mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
687 lines
17 KiB
687 lines
17 KiB
15 years ago
|
// Copyright 2006-2009 the V8 project authors. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
// Platform specific code for Solaris 10 goes here. For the POSIX comaptible
|
||
|
// parts the implementation is in platform-posix.cc.
|
||
|
|
||
|
#include <sys/stack.h> // for stack alignment
|
||
|
#include <unistd.h> // getpagesize()
|
||
|
#include <sys/mman.h> // mmap()
|
||
|
#include <unistd.h> // usleep()
|
||
|
#include <execinfo.h> // backtrace(), backtrace_symbols()
|
||
|
#include <pthread.h>
|
||
|
#include <sched.h> // for sched_yield
|
||
|
#include <semaphore.h>
|
||
|
#include <time.h>
|
||
|
#include <sys/time.h> // gettimeofday(), timeradd()
|
||
|
#include <errno.h>
|
||
|
#include <ieeefp.h> // finite()
|
||
|
#include <signal.h> // sigemptyset(), etc
|
||
|
|
||
|
#undef MAP_TYPE
|
||
|
|
||
|
#include "v8.h"
|
||
|
|
||
|
#include "platform.h"
|
||
|
|
||
|
|
||
|
namespace v8 {
|
||
|
namespace internal {
|
||
|
|
||
|
int isfinite(double x) {
|
||
|
return finite(x) && !isnand(x);
|
||
|
}
|
||
|
|
||
|
} } // namespace v8::internal
|
||
|
|
||
|
|
||
|
// Test for infinity - usually defined in math.h
|
||
|
int isinf(double x) {
|
||
|
fpclass_t fpc = fpclass(x);
|
||
|
return (fpc == FP_NINF || fpc == FP_PINF);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Test if x is less than y and both nominal - usually defined in math.h
|
||
|
int isless(double x, double y) {
|
||
|
return isnan(x) || isnan(y) ? 0 : x < y;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Test if x is greater than y and both nominal - usually defined in math.h
|
||
|
int isgreater(double x, double y) {
|
||
|
return isnan(x) || isnan(y) ? 0 : x > y;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Classify floating point number - usually defined in math.h#ifndef fpclassify
|
||
|
int fpclassify(double x) {
|
||
|
// Use the Solaris-specific fpclass() for classification.
|
||
|
fpclass_t fpc = fpclass(x);
|
||
|
|
||
|
switch (fpc) {
|
||
|
case FP_PNORM:
|
||
|
case FP_NNORM:
|
||
|
return FP_NORMAL;
|
||
|
case FP_PZERO:
|
||
|
case FP_NZERO:
|
||
|
return FP_ZERO;
|
||
|
case FP_PDENORM:
|
||
|
case FP_NDENORM:
|
||
|
return FP_SUBNORMAL;
|
||
|
case FP_PINF:
|
||
|
case FP_NINF:
|
||
|
return FP_INFINITE;
|
||
|
default:
|
||
|
// All cases should be covered by the code above.
|
||
|
ASSERT(fpc == FP_QNAN || fpc == FP_SNAN);
|
||
|
return FP_NAN;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int signbit(double x) {
|
||
|
// We need to take care of the special case of both positive
|
||
|
// and negative versions of zero.
|
||
|
if (x == 0)
|
||
|
return fpclass(x) == FP_NZERO;
|
||
|
else
|
||
|
return x < 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
namespace v8 {
|
||
|
namespace internal {
|
||
|
|
||
|
// 0 is never a valid thread id on Solaris since the main thread is 1 and
|
||
|
// subsequent have their ids incremented from there
|
||
|
static const pthread_t kNoThread = (pthread_t) 0;
|
||
|
|
||
|
|
||
|
// TODO: Test to see if ceil() is correct on Solaris.
|
||
|
double ceiling(double x) {
|
||
|
return ceil(x);
|
||
|
}
|
||
|
|
||
|
|
||
|
void OS::Setup() {
|
||
|
// Seed the random number generator.
|
||
|
// Convert the current time to a 64-bit integer first, before converting it
|
||
|
// to an unsigned. Going directly will cause an overflow and the seed to be
|
||
|
// set to all ones. The seed will be identical for different instances that
|
||
|
// call this setup code within the same millisecond.
|
||
|
uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
|
||
|
srandom(static_cast<unsigned int>(seed));
|
||
|
}
|
||
|
|
||
|
|
||
|
uint64_t OS::CpuFeaturesImpliedByPlatform() {
|
||
|
return 0; // Solaris runs on a lot of things.
|
||
|
}
|
||
|
|
||
|
|
||
|
double OS::nan_value() {
|
||
|
static double NAN = __builtin_nan("0x0");
|
||
|
return NAN;
|
||
|
}
|
||
|
|
||
|
|
||
|
int OS::ActivationFrameAlignment() {
|
||
|
return STACK_ALIGN;
|
||
|
}
|
||
|
|
||
|
|
||
|
const char* OS::LocalTimezone(double time) {
|
||
|
if (isnan(time)) return "";
|
||
|
time_t tv = static_cast<time_t>(floor(time/msPerSecond));
|
||
|
struct tm* t = localtime(&tv);
|
||
|
if (NULL == t) return "";
|
||
|
return tzname[0]; // the location of the timezone string on Solaris
|
||
|
}
|
||
|
|
||
|
|
||
|
double OS::LocalTimeOffset() {
|
||
|
int days, hours, minutes;
|
||
|
time_t tv = time(NULL);
|
||
|
|
||
|
// on Solaris, struct tm does not contain a tm_gmtoff field...
