|
|
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#include <stdarg.h>
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#include "conversions-inl.h"
|
|
|
|
#include "factory.h"
|
|
|
|
#include "fast-dtoa.h"
|
|
|
|
#include "scanner.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
int HexValue(uc32 c) {
|
|
|
|
if ('0' <= c && c <= '9')
|
|
|
|
return c - '0';
|
|
|
|
if ('a' <= c && c <= 'f')
|
|
|
|
return c - 'a' + 10;
|
|
|
|
if ('A' <= c && c <= 'F')
|
|
|
|
return c - 'A' + 10;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Provide a common interface to getting a character at a certain
|
|
|
|
// index from a char* or a String object.
|
|
|
|
static inline int GetChar(const char* str, int index) {
|
|
|
|
ASSERT(index >= 0 && index < StrLength(str));
|
|
|
|
return str[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline int GetChar(String* str, int index) {
|
|
|
|
return str->Get(index);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline int GetLength(const char* str) {
|
|
|
|
return StrLength(str);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline int GetLength(String* str) {
|
|
|
|
return str->length();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline const char* GetCString(const char* str, int index) {
|
|
|
|
return str + index;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline const char* GetCString(String* str, int index) {
|
|
|
|
int length = str->length();
|
|
|
|
char* result = NewArray<char>(length + 1);
|
|
|
|
for (int i = index; i < length; i++) {
|
|
|
|
uc16 c = str->Get(i);
|
|
|
|
if (c <= 127) {
|
|
|
|
result[i - index] = static_cast<char>(c);
|
|
|
|
} else {
|
|
|
|
result[i - index] = 127; // Force number parsing to fail.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result[length - index] = '\0';
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline void ReleaseCString(const char* original, const char* str) {
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline void ReleaseCString(String* original, const char* str) {
|
|
|
|
DeleteArray(const_cast<char *>(str));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline bool IsSpace(const char* str, int index) {
|
|
|
|
ASSERT(index >= 0 && index < StrLength(str));
|
|
|
|
return Scanner::kIsWhiteSpace.get(str[index]);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline bool IsSpace(String* str, int index) {
|
|
|
|
return Scanner::kIsWhiteSpace.get(str->Get(index));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline bool SubStringEquals(const char* str,
|
|
|
|
int index,
|
|
|
|
const char* other) {
|
|
|
|
return strncmp(str + index, other, strlen(other)) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static inline bool SubStringEquals(String* str, int index, const char* other) {
|
|
|
|
HandleScope scope;
|
|
|
|
int str_length = str->length();
|
|
|
|
int other_length = StrLength(other);
|
|
|
|
int end = index + other_length < str_length ?
|
|
|
|
index + other_length :
|
|
|
|
str_length;
|
|
|
|
Handle<String> substring =
|
|
|
|
Factory::NewSubString(Handle<String>(str), index, end);
|
|
|
|
return substring->IsEqualTo(Vector<const char>(other, other_length));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Check if a string should be parsed as an octal number. The string
|
|
|
|
// can be either a char* or a String*.
|
|
|
|
template<class S>
|
|
|
|
static bool ShouldParseOctal(S* s, int i) {
|
|
|
|
int index = i;
|
|
|
|
int len = GetLength(s);
|
|
|
|
if (index < len && GetChar(s, index) != '0') return false;
|
|
|
|
|
|
|
|
// If the first real character (following '0') is not an octal
|
|
|
|
// digit, bail out early. This also takes care of numbers of the
|
|
|
|
// forms 0.xxx and 0exxx by not allowing the first 0 to be
|
|
|
|
// interpreted as an octal.
|
|
|
|
index++;
|
|
|
|
if (index < len) {
|
|
|
|
int d = GetChar(s, index) - '0';
|
|
|
|
if (d < 0 || d > 7) return false;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Traverse all digits (including the first). If there is an octal
|
|
|
|
// prefix which is not a part of a longer decimal prefix, we return
|
|
|
|
// true. Otherwise, false is returned.
