|
|
|
// Copyright 2007-2009 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
// A Disassembler object is used to disassemble a block of code instruction by
|
|
|
|
// instruction. The default implementation of the NameConverter object can be
|
|
|
|
// overriden to modify register names or to do symbol lookup on addresses.
|
|
|
|
//
|
|
|
|
// The example below will disassemble a block of code and print it to stdout.
|
|
|
|
//
|
|
|
|
// NameConverter converter;
|
|
|
|
// Disassembler d(converter);
|
|
|
|
// for (byte* pc = begin; pc < end;) {
|
|
|
|
// char buffer[128];
|
|
|
|
// buffer[0] = '\0';
|
|
|
|
// byte* prev_pc = pc;
|
|
|
|
// pc += d.InstructionDecode(buffer, sizeof buffer, pc);
|
|
|
|
// printf("%p %08x %s\n",
|
|
|
|
// prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer);
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// The Disassembler class also has a convenience method to disassemble a block
|
|
|
|
// of code into a FILE*, meaning that the above functionality could also be
|
|
|
|
// achieved by just calling Disassembler::Disassemble(stdout, begin, end);
|
|
|
|
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <string.h>
|
|
|
|
#ifndef WIN32
|
|
|
|
#include <stdint.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#include "disasm.h"
|
|
|
|
#include "macro-assembler.h"
|
|
|
|
#include "platform.h"
|
|
|
|
|
|
|
|
|
|
|
|
namespace assembler {
|
|
|
|
namespace arm {
|
|
|
|
|
|
|
|
namespace v8i = v8::internal;
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
// Decoder decodes and disassembles instructions into an output buffer.
|
|
|
|
// It uses the converter to convert register names and call destinations into
|
|
|
|
// more informative description.
|
|
|
|
class Decoder {
|
|
|
|
public:
|
|
|
|
Decoder(const disasm::NameConverter& converter,
|
|
|
|
v8::internal::Vector<char> out_buffer)
|
|
|
|
: converter_(converter),
|
|
|
|
out_buffer_(out_buffer),
|
|
|
|
out_buffer_pos_(0) {
|
|
|
|
out_buffer_[out_buffer_pos_] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
~Decoder() {}
|
|
|
|
|
|
|
|
// Writes one disassembled instruction into 'buffer' (0-terminated).
|
|
|
|
// Returns the length of the disassembled machine instruction in bytes.
|
|
|
|
int InstructionDecode(byte* instruction);
|
|
|
|
|
|
|
|
private:
|
|
|
|
// Bottleneck functions to print into the out_buffer.
|
|
|
|
void PrintChar(const char ch);
|
|
|
|
void Print(const char* str);
|
|
|
|
|
|
|
|
// Printing of common values.
|
|
|
|
void PrintRegister(int reg);
|
|
|
|
void PrintCondition(Instr* instr);
|
|
|
|
void PrintShiftRm(Instr* instr);
|
|
|
|
void PrintShiftImm(Instr* instr);
|
|
|
|
void PrintPU(Instr* instr);
|
|
|
|
void PrintSoftwareInterrupt(SoftwareInterruptCodes swi);
|
|
|
|
|
|
|
|
// Handle formatting of instructions and their options.
|
|
|
|
int FormatRegister(Instr* instr, const char* option);
|
|
|
|
int FormatOption(Instr* instr, const char* option);
|
|
|
|
void Format(Instr* instr, const char* format);
|
|
|
|
void Unknown(Instr* instr);
|
|
|
|
|
|
|
|
// Each of these functions decodes one particular instruction type, a 3-bit
|
|
|
|
// field in the instruction encoding.
|
|
|
|
// Types 0 and 1 are combined as they are largely the same except for the way
|
|
|
|
// they interpret the shifter operand.
