault()) return false;
}
gc_initializer_mutex->Lock();
static bool initialized_gc = false;
if (!initialized_gc) {
initialized_gc = true;
InitializeScavengingVisitorsTables();
NewSpaceScavenger::Initialize();
MarkCompactCollector::Initialize();
}
gc_initializer_mutex->Unlock();
MarkMapPointersAsEncoded(false);
// Setup memory allocator.
if (!isolate_->memory_allocator()->Setup(MaxReserved(), MaxExecutableSize()))
return false;
// Setup new space.
if (!new_space_.Setup(reserved_semispace_size_, max_semispace_size_)) {
return false;
}
// Initialize old pointer space.
old_pointer_space_ =
new OldSpace(this,
max_old_generation_size_,
OLD_POINTER_SPACE,
NOT_EXECUTABLE);
if (old_pointer_space_ == NULL) return false;
if (!old_pointer_space_->Setup()) return false;
// Initialize old data space.
old_data_space_ =
new OldSpace(this,
max_old_generation_size_,
OLD_DATA_SPACE,
NOT_EXECUTABLE);
if (old_data_space_ == NULL) return false;
if (!old_data_space_->Setup()) return false;
// Initialize the code space, set its maximum capacity to the old
// generation size. It needs executable memory.
// On 64-bit platform(s), we put all code objects in a 2 GB range of
// virtual address space, so that they can call each other with near calls.
if (code_range_size_ > 0) {
if (!isolate_->code_range()->Setup(code_range_size_)) {
return false;
}
}
code_space_ =
new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE);
if (code_space_ == NULL) return false;
if (!code_space_->Setup()) return false;
// Initialize map space.
map_space_ = new MapSpace(this,
max_old_generation_size_,
FLAG_max_map_space_pages,
MAP_SPACE);
if (map_space_ == NULL) return false;
if (!map_space_->Setup()) return false;
// Initialize global property cell space.
cell_space_ = new CellSpace(this, max_old_generation_size_, CELL_SPACE);
if (cell_space_ == NULL) return false;
if (!cell_space_->Setup()) return false;
// The large object code space may contain code or data. We set the memory
// to be non-executable here for safety, but this means we need to enable it
// explicitly when allocating large code objects.
lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE);
if (lo_space_ == NULL) return false;
if (!lo_space_->Setup()) return false;
if (create_heap_objects) {
// Create initial maps.
if (!CreateInitialMaps()) return false;
if (!CreateApiObjects()) return false;
// Create initial objects
if (!CreateInitialObjects()) return false;
global_contexts_list_ = undefined_value();
}
LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity()));
LOG(isolate_, IntPtrTEvent("heap-available", Available()));
store_buffer()->Setup();
return true;
}
void Heap::SetStackLimits() {
ASSERT(isolate_ != NULL);
ASSERT(isolate_ == isolate());
// On 64 bit machines, pointers are generally out of range of Smis. We write
// something that looks like an out of range Smi to the GC.
// Set up the special root array entries containing the stack limits.
// These are actually addresses, but the tag makes the GC ignore it.
roots_[kStackLimitRootIndex] =
reinterpret_cast<Object*>(
(isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag);
roots_[kRealStackLimitRootIndex] =
reinterpret_cast<Object*>(
(isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag);
}
void Heap::TearDown() {
if (FLAG_print_cumulative_gc_stat) {
PrintF("\n\n");
PrintF("gc_count=%d ", gc_count_);
PrintF("mark_sweep_count=%d ", ms_count_);
PrintF("max_gc_pause=%d ", get_max_gc_pause());
PrintF("min_in_mutator=%d ", get_min_in_mutator());
PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ",
get_max_alive_after_gc());
PrintF("\n\n");
}
isolate_->global_handles()->TearDown();
external_string_table_.TearDown();
new_space_.TearDown();
if (old_pointer_space_ != NULL) {
old_pointer_space_->TearDown();
delete old_pointer_space_;
old_pointer_space_ = NULL;
}
if (old_data_space_ != NULL) {
old_data_space_->TearDown();
delete old_data_space_;
old_data_space_ = NULL;
}
if (code_space_ != NULL) {
code_space_->TearDown();
delete code_space_;
code_space_ = NULL;
}
if (map_space_ != NULL) {
map_space_->TearDown();
delete map_space_;
map_space_ = NULL;
}
if (cell_space_ != NULL) {
cell_space_->TearDown();
delete cell_space_;
cell_space_ = NULL;
}
if (lo_space_ != NULL) {
lo_space_->TearDown();
delete lo_space_;
lo_space_ = NULL;
}
store_buffer()->TearDown();
incremental_marking()->TearDown();
isolate_->memory_allocator()->TearDown();
#ifdef DEBUG
delete debug_utils_;
debug_utils_ = NULL;
#endif
}
void Heap::Shrink() {
// Try to shrink all paged spaces.