|
|
|
|
while (index < len) {
|
|
|
|
int d = GetChar(s, index++) - '0';
|
|
|
|
if (d == 8 || d == 9) return false;
|
|
|
|
if (d < 0 || d > 7) return true;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern "C" double gay_strtod(const char* s00, const char** se);
|
|
|
|
|
|
|
|
|
|
|
|
// Parse an int from a string starting a given index and in a given
|
|
|
|
// radix. The string can be either a char* or a String*.
|
|
|
|
template <class S>
|
|
|
|
static int InternalStringToInt(S* s, int i, int radix, double* value) {
|
|
|
|
int len = GetLength(s);
|
|
|
|
|
|
|
|
// Setup limits for computing the value.
|
|
|
|
ASSERT(2 <= radix && radix <= 36);
|
|
|
|
int lim_0 = '0' + (radix < 10 ? radix : 10);
|
|
|
|
int lim_a = 'a' + (radix - 10);
|
|
|
|
int lim_A = 'A' + (radix - 10);
|
|
|
|
|
|
|
|
// NOTE: The code for computing the value may seem a bit complex at
|
|
|
|
// first glance. It is structured to use 32-bit multiply-and-add
|
|
|
|
// loops as long as possible to avoid loosing precision.
|
|
|
|
|
|
|
|
double v = 0.0;
|
|
|
|
int j;
|
|
|
|
for (j = i; j < len;) {
|
|
|
|
// Parse the longest part of the string starting at index j
|
|
|
|
// possible while keeping the multiplier, and thus the part
|
|
|
|
// itself, within 32 bits.
|
|
|
|
uint32_t part = 0, multiplier = 1;
|
|
|
|
int k;
|
|
|
|
for (k = j; k < len; k++) {
|
|
|
|
int c = GetChar(s, k);
|
|
|
|
if (c >= '0' && c < lim_0) {
|
|
|
|
c = c - '0';
|
|
|
|
} else if (c >= 'a' && c < lim_a) {
|
|
|
|
c = c - 'a' + 10;
|
|
|
|
} else if (c >= 'A' && c < lim_A) {
|
|
|
|
c = c - 'A' + 10;
|
|
|
|
} else {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Update the value of the part as long as the multiplier fits
|
|
|
|
// in 32 bits. When we can't guarantee that the next iteration
|
|
|
|
// will not overflow the multiplier, we stop parsing the part
|
|
|
|
// by leaving the loop.
|
|
|
|
static const uint32_t kMaximumMultiplier = 0xffffffffU / 36;
|
|
|
|
uint32_t m = multiplier * radix;
|
|
|
|
if (m > kMaximumMultiplier) break;
|
|
|
|
part = part * radix + c;
|
|
|
|
multiplier = m;
|
|
|
|
ASSERT(multiplier > part);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute the number of part digits. If no digits were parsed;
|
|
|
|
// we're done parsing the entire string.
|
|
|
|
int digits = k - j;
|
|
|
|
if (digits == 0) break;
|
|
|
|
|
|
|
|
// Update the value and skip the part in the string.
|
|
|
|
ASSERT(multiplier ==
|
|
|
|
pow(static_cast<double>(radix), static_cast<double>(digits)));
|
|
|
|
v = v * multiplier + part;
|
|
|
|
j = k;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the resulting value is larger than 2^53 the value does not fit
|
|
|
|
// in the mantissa of the double and there is a loss of precision.
|
|
|
|
// When the value is larger than 2^53 the rounding depends on the
|
|
|
|
// code generation. If the code generator spills the double value
|
|
|
|
// it uses 64 bits and if it does not it uses 80 bits.
|
|
|
|
//
|
|
|
|
// If there is a potential for overflow we resort to strtod for
|
|
|
|
// radix 10 numbers to get higher precision. For numbers in another
|
|
|
|
// radix we live with the loss of precision.