|
|
|
|
void DecodeType01(Instr* instr);
|
|
|
|
void DecodeType2(Instr* instr);
|
|
|
|
void DecodeType3(Instr* instr);
|
|
|
|
void DecodeType4(Instr* instr);
|
|
|
|
void DecodeType5(Instr* instr);
|
|
|
|
void DecodeType6(Instr* instr);
|
|
|
|
void DecodeType7(Instr* instr);
|
|
|
|
|
|
|
|
const disasm::NameConverter& converter_;
|
|
|
|
v8::internal::Vector<char> out_buffer_;
|
|
|
|
int out_buffer_pos_;
|
|
|
|
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Decoder);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Support for assertions in the Decoder formatting functions.
|
|
|
|
#define STRING_STARTS_WITH(string, compare_string) \
|
|
|
|
(strncmp(string, compare_string, strlen(compare_string)) == 0)
|
|
|
|
|
|
|
|
|
|
|
|
// Append the ch to the output buffer.
|
|
|
|
void Decoder::PrintChar(const char ch) {
|
|
|
|
out_buffer_[out_buffer_pos_++] = ch;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Append the str to the output buffer.
|
|
|
|
void Decoder::Print(const char* str) {
|
|
|
|
char cur = *str++;
|
|
|
|
while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
|
|
|
|
PrintChar(cur);
|
|
|
|
cur = *str++;
|
|
|
|
}
|
|
|
|
out_buffer_[out_buffer_pos_] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// These condition names are defined in a way to match the native disassembler
|
|
|
|
// formatting. See for example the command "objdump -d <binary file>".
|
|
|
|
static const char* cond_names[max_condition] = {
|
|
|
|
"eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" ,
|
|
|
|
"hi", "ls", "ge", "lt", "gt", "le", "", "invalid",
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Print the condition guarding the instruction.
|
|
|
|
void Decoder::PrintCondition(Instr* instr) {
|
|
|
|
Print(cond_names[instr->ConditionField()]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Print the register name according to the active name converter.
|
|
|
|
void Decoder::PrintRegister(int reg) {
|
|
|
|
Print(converter_.NameOfCPURegister(reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// These shift names are defined in a way to match the native disassembler
|
|
|
|
// formatting. See for example the command "objdump -d <binary file>".
|
|
|
|
static const char* shift_names[max_shift] = {
|
|
|
|
"lsl", "lsr", "asr", "ror"
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Print the register shift operands for the instruction. Generally used for
|
|
|
|
// data processing instructions.
|
|
|
|
void Decoder::PrintShiftRm(Instr* instr) {
|
|
|
|
Shift shift = instr->ShiftField();
|
|
|
|
int shift_amount = instr->ShiftAmountField();
|
|
|
|
int rm = instr->RmField();
|
|
|
|
|
|
|
|
PrintRegister(rm);
|
|
|
|
|
|
|
|
if ((instr->RegShiftField() == 0) && (shift == LSL) && (shift_amount == 0)) {
|
|
|
|
// Special case for using rm only.
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (instr->RegShiftField() == 0) {
|
|
|
|
// by immediate
|
|
|
|
if ((shift == ROR) && (shift_amount == 0)) {
|
|
|
|
Print(", RRX");
|
|
|
|
return;
|
|
|
|
} else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
|
|
|
|
shift_amount = 32;
|
|
|
|
}
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
", %s #%d",
|
|
|
|
shift_names[shift], shift_amount);
|
|
|
|
} else {
|
|
|
|
// by register
|
|
|
|
int rs = instr->RsField();
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
", %s ", shift_names[shift]);
|
|
|
|
PrintRegister(rs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Print the immediate operand for the instruction. Generally used for data
|
|
|
|
// processing instructions.
|
|
|
|
void Decoder::PrintShiftImm(Instr* instr) {
|
|
|
|
int rotate = instr->RotateField() * 2;
|
|
|
|
int immed8 = instr->Immed8Field();
|
|
|
|
int imm = (immed8 >> rotate) | (immed8 << (32 - rotate));
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
"#%d", imm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Print PU formatting to reduce complexity of FormatOption.