PagedSpaces spaces;
for (PagedSpace* space = spaces.next();
space != NULL;
space = spaces.next()) {
space->ReleaseAllUnusedPages();
}
}
void Heap::AddGCPrologueCallback(GCPrologueCallback callback, GCType gc_type) {
ASSERT(callback != NULL);
GCPrologueCallbackPair pair(callback, gc_type);
ASSERT(!gc_prologue_callbacks_.Contains(pair));
return gc_prologue_callbacks_.Add(pair);
}
void Heap::RemoveGCPrologueCallback(GCPrologueCallback callback) {
ASSERT(callback != NULL);
for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) {
if (gc_prologue_callbacks_[i].callback == callback) {
gc_prologue_callbacks_.Remove(i);
return;
}
}
UNREACHABLE();
}
void Heap::AddGCEpilogueCallback(GCEpilogueCallback callback, GCType gc_type) {
ASSERT(callback != NULL);
GCEpilogueCallbackPair pair(callback, gc_type);
ASSERT(!gc_epilogue_callbacks_.Contains(pair));
return gc_epilogue_callbacks_.Add(pair);
}
void Heap::RemoveGCEpilogueCallback(GCEpilogueCallback callback) {
ASSERT(callback != NULL);
for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) {
if (gc_epilogue_callbacks_[i].callback == callback) {
gc_epilogue_callbacks_.Remove(i);
return;
}
}
UNREACHABLE();
}
#ifdef DEBUG
class PrintHandleVisitor: public ObjectVisitor {
public:
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++)
PrintF(" handle %p to %p\n",
reinterpret_cast<void*>(p),
reinterpret_cast<void*>(*p));
}
};
void Heap::PrintHandles() {
PrintF("Handles:\n");
PrintHandleVisitor v;
isolate_->handle_scope_implementer()->Iterate(&v);
}
#endif
Space* AllSpaces::next() {
switch (counter_++) {
case NEW_SPACE:
return HEAP->new_space();
case OLD_POINTER_SPACE:
return HEAP->old_pointer_space();
case OLD_DATA_SPACE:
return HEAP->old_data_space();
case CODE_SPACE:
return HEAP->code_space();
case MAP_SPACE:
return HEAP->map_space();
case CELL_SPACE:
return HEAP->cell_space();
case LO_SPACE:
return HEAP->lo_space();
default:
return NULL;
}
}
PagedSpace* PagedSpaces::next() {
switch (counter_++) {
case OLD_POINTER_SPACE:
return HEAP->old_pointer_space();
case OLD_DATA_SPACE:
return HEAP->old_data_space();
case CODE_SPACE:
return HEAP->code_space();
case MAP_SPACE:
return HEAP->map_space();
case CELL_SPACE:
return HEAP->cell_space();
default:
return NULL;
}
}
OldSpace* OldSpaces::next() {
switch (counter_++) {
case OLD_POINTER_SPACE:
return HEAP->old_pointer_space();
case OLD_DATA_SPACE:
return HEAP->old_data_space();
case CODE_SPACE:
return HEAP->code_space();
default:
return NULL;
}
}
SpaceIterator::SpaceIterator()
: current_space_(FIRST_SPACE),
iterator_(NULL),
size_func_(NULL) {
}
SpaceIterator::SpaceIterator(HeapObjectCallback size_func)
: current_space_(FIRST_SPACE),
iterator_(NULL),
size_func_(size_func) {
}
SpaceIterator::~SpaceIterator() {
// Delete active iterator if any.
delete iterator_;
}
bool SpaceIterator::has_next() {
// Iterate until no more spaces.
return current_space_ != LAST_SPACE;
}
ObjectIterator* SpaceIterator::next() {
if (iterator_ != NULL) {
delete iterator_;
iterator_ = NULL;
// Move to the next space
current_space_++;
if (current_space_ > LAST_SPACE) {
return NULL;
}
}
// Return iterator for the new current space.
return CreateIterator();
}
// Create an iterator for the space to iterate.