|
|
|
|
static const double kPreciseConversionLimit = 9007199254740992.0;
|
|
|
|
if (radix == 10 && v > kPreciseConversionLimit) {
|
|
|
|
const char* cstr = GetCString(s, i);
|
|
|
|
const char* end;
|
|
|
|
v = gay_strtod(cstr, &end);
|
|
|
|
ReleaseCString(s, cstr);
|
|
|
|
}
|
|
|
|
|
|
|
|
*value = v;
|
|
|
|
return j;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int StringToInt(String* str, int index, int radix, double* value) {
|
|
|
|
return InternalStringToInt(str, index, radix, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int StringToInt(const char* str, int index, int radix, double* value) {
|
|
|
|
return InternalStringToInt(const_cast<char*>(str), index, radix, value);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const double JUNK_STRING_VALUE = OS::nan_value();
|
|
|
|
|
|
|
|
|
|
|
|
// Convert a string to a double value. The string can be either a
|
|
|
|
// char* or a String*.
|
|
|
|
template<class S>
|
|
|
|
static double InternalStringToDouble(S* str,
|
|
|
|
int flags,
|
|
|
|
double empty_string_val) {
|
|
|
|
double result = 0.0;
|
|
|
|
int index = 0;
|
|
|
|
|
|
|
|
int len = GetLength(str);
|
|
|
|
|
|
|
|
// Skip leading spaces.
|
|
|
|
while ((index < len) && IsSpace(str, index)) index++;
|
|
|
|
|
|
|
|
// Is the string empty?
|
|
|
|
if (index >= len) return empty_string_val;
|
|
|
|
|
|
|
|
// Get the first character.
|
|
|
|
uint16_t first = GetChar(str, index);
|
|
|
|
|
|
|
|
// Numbers can only start with '-', '+', '.', 'I' (Infinity), or a digit.
|
|
|
|
if (first != '-' && first != '+' && first != '.' && first != 'I' &&
|
|
|
|
(first > '9' || first < '0')) {
|
|
|
|
return JUNK_STRING_VALUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute sign of result based on first character.
|
|
|
|
int sign = 1;
|
|
|
|
if (first == '-') {
|
|
|
|
sign = -1;
|
|
|
|
index++;
|
|
|
|
// String only containing a '-' are junk chars.
|
|
|
|
if (index == len) return JUNK_STRING_VALUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
// do we have a hex number?
|
|
|
|
// (since the string is 0-terminated, it's ok to look one char beyond the end)
|
|
|
|
if ((flags & ALLOW_HEX) != 0 &&
|
|
|
|
(index + 1) < len &&
|
|
|
|
GetChar(str, index) == '0' &&
|
|
|
|
(GetChar(str, index + 1) == 'x' || GetChar(str, index + 1) == 'X')) {
|
|
|
|
index += 2;
|
|
|
|
index = StringToInt(str, index, 16, &result);
|
|
|
|
} else if ((flags & ALLOW_OCTALS) != 0 && ShouldParseOctal(str, index)) {
|
|
|
|
// NOTE: We optimistically try to parse the number as an octal (if
|
|
|
|
// we're allowed to), even though this is not as dictated by
|
|
|
|
// ECMA-262. The reason for doing this is compatibility with IE and
|
|
|
|
// Firefox.
|
|
|
|
index = StringToInt(str, index, 8, &result);
|
|
|
|
} else {
|
|
|
|
const char* cstr = GetCString(str, index);
|
|
|
|
const char* end;
|
|
|
|
// Optimistically parse the number and then, if that fails,
|
|
|
|
// check if it might have been {+,-,}Infinity.
|
|
|
|
result = gay_strtod(cstr, &end);
|
|
|
|
ReleaseCString(str, cstr);
|
|
|
|
if (result != 0.0 || end != cstr) {
|
|
|
|
// It appears that strtod worked
|
|
|
|
index += static_cast<int>(end - cstr);
|
|
|
|
} else {
|
|
|
|
// Check for {+,-,}Infinity
|
|
|
|
bool is_negative = (GetChar(str, index) == '-');
|
|
|
|
if (GetChar(str, index) == '+' || GetChar(str, index) == '-')
|
|
|
|
index++;
|
|
|
|
if (!SubStringEquals(str, index, "Infinity"))
|
|
|
|
return JUNK_STRING_VALUE;
|
|
|
|
result = is_negative ? -V8_INFINITY : V8_INFINITY;
|
|
|
|
index += 8;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((flags & ALLOW_TRAILING_JUNK) == 0) {
|
|
|
|
// skip trailing spaces
|
|
|
|
while ((index < len) && IsSpace(str, index)) index++;
|
|
|
|
// string ending with junk?