|
|
|
|
void Decoder::PrintPU(Instr* instr) {
|
|
|
|
switch (instr->PUField()) {
|
|
|
|
case 0: {
|
|
|
|
Print("da");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
Print("ia");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
Print("db");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 3: {
|
|
|
|
Print("ib");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Print SoftwareInterrupt codes. Factoring this out reduces the complexity of
|
|
|
|
// the FormatOption method.
|
|
|
|
void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes swi) {
|
|
|
|
switch (swi) {
|
|
|
|
case call_rt_redirected:
|
|
|
|
Print("call_rt_redirected");
|
|
|
|
return;
|
|
|
|
case break_point:
|
|
|
|
Print("break_point");
|
|
|
|
return;
|
|
|
|
default:
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
"%d",
|
|
|
|
swi);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Handle all register based formatting in this function to reduce the
|
|
|
|
// complexity of FormatOption.
|
|
|
|
int Decoder::FormatRegister(Instr* instr, const char* format) {
|
|
|
|
ASSERT(format[0] == 'r');
|
|
|
|
if (format[1] == 'n') { // 'rn: Rn register
|
|
|
|
int reg = instr->RnField();
|
|
|
|
PrintRegister(reg);
|
|
|
|
return 2;
|
|
|
|
} else if (format[1] == 'd') { // 'rd: Rd register
|
|
|
|
int reg = instr->RdField();
|
|
|
|
PrintRegister(reg);
|
|
|
|
return 2;
|
|
|
|
} else if (format[1] == 's') { // 'rs: Rs register
|
|
|
|
int reg = instr->RsField();
|
|
|
|
PrintRegister(reg);
|
|
|
|
return 2;
|
|
|
|
} else if (format[1] == 'm') { // 'rm: Rm register
|
|
|
|
int reg = instr->RmField();
|
|
|
|
PrintRegister(reg);
|
|
|
|
return 2;
|
|
|
|
} else if (format[1] == 'l') {
|
|
|
|
// 'rlist: register list for load and store multiple instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "rlist"));
|
|
|
|
int rlist = instr->RlistField();
|
|
|
|
int reg = 0;
|
|
|
|
Print("{");
|
|
|
|
// Print register list in ascending order, by scanning the bit mask.
|
|
|
|
while (rlist != 0) {
|
|
|
|
if ((rlist & 1) != 0) {
|
|
|
|
PrintRegister(reg);
|
|
|
|
if ((rlist >> 1) != 0) {
|
|
|
|
Print(", ");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
reg++;
|
|
|
|
rlist >>= 1;
|
|
|
|
}
|
|
|
|
Print("}");
|
|
|
|
return 5;
|
|
|
|
}
|
|
|
|
UNREACHABLE();
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// FormatOption takes a formatting string and interprets it based on
|
|
|
|
// the current instructions. The format string points to the first
|
|
|
|
// character of the option string (the option escape has already been
|
|
|
|
// consumed by the caller.) FormatOption returns the number of
|
|
|
|
// characters that were consumed from the formatting string.