ObjectIterator* SpaceIterator::CreateIterator() {
ASSERT(iterator_ == NULL);
switch (current_space_) {
case NEW_SPACE:
iterator_ = new SemiSpaceIterator(HEAP->new_space(), size_func_);
break;
case OLD_POINTER_SPACE:
iterator_ = new HeapObjectIterator(HEAP->old_pointer_space(), size_func_);
break;
case OLD_DATA_SPACE:
iterator_ = new HeapObjectIterator(HEAP->old_data_space(), size_func_);
break;
case CODE_SPACE:
iterator_ = new HeapObjectIterator(HEAP->code_space(), size_func_);
break;
case MAP_SPACE:
iterator_ = new HeapObjectIterator(HEAP->map_space(), size_func_);
break;
case CELL_SPACE:
iterator_ = new HeapObjectIterator(HEAP->cell_space(), size_func_);
break;
case LO_SPACE:
iterator_ = new LargeObjectIterator(HEAP->lo_space(), size_func_);
break;
}
// Return the newly allocated iterator;
ASSERT(iterator_ != NULL);
return iterator_;
}
class HeapObjectsFilter {
public:
virtual ~HeapObjectsFilter() {}
virtual bool SkipObject(HeapObject* object) = 0;
};
class UnreachableObjectsFilter : public HeapObjectsFilter {
public:
UnreachableObjectsFilter() {
MarkReachableObjects();
}
~UnreachableObjectsFilter() {
Isolate::Current()->heap()->mark_compact_collector()->ClearMarkbits();
}
bool SkipObject(HeapObject* object) {
MarkBit mark_bit = Marking::MarkBitFrom(object);
return !mark_bit.Get();
}
private:
class MarkingVisitor : public ObjectVisitor {
public:
MarkingVisitor() : marking_stack_(10) {}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) {
if (!(*p)->IsHeapObject()) continue;
HeapObject* obj = HeapObject::cast(*p);
MarkBit mark_bit = Marking::MarkBitFrom(obj);
if (!mark_bit.Get()) {
mark_bit.Set();
marking_stack_.Add(obj);
}
}
}
void TransitiveClosure() {
while (!marking_stack_.is_empty()) {
HeapObject* obj = marking_stack_.RemoveLast();
obj->Iterate(this);
}
}
private:
List<HeapObject*> marking_stack_;
};
void MarkReachableObjects() {
Heap* heap = Isolate::Current()->heap();
MarkingVisitor visitor;
heap->IterateRoots(&visitor, VISIT_ALL);
visitor.TransitiveClosure();
}
AssertNoAllocation no_alloc;
};
HeapIterator::HeapIterator()
: filtering_(HeapIterator::kNoFiltering),
filter_(NULL) {
Init();
}
HeapIterator::HeapIterator(HeapIterator::HeapObjectsFiltering filtering)
: filtering_(filtering),
filter_(NULL) {
Init();
}
HeapIterator::~HeapIterator() {
Shutdown();
}
void HeapIterator::Init() {
// Start the iteration.
space_iterator_ = new SpaceIterator;
switch (filtering_) {
case kFilterUnreachable:
filter_ = new UnreachableObjectsFilter;
break;
default:
break;
}
object_iterator_ = space_iterator_->next();
}
void HeapIterator::Shutdown() {
#ifdef DEBUG
// Assert that in filtering mode we have iterated through all
// objects. Otherwise, heap will be left in an inconsistent state.
if (filtering_ != kNoFiltering) {
ASSERT(object_iterator_ == NULL);
}
#endif
// Make sure the last iterator is deallocated.
delete space_iterator_;
space_iterator_ = NULL;
object_iterator_ = NULL;
delete filter_;
filter_ = NULL;
}
HeapObject* HeapIterator::next() {
if (filter_ == NULL) return NextObject();
HeapObject* obj = NextObject();
while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject();
return obj;
}
HeapObject* HeapIterator::NextObject() {
// No iterator means we are done.