|
|
|
|
if (index < len) return JUNK_STRING_VALUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return sign * result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double StringToDouble(String* str, int flags, double empty_string_val) {
|
|
|
|
return InternalStringToDouble(str, flags, empty_string_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double StringToDouble(const char* str, int flags, double empty_string_val) {
|
|
|
|
return InternalStringToDouble(str, flags, empty_string_val);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
extern "C" char* dtoa(double d, int mode, int ndigits,
|
|
|
|
int* decpt, int* sign, char** rve);
|
|
|
|
|
|
|
|
extern "C" void freedtoa(char* s);
|
|
|
|
|
|
|
|
const char* DoubleToCString(double v, Vector<char> buffer) {
|
|
|
|
StringBuilder builder(buffer.start(), buffer.length());
|
|
|
|
|
|
|
|
switch (fpclassify(v)) {
|
|
|
|
case FP_NAN:
|
|
|
|
builder.AddString("NaN");
|
|
|
|
break;
|
|
|
|
|
|
|
|
case FP_INFINITE:
|
|
|
|
if (v < 0.0) {
|
|
|
|
builder.AddString("-Infinity");
|
|
|
|
} else {
|
|
|
|
builder.AddString("Infinity");
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case FP_ZERO:
|
|
|
|
builder.AddCharacter('0');
|
|
|
|
break;
|
|
|
|
|
|
|
|
default: {
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
|
|
|
|
|
|
|
char* decimal_rep;
|
|
|
|
bool used_gay_dtoa = false;
|
|
|
|
char fast_dtoa_buffer[kFastDtoaMaximalLength + 1];
|
|
|
|
int length;
|
|
|
|
if (FastDtoa(v, fast_dtoa_buffer, &sign, &length, &decimal_point)) {
|
|
|
|
decimal_rep = fast_dtoa_buffer;
|
|
|
|
} else {
|
|
|
|
decimal_rep = dtoa(v, 0, 0, &decimal_point, &sign, NULL);
|
|
|
|
used_gay_dtoa = true;
|
|
|
|
length = StrLength(decimal_rep);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (sign) builder.AddCharacter('-');
|
|
|
|
|
|
|
|
if (length <= decimal_point && decimal_point <= 21) {
|
|
|
|
// ECMA-262 section 9.8.1 step 6.
|
|
|
|
builder.AddString(decimal_rep);
|
|
|
|
builder.AddPadding('0', decimal_point - length);
|
|
|
|
|
|
|
|
} else if (0 < decimal_point && decimal_point <= 21) {
|
|
|
|
// ECMA-262 section 9.8.1 step 7.
|
|
|
|
builder.AddSubstring(decimal_rep, decimal_point);
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddString(decimal_rep + decimal_point);
|
|
|
|
|
|
|
|
} else if (decimal_point <= 0 && decimal_point > -6) {
|
|
|
|
// ECMA-262 section 9.8.1 step 8.
|
|
|
|
builder.AddString("0.");
|
|
|
|
builder.AddPadding('0', -decimal_point);
|
|
|
|
builder.AddString(decimal_rep);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// ECMA-262 section 9.8.1 step 9 and 10 combined.
|
|
|
|
builder.AddCharacter(decimal_rep[0]);
|
|
|
|
if (length != 1) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddString(decimal_rep + 1);
|
|
|
|
}
|
|
|
|
builder.AddCharacter('e');
|
|
|
|
builder.AddCharacter((decimal_point >= 0) ? '+' : '-');
|
|
|
|
int exponent = decimal_point - 1;
|
|
|
|
if (exponent < 0) exponent = -exponent;
|
|
|
|
builder.AddFormatted("%d", exponent);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (used_gay_dtoa) freedtoa(decimal_rep);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const char* IntToCString(int n, Vector<char> buffer) {
|
|
|
|
bool negative = false;
|
|
|
|
if (n < 0) {
|
|
|
|
// We must not negate the most negative int.