|
|
|
|
int Decoder::FormatOption(Instr* instr, const char* format) {
|
|
|
|
switch (format[0]) {
|
|
|
|
case 'a': { // 'a: accumulate multiplies
|
|
|
|
if (instr->Bit(21) == 0) {
|
|
|
|
Print("ul");
|
|
|
|
} else {
|
|
|
|
Print("la");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
case 'b': { // 'b: byte loads or stores
|
|
|
|
if (instr->HasB()) {
|
|
|
|
Print("b");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
case 'c': { // 'cond: conditional execution
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "cond"));
|
|
|
|
PrintCondition(instr);
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
case 'h': { // 'h: halfword operation for extra loads and stores
|
|
|
|
if (instr->HasH()) {
|
|
|
|
Print("h");
|
|
|
|
} else {
|
|
|
|
Print("b");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
case 'l': { // 'l: branch and link
|
|
|
|
if (instr->HasLink()) {
|
|
|
|
Print("l");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
case 'm': {
|
|
|
|
if (format[1] == 'e') { // 'memop: load/store instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "memop"));
|
|
|
|
if (instr->HasL()) {
|
|
|
|
Print("ldr");
|
|
|
|
} else {
|
|
|
|
Print("str");
|
|
|
|
}
|
|
|
|
return 5;
|
|
|
|
}
|
|
|
|
// 'msg: for simulator break instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "msg"));
|
|
|
|
byte* str =
|
|
|
|
reinterpret_cast<byte*>(instr->InstructionBits() & 0x0fffffff);
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
"%s", converter_.NameInCode(str));
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
case 'o': {
|
|
|
|
if (format[3] == '1') {
|
|
|
|
// 'off12: 12-bit offset for load and store instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "off12"));
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
"%d", instr->Offset12Field());
|
|
|
|
return 5;
|
|
|
|
}
|
|
|
|
// 'off8: 8-bit offset for extra load and store instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "off8"));
|
|
|
|
int offs8 = (instr->ImmedHField() << 4) | instr->ImmedLField();
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
"%d", offs8);
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
case 'p': { // 'pu: P and U bits for load and store instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "pu"));
|
|
|
|
PrintPU(instr);
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
case 'r': {
|
|
|
|
return FormatRegister(instr, format);
|
|
|
|
}
|
|
|
|
case 's': {
|
|
|
|
if (format[1] == 'h') { // 'shift_op or 'shift_rm
|
|
|
|
if (format[6] == 'o') { // 'shift_op
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "shift_op"));
|
|
|
|
if (instr->TypeField() == 0) {
|
|
|
|
PrintShiftRm(instr);
|
|
|
|
} else {
|
|
|
|
ASSERT(instr->TypeField() == 1);
|
|
|
|
PrintShiftImm(instr);
|
|
|
|
}
|
|
|
|
return 8;
|
|
|
|
} else { // 'shift_rm
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "shift_rm"));
|
|
|
|
PrintShiftRm(instr);
|
|
|
|
return 8;
|
|
|
|
}
|
|
|
|
} else if (format[1] == 'w') { // 'swi
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "swi"));
|
|
|
|
PrintSoftwareInterrupt(instr->SwiField());
|
|
|
|
return 3;
|
|
|
|
} else if (format[1] == 'i') { // 'sign: signed extra loads and stores
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "sign"));
|
|
|
|
if (instr->HasSign()) {
|
|
|
|
Print("s");
|
|
|
|
}
|
|
|
|
return 4;
|
|
|
|
}
|
|
|
|
// 's: S field of data processing instructions
|
|
|
|
if (instr->HasS()) {
|
|
|
|
Print("s");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
case 't': { // 'target: target of branch instructions
|
|
|
|
ASSERT(STRING_STARTS_WITH(format, "target"));
|
|
|
|
int off = (instr->SImmed24Field() << 2) + 8;
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(
|
|
|
|
out_buffer_ + out_buffer_pos_,
|
|
|
|
"%+d -> %s",
|
|
|
|
off,
|
|
|
|
converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off));
|
|
|
|
return 6;
|
|
|
|
}
|
|
|
|
case 'u': { // 'u: signed or unsigned multiplies
|
|
|
|
// The manual gets the meaning of bit 22 backwards in the multiply
|
|
|
|
// instruction overview on page A3.16.2. The instructions that
|
|
|
|
// exist in u and s variants are the following:
|
|
|
|
// smull A4.1.87
|
|
|
|
// umull A4.1.129
|
|
|
|
// umlal A4.1.128
|
|
|
|
// smlal A4.1.76
|
|
|
|
// For these 0 means u and 1 means s. As can be seen on their individual
|
|
|
|
// pages. The other 18 mul instructions have the bit set or unset in
|
|
|
|
// arbitrary ways that are unrelated to the signedness of the instruction.
|
|
|
|
// None of these 18 instructions exist in both a 'u' and an 's' variant.