if (object_iterator_ == NULL) return NULL;
if (HeapObject* obj = object_iterator_->next_object()) {
// If the current iterator has more objects we are fine.
return obj;
} else {
// Go though the spaces looking for one that has objects.
while (space_iterator_->has_next()) {
object_iterator_ = space_iterator_->next();
if (HeapObject* obj = object_iterator_->next_object()) {
return obj;
}
}
}
// Done with the last space.
object_iterator_ = NULL;
return NULL;
}
void HeapIterator::reset() {
// Restart the iterator.
Shutdown();
Init();
}
#if defined(DEBUG) || defined(LIVE_OBJECT_LIST)
Object* const PathTracer::kAnyGlobalObject = reinterpret_cast<Object*>(NULL);
class PathTracer::MarkVisitor: public ObjectVisitor {
public:
explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
void VisitPointers(Object** start, Object** end) {
// Scan all HeapObject pointers in [start, end)
for (Object** p = start; !tracer_->found() && (p < end); p++) {
if ((*p)->IsHeapObject())
tracer_->MarkRecursively(p, this);
}
}
private:
PathTracer* tracer_;
};
class PathTracer::UnmarkVisitor: public ObjectVisitor {
public:
explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {}
void VisitPointers(Object** start, Object** end) {
// Scan all HeapObject pointers in [start, end)
for (Object** p = start; p < end; p++) {
if ((*p)->IsHeapObject())
tracer_->UnmarkRecursively(p, this);
}
}
private:
PathTracer* tracer_;
};
void PathTracer::VisitPointers(Object** start, Object** end) {
bool done = ((what_to_find_ == FIND_FIRST) && found_target_);
// Visit all HeapObject pointers in [start, end)
for (Object** p = start; !done && (p < end); p++) {
if ((*p)->IsHeapObject()) {
TracePathFrom(p);
done = ((what_to_find_ == FIND_FIRST) && found_target_);
}
}
}
void PathTracer::Reset() {
found_target_ = false;
object_stack_.Clear();
}
void PathTracer::TracePathFrom(Object** root) {
ASSERT((search_target_ == kAnyGlobalObject) ||
search_target_->IsHeapObject());
found_target_in_trace_ = false;
object_stack_.Clear();
MarkVisitor mark_visitor(this);
MarkRecursively(root, &mark_visitor);
UnmarkVisitor unmark_visitor(this);
UnmarkRecursively(root, &unmark_visitor);
ProcessResults();
}
static bool SafeIsGlobalContext(HeapObject* obj) {
return obj->map() == obj->GetHeap()->raw_unchecked_global_context_map();
}
void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Object* map = obj->map();
if (!map->IsHeapObject()) return; // visited before
if (found_target_in_trace_) return; // stop if target found
object_stack_.Add(obj);
if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) ||
(obj == search_target_)) {
found_target_in_trace_ = true;
found_target_ = true;
return;
}
bool is_global_context = SafeIsGlobalContext(obj);
// not visited yet
Map* map_p = reinterpret_cast<Map*>(HeapObject::cast(map));
Address map_addr = map_p->address();
obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_addr + kMarkTag));
// Scan the object body.
if (is_global_context && (visit_mode_ == VISIT_ONLY_STRONG)) {
// This is specialized to scan Context's properly.
Object** start = reinterpret_cast<Object**>(obj->address() +
Context::kHeaderSize);
Object** end = reinterpret_cast<Object**>(obj->address() +
Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize);
mark_visitor->VisitPointers(start, end);
} else {
obj->IterateBody(map_p->instance_type(),
obj->SizeFromMap(map_p),
mark_visitor);
}
// Scan the map after the body because the body is a lot more interesting
// when doing leak detection.