|
|
|
|
if (n == kMinInt) return DoubleToCString(n, buffer);
|
|
|
|
negative = true;
|
|
|
|
n = -n;
|
|
|
|
}
|
|
|
|
// Build the string backwards from the least significant digit.
|
|
|
|
int i = buffer.length();
|
|
|
|
buffer[--i] = '\0';
|
|
|
|
do {
|
|
|
|
buffer[--i] = '0' + (n % 10);
|
|
|
|
n /= 10;
|
|
|
|
} while (n);
|
|
|
|
if (negative) buffer[--i] = '-';
|
|
|
|
return buffer.start() + i;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToFixedCString(double value, int f) {
|
|
|
|
ASSERT(f >= 0);
|
|
|
|
|
|
|
|
bool negative = false;
|
|
|
|
double abs_value = value;
|
|
|
|
if (value < 0) {
|
|
|
|
abs_value = -value;
|
|
|
|
negative = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (abs_value >= 1e21) {
|
|
|
|
char arr[100];
|
|
|
|
Vector<char> buffer(arr, ARRAY_SIZE(arr));
|
|
|
|
return StrDup(DoubleToCString(value, buffer));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
|
|
|
char* decimal_rep = dtoa(abs_value, 3, f, &decimal_point, &sign, NULL);
|
|
|
|
int decimal_rep_length = StrLength(decimal_rep);
|
|
|
|
|
|
|
|
// Create a representation that is padded with zeros if needed.
|
|
|
|
int zero_prefix_length = 0;
|
|
|
|
int zero_postfix_length = 0;
|
|
|
|
|
|
|
|
if (decimal_point <= 0) {
|
|
|
|
zero_prefix_length = -decimal_point + 1;
|
|
|
|
decimal_point = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (zero_prefix_length + decimal_rep_length < decimal_point + f) {
|
|
|
|
zero_postfix_length = decimal_point + f - decimal_rep_length -
|
|
|
|
zero_prefix_length;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned rep_length =
|
|
|
|
zero_prefix_length + decimal_rep_length + zero_postfix_length;
|
|
|
|
StringBuilder rep_builder(rep_length + 1);
|
|
|
|
rep_builder.AddPadding('0', zero_prefix_length);
|
|
|
|
rep_builder.AddString(decimal_rep);
|
|
|
|
rep_builder.AddPadding('0', zero_postfix_length);
|
|
|
|
char* rep = rep_builder.Finalize();
|
|
|
|
freedtoa(decimal_rep);
|
|
|
|
|
|
|
|
// Create the result string by appending a minus and putting in a
|
|
|
|
// decimal point if needed.
|
|
|
|
unsigned result_size = decimal_point + f + 2;
|
|
|
|
StringBuilder builder(result_size + 1);
|
|
|
|
if (negative) builder.AddCharacter('-');
|
|
|
|
builder.AddSubstring(rep, decimal_point);
|
|
|
|
if (f > 0) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddSubstring(rep + decimal_point, f);
|
|
|
|
}
|
|
|
|
DeleteArray(rep);
|
|
|
|
return builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static char* CreateExponentialRepresentation(char* decimal_rep,
|
|
|
|
int exponent,
|
|
|
|
bool negative,
|
|
|
|
int significant_digits) {
|
|
|
|
bool negative_exponent = false;
|
|
|
|
if (exponent < 0) {
|
|
|
|
negative_exponent = true;
|
|
|
|
exponent = -exponent;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Leave room in the result for appending a minus, for a period, the
|
|
|
|
// letter 'e', a minus or a plus depending on the exponent, and a
|
|
|
|
// three digit exponent.
|
|
|
|
unsigned result_size = significant_digits + 7;
|
|
|
|
StringBuilder builder(result_size + 1);
|
|
|
|
|
|
|
|
if (negative) builder.AddCharacter('-');
|
|
|
|
builder.AddCharacter(decimal_rep[0]);
|
|
|
|
if (significant_digits != 1) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
builder.AddString(decimal_rep + 1);
|
|
|
|
int rep_length = StrLength(decimal_rep);
|
|
|
|
builder.AddPadding('0', significant_digits - rep_length);
|
|
|
|
}
|
|
|
|
|
|
|
|
builder.AddCharacter('e');
|
|
|
|
builder.AddCharacter(negative_exponent ? '-' : '+');
|
|
|
|
builder.AddFormatted("%d", exponent);
|
|
|
|
return builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToExponentialCString(double value, int f) {
|
|
|
|
// f might be -1 to signal that f was undefined in JavaScript.