|
|
|
|
|
|
|
|
if (instr->Bit(22) == 0) {
|
|
|
|
Print("u");
|
|
|
|
} else {
|
|
|
|
Print("s");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
case 'w': { // 'w: W field of load and store instructions
|
|
|
|
if (instr->HasW()) {
|
|
|
|
Print("!");
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
UNREACHABLE();
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Format takes a formatting string for a whole instruction and prints it into
|
|
|
|
// the output buffer. All escaped options are handed to FormatOption to be
|
|
|
|
// parsed further.
|
|
|
|
void Decoder::Format(Instr* instr, const char* format) {
|
|
|
|
char cur = *format++;
|
|
|
|
while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) {
|
|
|
|
if (cur == '\'') { // Single quote is used as the formatting escape.
|
|
|
|
format += FormatOption(instr, format);
|
|
|
|
} else {
|
|
|
|
out_buffer_[out_buffer_pos_++] = cur;
|
|
|
|
}
|
|
|
|
cur = *format++;
|
|
|
|
}
|
|
|
|
out_buffer_[out_buffer_pos_] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// For currently unimplemented decodings the disassembler calls Unknown(instr)
|
|
|
|
// which will just print "unknown" of the instruction bits.
|
|
|
|
void Decoder::Unknown(Instr* instr) {
|
|
|
|
Format(instr, "unknown");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType01(Instr* instr) {
|
|
|
|
int type = instr->TypeField();
|
|
|
|
if ((type == 0) && instr->IsSpecialType0()) {
|
|
|
|
// multiply instruction or extra loads and stores
|
|
|
|
if (instr->Bits(7, 4) == 9) {
|
|
|
|
if (instr->Bit(24) == 0) {
|
|
|
|
// multiply instructions
|
|
|
|
if (instr->Bit(23) == 0) {
|
|
|
|
if (instr->Bit(21) == 0) {
|
|
|
|
// The MUL instruction description (A 4.1.33) refers to Rd as being
|
|
|
|
// the destination for the operation, but it confusingly uses the
|
|
|
|
// Rn field to encode it.
|
|
|
|
Format(instr, "mul'cond's 'rn, 'rm, 'rs");
|
|
|
|
} else {
|
|
|
|
// The MLA instruction description (A 4.1.28) refers to the order
|
|
|
|
// of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
|
|
|
|
// Rn field to encode the Rd register and the Rd field to encode
|
|
|
|
// the Rn register.
|
|
|
|
Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// The signed/long multiply instructions use the terms RdHi and RdLo
|
|
|
|
// when referring to the target registers. They are mapped to the Rn
|
|
|
|
// and Rd fields as follows:
|
|
|
|
// RdLo == Rd field
|
|
|
|
// RdHi == Rn field
|
|
|
|
// The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs>
|
|
|
|
Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Unknown(instr); // not used by V8
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
// extra load/store instructions
|
|
|
|
switch (instr->PUField()) {
|
|
|
|
case 0: {
|
|
|
|
if (instr->Bit(22) == 0) {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
|
|
|
|
} else {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
if (instr->Bit(22) == 0) {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
|
|
|
|
} else {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
if (instr->Bit(22) == 0) {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
|
|
|
|
} else {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 3: {
|
|
|
|
if (instr->Bit(22) == 0) {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
|
|
|
|
} else {
|
|
|
|
Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
// The PU field is a 2-bit field.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
switch (instr->OpcodeField()) {
|
|
|
|
case AND: {
|
|
|
|
Format(instr, "and'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case EOR: {
|
|
|
|
Format(instr, "eor'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SUB: {
|
|
|
|
Format(instr, "sub'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RSB: {
|
|
|
|
Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADD: {
|
|
|
|