MarkRecursively(&map, mark_visitor);
if (!found_target_in_trace_) // don't pop if found the target
object_stack_.RemoveLast();
}
void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) {
if (!(*p)->IsHeapObject()) return;
HeapObject* obj = HeapObject::cast(*p);
Object* map = obj->map();
if (map->IsHeapObject()) return; // unmarked already
Address map_addr = reinterpret_cast<Address>(map);
map_addr -= kMarkTag;
ASSERT_TAG_ALIGNED(map_addr);
HeapObject* map_p = HeapObject::FromAddress(map_addr);
obj->set_map_no_write_barrier(reinterpret_cast<Map*>(map_p));
UnmarkRecursively(reinterpret_cast<Object**>(&map_p), unmark_visitor);
obj->IterateBody(Map::cast(map_p)->instance_type(),
obj->SizeFromMap(Map::cast(map_p)),
unmark_visitor);
}
void PathTracer::ProcessResults() {
if (found_target_) {
PrintF("=====================================\n");
PrintF("==== Path to object ====\n");
PrintF("=====================================\n\n");
ASSERT(!object_stack_.is_empty());
for (int i = 0; i < object_stack_.length(); i++) {
if (i > 0) PrintF("\n |\n |\n V\n\n");
Object* obj = object_stack_[i];
#ifdef OBJECT_PRINT
obj->Print();
#else
obj->ShortPrint();
#endif
}
PrintF("=====================================\n");
}
}
#endif // DEBUG || LIVE_OBJECT_LIST
#ifdef DEBUG
// Triggers a depth-first traversal of reachable objects from roots
// and finds a path to a specific heap object and prints it.
void Heap::TracePathToObject(Object* target) {
PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL);
IterateRoots(&tracer, VISIT_ONLY_STRONG);
}
// Triggers a depth-first traversal of reachable objects from roots
// and finds a path to any global object and prints it. Useful for
// determining the source for leaks of global objects.
void Heap::TracePathToGlobal() {
PathTracer tracer(PathTracer::kAnyGlobalObject,
PathTracer::FIND_ALL,
VISIT_ALL);
IterateRoots(&tracer, VISIT_ONLY_STRONG);
}
#endif
static intptr_t CountTotalHolesSize() {
intptr_t holes_size = 0;
OldSpaces spaces;
for (OldSpace* space = spaces.next();
space != NULL;
space = spaces.next()) {
holes_size += space->Waste() + space->Available();
}
return holes_size;
}
GCTracer::GCTracer(Heap* heap)
: start_time_(0.0),
start_size_(0),
gc_count_(0),
full_gc_count_(0),
allocated_since_last_gc_(0),
spent_in_mutator_(0),
promoted_objects_size_(0),
heap_(heap) {
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
start_time_ = OS::TimeCurrentMillis();
start_size_ = heap_->SizeOfObjects();
for (int i = 0; i < Scope::kNumberOfScopes; i++) {
scopes_[i] = 0;
}
in_free_list_or_wasted_before_gc_ = CountTotalHolesSize();
allocated_since_last_gc_ =
heap_->SizeOfObjects() - heap_->alive_after_last_gc_;
if (heap_->last_gc_end_timestamp_ > 0) {
spent_in_mutator_ = Max(start_time_ - heap_->last_gc_end_timestamp_, 0.0);
}
steps_count_ = heap_->incremental_marking()->steps_count();
steps_took_ = heap_->incremental_marking()->steps_took();
longest_step_ = heap_->incremental_marking()->longest_step();
steps_count_since_last_gc_ =
heap_->incremental_marking()->steps_count_since_last_gc();
steps_took_since_last_gc_ =
heap_->incremental_marking()->steps_took_since_last_gc();
}
GCTracer::~GCTracer() {
// Printf ONE line iff flag is set.
if (!FLAG_trace_gc && !FLAG_print_cumulative_gc_stat) return;
bool first_gc = (heap_->last_gc_end_timestamp_ == 0);
heap_->alive_after_last_gc_ = heap_->SizeOfObjects();
heap_->last_gc_end_timestamp_ = OS::TimeCurrentMillis();
int time = static_cast<int>(heap_->last_gc_end_timestamp_ - start_time_);
// Update cumulative GC statistics if required.