|
|
|
|
ASSERT(f >= -1 && f <= 20);
|
|
|
|
|
|
|
|
bool negative = false;
|
|
|
|
if (value < 0) {
|
|
|
|
value = -value;
|
|
|
|
negative = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
|
|
|
char* decimal_rep = NULL;
|
|
|
|
if (f == -1) {
|
|
|
|
decimal_rep = dtoa(value, 0, 0, &decimal_point, &sign, NULL);
|
|
|
|
f = StrLength(decimal_rep) - 1;
|
|
|
|
} else {
|
|
|
|
decimal_rep = dtoa(value, 2, f + 1, &decimal_point, &sign, NULL);
|
|
|
|
}
|
|
|
|
int decimal_rep_length = StrLength(decimal_rep);
|
|
|
|
ASSERT(decimal_rep_length > 0);
|
|
|
|
ASSERT(decimal_rep_length <= f + 1);
|
|
|
|
USE(decimal_rep_length);
|
|
|
|
|
|
|
|
int exponent = decimal_point - 1;
|
|
|
|
char* result =
|
|
|
|
CreateExponentialRepresentation(decimal_rep, exponent, negative, f+1);
|
|
|
|
|
|
|
|
freedtoa(decimal_rep);
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToPrecisionCString(double value, int p) {
|
|
|
|
ASSERT(p >= 1 && p <= 21);
|
|
|
|
|
|
|
|
bool negative = false;
|
|
|
|
if (value < 0) {
|
|
|
|
value = -value;
|
|
|
|
negative = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find a sufficiently precise decimal representation of n.
|
|
|
|
int decimal_point;
|
|
|
|
int sign;
|
|
|
|
char* decimal_rep = dtoa(value, 2, p, &decimal_point, &sign, NULL);
|
|
|
|
int decimal_rep_length = StrLength(decimal_rep);
|
|
|
|
ASSERT(decimal_rep_length <= p);
|
|
|
|
|
|
|
|
int exponent = decimal_point - 1;
|
|
|
|
|
|
|
|
char* result = NULL;
|
|
|
|
|
|
|
|
if (exponent < -6 || exponent >= p) {
|
|
|
|
result =
|
|
|
|
CreateExponentialRepresentation(decimal_rep, exponent, negative, p);
|
|
|
|
} else {
|
|
|
|
// Use fixed notation.
|
|
|
|
//
|
|
|
|
// Leave room in the result for appending a minus, a period and in
|
|
|
|
// the case where decimal_point is not positive for a zero in
|
|
|
|
// front of the period.
|
|
|
|
unsigned result_size = (decimal_point <= 0)
|
|
|
|
? -decimal_point + p + 3
|
|
|
|
: p + 2;
|
|
|
|
StringBuilder builder(result_size + 1);
|
|
|
|
if (negative) builder.AddCharacter('-');
|
|
|
|
if (decimal_point <= 0) {
|
|
|
|
builder.AddString("0.");
|
|
|
|
builder.AddPadding('0', -decimal_point);
|
|
|
|
builder.AddString(decimal_rep);
|
|
|
|
builder.AddPadding('0', p - decimal_rep_length);
|
|
|
|
} else {
|
|
|
|
const int m = Min(decimal_rep_length, decimal_point);
|
|
|
|
builder.AddSubstring(decimal_rep, m);
|
|
|
|
builder.AddPadding('0', decimal_point - decimal_rep_length);
|
|
|
|
if (decimal_point < p) {
|
|
|
|
builder.AddCharacter('.');
|
|
|
|
const int extra = negative ? 2 : 1;
|
|
|
|
if (decimal_rep_length > decimal_point) {
|
|
|
|
const int len = StrLength(decimal_rep + decimal_point);
|
|
|
|
const int n = Min(len, p - (builder.position() - extra));
|
|
|
|
builder.AddSubstring(decimal_rep + decimal_point, n);
|
|
|
|
}
|
|
|
|
builder.AddPadding('0', extra + (p - builder.position()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
result = builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
freedtoa(decimal_rep);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* DoubleToRadixCString(double value, int radix) {
|
|
|
|
ASSERT(radix >= 2 && radix <= 36);
|
|
|
|
|
|
|
|
// Character array used for conversion.