Format(instr, "add'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ADC: {
|
|
|
|
Format(instr, "adc'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case SBC: {
|
|
|
|
Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case RSC: {
|
|
|
|
Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TST: {
|
|
|
|
if (instr->HasS()) {
|
|
|
|
Format(instr, "tst'cond 'rn, 'shift_op");
|
|
|
|
} else {
|
|
|
|
Unknown(instr); // not used by V8
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case TEQ: {
|
|
|
|
if (instr->HasS()) {
|
|
|
|
Format(instr, "teq'cond 'rn, 'shift_op");
|
|
|
|
} else {
|
|
|
|
switch (instr->Bits(7, 4)) {
|
|
|
|
case BX:
|
|
|
|
Format(instr, "bx'cond 'rm");
|
|
|
|
break;
|
|
|
|
case BLX:
|
|
|
|
Format(instr, "blx'cond 'rm");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
Unknown(instr); // not used by V8
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CMP: {
|
|
|
|
if (instr->HasS()) {
|
|
|
|
Format(instr, "cmp'cond 'rn, 'shift_op");
|
|
|
|
} else {
|
|
|
|
Unknown(instr); // not used by V8
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case CMN: {
|
|
|
|
if (instr->HasS()) {
|
|
|
|
Format(instr, "cmn'cond 'rn, 'shift_op");
|
|
|
|
} else {
|
|
|
|
switch (instr->Bits(7, 4)) {
|
|
|
|
case CLZ:
|
|
|
|
Format(instr, "clz'cond 'rd, 'rm");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
Unknown(instr); // not used by V8
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case ORR: {
|
|
|
|
Format(instr, "orr'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MOV: {
|
|
|
|
Format(instr, "mov'cond's 'rd, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case BIC: {
|
|
|
|
Format(instr, "bic'cond's 'rd, 'rn, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case MVN: {
|
|
|
|
Format(instr, "mvn'cond's 'rd, 'shift_op");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
// The Opcode field is a 4-bit field.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType2(Instr* instr) {
|
|
|
|
switch (instr->PUField()) {
|
|
|
|
case 0: {
|
|
|
|
if (instr->HasW()) {
|
|
|
|
Unknown(instr); // not used in V8
|
|
|
|
}
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
if (instr->HasW()) {
|
|
|
|
Unknown(instr); // not used in V8
|
|
|
|
}
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 3: {
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
// The PU field is a 2-bit field.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType3(Instr* instr) {
|
|
|
|
switch (instr->PUField()) {
|
|
|
|
case 0: {
|
|
|
|
ASSERT(!instr->HasW());
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 1: {
|
|
|
|
ASSERT(!instr->HasW());
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 3: {
|
|
|
|
Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
// The PU field is a 2-bit field.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType4(Instr* instr) {
|
|
|
|
ASSERT(instr->Bit(22) == 0); // Privileged mode currently not supported.
|
|
|
|
if (instr->HasL()) {
|
|
|
|
Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
|
|
|
|
} else {
|
|
|
|
Format(instr, "stm'cond'pu 'rn'w, 'rlist");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType5(Instr* instr) {
|
|
|
|
Format(instr, "b'l'cond 'target");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType6(Instr* instr) {
|
|
|
|
// Coprocessor instructions currently not supported.
|
|
|
|
Unknown(instr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Decoder::DecodeType7(Instr* instr) {
|
|
|
|
if (instr->Bit(24) == 1) {
|
|
|
|
Format(instr, "swi'cond 'swi");
|
|
|
|
} else {
|
|
|
|
// Coprocessor instructions currently not supported.
|
|
|
|
Unknown(instr);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Disassemble the instruction at *instr_ptr into the output buffer.
|
|
|
|
int Decoder::InstructionDecode(byte* instr_ptr) {
|
|
|
|
Instr* instr = Instr::At(instr_ptr);
|
|
|
|
// Print raw instruction bytes.