if (FLAG_print_cumulative_gc_stat) {
heap_->max_gc_pause_ = Max(heap_->max_gc_pause_, time);
heap_->max_alive_after_gc_ = Max(heap_->max_alive_after_gc_,
heap_->alive_after_last_gc_);
if (!first_gc) {
heap_->min_in_mutator_ = Min(heap_->min_in_mutator_,
static_cast<int>(spent_in_mutator_));
}
}
if (!FLAG_trace_gc_nvp) {
int external_time = static_cast<int>(scopes_[Scope::EXTERNAL]);
PrintF("%s %.1f -> %.1f MB, ",
CollectorString(),
static_cast<double>(start_size_) / MB,
SizeOfHeapObjects());
if (external_time > 0) PrintF("%d / ", external_time);
PrintF("%d ms", time);
if (steps_count_ > 0) {
if (collector_ == SCAVENGER) {
PrintF(" (+ %d ms in %d steps since last GC)",
static_cast<int>(steps_took_since_last_gc_),
steps_count_since_last_gc_);
} else {
PrintF(" (+ %d ms in %d steps since start of marking, "
"biggest step %f ms)",
static_cast<int>(steps_took_),
steps_count_,
longest_step_);
}
}
PrintF(".\n");
} else {
PrintF("pause=%d ", time);
PrintF("mutator=%d ",
static_cast<int>(spent_in_mutator_));
PrintF("gc=");
switch (collector_) {
case SCAVENGER:
PrintF("s");
break;
case MARK_COMPACTOR:
PrintF("ms");
break;
default:
UNREACHABLE();
}
PrintF(" ");
PrintF("external=%d ", static_cast<int>(scopes_[Scope::EXTERNAL]));
PrintF("mark=%d ", static_cast<int>(scopes_[Scope::MC_MARK]));
PrintF("sweep=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP]));
PrintF("sweepns=%d ", static_cast<int>(scopes_[Scope::MC_SWEEP_NEWSPACE]));
PrintF("evacuate=%d ", static_cast<int>(scopes_[Scope::MC_EVACUATE_PAGES]));
PrintF("new_new=%d ",
static_cast<int>(scopes_[Scope::MC_UPDATE_NEW_TO_NEW_POINTERS]));
PrintF("root_new=%d ",
static_cast<int>(scopes_[Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS]));
PrintF("old_new=%d ",
static_cast<int>(scopes_[Scope::MC_UPDATE_OLD_TO_NEW_POINTERS]));
PrintF("compaction_ptrs=%d ",
static_cast<int>(scopes_[Scope::MC_UPDATE_POINTERS_TO_EVACUATED]));
PrintF("intracompaction_ptrs=%d ", static_cast<int>(scopes_[
Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED]));
PrintF("misc_compaction=%d ",
static_cast<int>(scopes_[Scope::MC_UPDATE_MISC_POINTERS]));
PrintF("total_size_before=%" V8_PTR_PREFIX "d ", start_size_);
PrintF("total_size_after=%" V8_PTR_PREFIX "d ", heap_->SizeOfObjects());
PrintF("holes_size_before=%" V8_PTR_PREFIX "d ",
in_free_list_or_wasted_before_gc_);
PrintF("holes_size_after=%" V8_PTR_PREFIX "d ", CountTotalHolesSize());
PrintF("allocated=%" V8_PTR_PREFIX "d ", allocated_since_last_gc_);
PrintF("promoted=%" V8_PTR_PREFIX "d ", promoted_objects_size_);
if (collector_ == SCAVENGER) {
PrintF("stepscount=%d ", steps_count_since_last_gc_);
PrintF("stepstook=%d ", static_cast<int>(steps_took_since_last_gc_));
} else {
PrintF("stepscount=%d ", steps_count_);
PrintF("stepstook=%d ", static_cast<int>(steps_took_));
}
PrintF("\n");
}
heap_->PrintShortHeapStatistics();
}
const char* GCTracer::CollectorString() {
switch (collector_) {
case SCAVENGER:
return "Scavenge";
case MARK_COMPACTOR:
return "Mark-sweep";
}
return "Unknown GC";
}
int KeyedLookupCache::Hash(Map* map, String* name) {
// Uses only lower 32 bits if pointers are larger.