|
|
|
|
static const char chars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
|
|
|
|
|
|
|
|
// Buffer for the integer part of the result. 1024 chars is enough
|
|
|
|
// for max integer value in radix 2. We need room for a sign too.
|
|
|
|
static const int kBufferSize = 1100;
|
|
|
|
char integer_buffer[kBufferSize];
|
|
|
|
integer_buffer[kBufferSize - 1] = '\0';
|
|
|
|
|
|
|
|
// Buffer for the decimal part of the result. We only generate up
|
|
|
|
// to kBufferSize - 1 chars for the decimal part.
|
|
|
|
char decimal_buffer[kBufferSize];
|
|
|
|
decimal_buffer[kBufferSize - 1] = '\0';
|
|
|
|
|
|
|
|
// Make sure the value is positive.
|
|
|
|
bool is_negative = value < 0.0;
|
|
|
|
if (is_negative) value = -value;
|
|
|
|
|
|
|
|
// Get the integer part and the decimal part.
|
|
|
|
double integer_part = floor(value);
|
|
|
|
double decimal_part = value - integer_part;
|
|
|
|
|
|
|
|
// Convert the integer part starting from the back. Always generate
|
|
|
|
// at least one digit.
|
|
|
|
int integer_pos = kBufferSize - 2;
|
|
|
|
do {
|
|
|
|
integer_buffer[integer_pos--] =
|
|
|
|
chars[static_cast<int>(modulo(integer_part, radix))];
|
|
|
|
integer_part /= radix;
|
|
|
|
} while (integer_part >= 1.0);
|
|
|
|
// Sanity check.
|
|
|
|
ASSERT(integer_pos > 0);
|
|
|
|
// Add sign if needed.
|
|
|
|
if (is_negative) integer_buffer[integer_pos--] = '-';
|
|
|
|
|
|
|
|
// Convert the decimal part. Repeatedly multiply by the radix to
|
|
|
|
// generate the next char. Never generate more than kBufferSize - 1
|
|
|
|
// chars.
|
|
|
|
//
|
|
|
|
// TODO(1093998): We will often generate a full decimal_buffer of
|
|
|
|
// chars because hitting zero will often not happen. The right
|
|
|
|
// solution would be to continue until the string representation can
|
|
|
|
// be read back and yield the original value. To implement this
|
|
|
|
// efficiently, we probably have to modify dtoa.
|
|
|
|
int decimal_pos = 0;
|
|
|
|
while ((decimal_part > 0.0) && (decimal_pos < kBufferSize - 1)) {
|
|
|
|
decimal_part *= radix;
|
|
|
|
decimal_buffer[decimal_pos++] =
|
|
|
|
chars[static_cast<int>(floor(decimal_part))];
|
|
|
|
decimal_part -= floor(decimal_part);
|
|
|
|
}
|
|
|
|
decimal_buffer[decimal_pos] = '\0';
|
|
|
|
|
|
|
|
// Compute the result size.
|
|
|
|
int integer_part_size = kBufferSize - 2 - integer_pos;
|
|
|
|
// Make room for zero termination.
|
|
|
|
unsigned result_size = integer_part_size + decimal_pos;
|
|
|
|
// If the number has a decimal part, leave room for the period.
|
|
|
|
if (decimal_pos > 0) result_size++;
|
|
|
|
// Allocate result and fill in the parts.
|
|
|
|
StringBuilder builder(result_size + 1);
|
|
|
|
builder.AddSubstring(integer_buffer + integer_pos + 1, integer_part_size);
|
|
|
|
if (decimal_pos > 0) builder.AddCharacter('.');
|
|
|
|
builder.AddSubstring(decimal_buffer, decimal_pos);
|
|
|
|
return builder.Finalize();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|