|
|
|
|
out_buffer_pos_ += v8i::OS::SNPrintF(out_buffer_ + out_buffer_pos_,
|
|
|
|
"%08x ",
|
|
|
|
instr->InstructionBits());
|
|
|
|
if (instr->ConditionField() == special_condition) {
|
|
|
|
Format(instr, "break 'msg");
|
|
|
|
return Instr::kInstrSize;
|
|
|
|
}
|
|
|
|
switch (instr->TypeField()) {
|
|
|
|
case 0:
|
|
|
|
case 1: {
|
|
|
|
DecodeType01(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 2: {
|
|
|
|
DecodeType2(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 3: {
|
|
|
|
DecodeType3(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 4: {
|
|
|
|
DecodeType4(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 5: {
|
|
|
|
DecodeType5(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 6: {
|
|
|
|
DecodeType6(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case 7: {
|
|
|
|
DecodeType7(instr);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default: {
|
|
|
|
// The type field is 3-bits in the ARM encoding.
|
|
|
|
UNREACHABLE();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Instr::kInstrSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace assembler::arm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
namespace disasm {
|
|
|
|
|
|
|
|
namespace v8i = v8::internal;
|
|
|
|
|
|
|
|
|
|
|
|
static const int kMaxRegisters = 16;
|
|
|
|
|
|
|
|
// These register names are defined in a way to match the native disassembler
|
|
|
|
// formatting. See for example the command "objdump -d <binary file>".
|
|
|
|
static const char* reg_names[kMaxRegisters] = {
|
|
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
|
|
"r8", "r9", "sl", "fp", "ip", "sp", "lr", "pc",
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
const char* NameConverter::NameOfAddress(byte* addr) const {
|
|
|
|
static v8::internal::EmbeddedVector<char, 32> tmp_buffer;
|
|
|
|
v8::internal::OS::SNPrintF(tmp_buffer, "%p", addr);
|
|
|
|
return tmp_buffer.start();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* NameConverter::NameOfConstant(byte* addr) const {
|
|
|
|
return NameOfAddress(addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* NameConverter::NameOfCPURegister(int reg) const {
|
|
|
|
const char* result;
|
|
|
|
if ((0 <= reg) && (reg < kMaxRegisters)) {
|
|
|
|
result = reg_names[reg];
|
|
|
|
} else {
|
|
|
|
result = "noreg";
|
|
|
|
}
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* NameConverter::NameOfByteCPURegister(int reg) const {
|
|
|
|
UNREACHABLE(); // ARM does not have the concept of a byte register
|
|
|
|
return "nobytereg";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* NameConverter::NameOfXMMRegister(int reg) const {
|
|
|
|
UNREACHABLE(); // ARM does not have any XMM registers
|
|
|
|
return "noxmmreg";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* NameConverter::NameInCode(byte* addr) const {
|
|
|
|
// The default name converter is called for unknown code. So we will not try
|
|
|
|
// to access any memory.
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
Disassembler::Disassembler(const NameConverter& converter)
|
|
|
|
: converter_(converter) {}
|
|
|
|
|
|
|
|
|
|
|
|
Disassembler::~Disassembler() {}
|
|
|
|
|
|
|
|
|
|
|
|
int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
|
|
|
|
byte* instruction) {
|
|
|
|
assembler::arm::Decoder d(converter_, buffer);
|
|
|
|
return d.InstructionDecode(instruction);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int Disassembler::ConstantPoolSizeAt(byte* instruction) {
|
|
|
|
int instruction_bits = *(reinterpret_cast<int*>(instruction));
|
|
|
|
if ((instruction_bits & 0xfff00000) == 0x03000000) {
|
|
|
|
return instruction_bits & 0x0000ffff;
|
|
|
|
} else {
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
|
|
|
|
NameConverter converter;
|
|
|
|
Disassembler d(converter);
|
|
|
|
for (byte* pc = begin; pc < end;) {
|
|
|
|
v8::internal::EmbeddedVector<char, 128> buffer;
|
|
|
|
buffer[0] = '\0';
|
|
|
|
byte* prev_pc = pc;
|
|
|
|
pc += d.InstructionDecode(buffer, pc);
|
|
|
|
fprintf(f, "%p %08x %s\n",
|
|
|
|
prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer.start());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace disasm
|