uintptr_t addr_hash =
static_cast<uint32_t>(reinterpret_cast<uintptr_t>(map)) >> kMapHashShift;
return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask);
}
int KeyedLookupCache::Lookup(Map* map, String* name) {
int index = Hash(map, name);
Key& key = keys_[index];
if ((key.map == map) && key.name->Equals(name)) {
return field_offsets_[index];
}
return kNotFound;
}
void KeyedLookupCache::Update(Map* map, String* name, int field_offset) {
String* symbol;
if (HEAP->LookupSymbolIfExists(name, &symbol)) {
int index = Hash(map, symbol);
Key& key = keys_[index];
key.map = map;
key.name = symbol;
field_offsets_[index] = field_offset;
}
}
void KeyedLookupCache::Clear() {
for (int index = 0; index < kLength; index++) keys_[index].map = NULL;
}
void DescriptorLookupCache::Clear() {
for (int index = 0; index < kLength; index++) keys_[index].array = NULL;
}
#ifdef DEBUG
void Heap::GarbageCollectionGreedyCheck() {
ASSERT(FLAG_gc_greedy);
if (isolate_->bootstrapper()->IsActive()) return;
if (disallow_allocation_failure()) return;
CollectGarbage(NEW_SPACE);
}
#endif
TranscendentalCache::SubCache::SubCache(Type t)
: type_(t),
isolate_(Isolate::Current()) {
uint32_t in0 = 0xffffffffu; // Bit-pattern for a NaN that isn't
uint32_t in1 = 0xffffffffu; // generated by the FPU.
for (int i = 0; i < kCacheSize; i++) {
elements_[i].in[0] = in0;
elements_[i].in[1] = in1;
elements_[i].output = NULL;
}
}
void TranscendentalCache::Clear() {
for (int i = 0; i < kNumberOfCaches; i++) {
if (caches_[i] != NULL) {
delete caches_[i];
caches_[i] = NULL;
}
}
}
void ExternalStringTable::CleanUp() {
int last = 0;
for (int i = 0; i < new_space_strings_.length(); ++i) {
if (new_space_strings_[i] == heap_->raw_unchecked_the_hole_value()) {
continue;
}
if (heap_->InNewSpace(new_space_strings_[i])) {
new_space_strings_[last++] = new_space_strings_[i];
} else {
old_space_strings_.Add(new_space_strings_[i]);
}
}
new_space_strings_.Rewind(last);
last = 0;
for (int i = 0; i < old_space_strings_.length(); ++i) {
if (old_space_strings_[i] == heap_->raw_unchecked_the_hole_value()) {
continue;
}
ASSERT(!heap_->InNewSpace(old_space_strings_[i]));
old_space_strings_[last++] = old_space_strings_[i];
}
old_space_strings_.Rewind(last);
if (FLAG_verify_heap) {
Verify();
}
}
void ExternalStringTable::TearDown() {
new_space_strings_.Free();
old_space_strings_.Free();
}
void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) {
chunk->set_next_chunk(chunks_queued_for_free_);
chunks_queued_for_free_ = chunk;
}
void Heap::FreeQueuedChunks() {
if (chunks_queued_for_free_ == NULL) return;
MemoryChunk* next;
MemoryChunk* chunk;
for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
next = chunk->next_chunk();
chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
if (chunk->owner()->identity() == LO_SPACE) {
// StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress.
// If FromAnyPointerAddress encounters a slot that belongs to a large
// chunk queued for deletion it will fail to find the chunk because
// it try to perform a search in the list of pages owned by of the large
// object space and queued chunks were detached from that list.
// To work around this we split large chunk into normal kPageSize aligned
// pieces and initialize size, owner and flags field of every piece.
// If FromAnyPointerAddress encounters a slot that belongs to one of
// these smaller pieces it will treat it as a slot on a normal Page.
MemoryChunk* inner = MemoryChunk::FromAddress(
chunk->address() + Page::kPageSize);
MemoryChunk* inner_last = MemoryChunk::FromAddress(
chunk->address() + chunk->size() - 1);
while (inner <= inner_last) {
// Size of a large chunk is always a multiple of
// OS::AllocateAlignment() so there is always
// enough space for a fake MemoryChunk header.
inner->set_size(Page::kPageSize);
inner->set_owner(lo_space());
inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED);
inner = MemoryChunk::FromAddress(
inner->address() + Page::kPageSize);
}
}
}
isolate_->heap()->store_buffer()->Compact();
isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED);
for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) {
next = chunk->next_chunk();
isolate_->memory_allocator()->Free(chunk);
}
chunks_queued_for_free_ = NULL;
}
} } // namespace v8::internal