|
||
|
struct tm* loc = localtime(&tv);
|
||
|
struct tm* utc = gmtime(&tv);
|
||
|
|
||
|
// calulate the utc offset
|
||
|
days = loc->tm_yday = utc->tm_yday;
|
||
|
hours = ((days < -1 ? 24 : 1 < days ? -24 : days * 24) +
|
||
|
loc->tm_hour - utc->tm_hour);
|
||
|
minutes = hours * 60 + loc->tm_min - utc->tm_min;
|
||
|
|
||
|
// don't include any daylight savings offset in local time
|
||
|
if (loc->tm_isdst > 0) minutes -= 60;
|
||
|
|
||
|
// the result is in milliseconds
|
||
|
return static_cast<double>(minutes * 60 * msPerSecond);
|
||
|
}
|
||
|
|
||
|
|
||
|
// We keep the lowest and highest addresses mapped as a quick way of
|
||
|
// determining that pointers are outside the heap (used mostly in assertions
|
||
|
// and verification). The estimate is conservative, ie, not all addresses in
|
||
|
// 'allocated' space are actually allocated to our heap. The range is
|
||
|
// [lowest, highest), inclusive on the low and and exclusive on the high end.
|
||
|
static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
|
||
|
static void* highest_ever_allocated = reinterpret_cast<void*>(0);
|
||
|
|
||
|
|
||
|
static void UpdateAllocatedSpaceLimits(void* address, int size) {
|
||
|
lowest_ever_allocated = Min(lowest_ever_allocated, address);
|
||
|
highest_ever_allocated =
|
||
|
Max(highest_ever_allocated,
|
||
|
reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
|
||
|
}
|
||
|
|
||
|
|
||
|
bool OS::IsOutsideAllocatedSpace(void* address) {
|
||
|
return address < lowest_ever_allocated || address >= highest_ever_allocated;
|
||
|
}
|
||
|
|
||
|
|
||
|
size_t OS::AllocateAlignment() {
|
||
|
return (size_t)getpagesize();
|
||
|
}
|
||
|
|
||
|
|
||
|
void* OS::Allocate(const size_t requested,
|
||
|
size_t* allocated,
|
||
|
bool is_executable) {
|
||
|
const size_t msize = RoundUp(requested, getpagesize());
|
||
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
||
|
void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0);
|
||
|
|
||
|
if (mbase == MAP_FAILED) {
|
||
|
LOG(StringEvent("OS::Allocate", "mmap failed"));
|
||
|
return NULL;
|
||
|
}
|
||
|
*allocated = msize;
|
||
|
UpdateAllocatedSpaceLimits(mbase, msize);
|
||
|
return mbase;
|
||
|
}
|
||
|
|
||
|
|
||
|
void OS::Free(void* address, const size_t size) {
|
||
|
// TODO(1240712): munmap has a return value which is ignored here.
|
||
|
int result = munmap(address, size);
|
||
|
USE(result);
|
||
|
ASSERT(result == 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef ENABLE_HEAP_PROTECTION
|
||
|
|
||
|
void OS::Protect(void* address, size_t size) {
|
||
|
// TODO(1240712): mprotect has a return value which is ignored here.
|
||
|
mprotect(address, size, PROT_READ);
|
||
|
}
|
||
|
|
||
|
|
||
|
void OS::Unprotect(void* address, size_t size, bool is_executable) {
|
||
|
// TODO(1240712): mprotect has a return value which is ignored here.
|
||
|
int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0);
|
||
|
mprotect(address, size, prot);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void OS::Sleep(int milliseconds) {
|
||
|
useconds_t ms = static_cast<useconds_t>(milliseconds);
|
||
|
usleep(1000 * ms);
|
||
|
}
|
||
|
|
||
|
|
||
|
void OS::Abort() {
|
||
|
// Redirect to std abort to signal abnormal program termination
|
||
|
abort();
|
||
|
}
|
||
|
|
||
|
|
||
|
void OS::DebugBreak() {
|
||
|
asm("int $3");
|
||
|
}
|
||
|
|
||
|
|
||
|
class PosixMemoryMappedFile : public OS::MemoryMappedFile {
|
||
|
public:
|
||
|
PosixMemoryMappedFile(FILE* file, void* memory, int size)
|
||
|
: file_(file), memory_(memory), size_(size) { }
|
||
|
virtual ~PosixMemoryMappedFile();
|
||
|
virtual void* memory() { return memory_; }
|
||
|
private:
|
||
|
FILE* file_;
|
||
|
void* memory_;
|
||
|
int size_;
|
||
|
};
|
||
|
|
||
|
|
||
|
OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
|
||
|
void* initial) {
|
||
|
FILE* file = fopen(name, "w+");
|
||
|
if (file == NULL) return NULL;
|
||
|
int result = fwrite(initial, size, 1, file);
|
||
|
if (result < 1) {
|
||
|
fclose(file);
|
||
|
return NULL;
|
||
|
}
|
||
|
void* memory =
|
||
|
mmap(0, size, PROT_READ | PROT_WRITE, MAP_SHARED, fileno(file), 0);
|
||
|
return new PosixMemoryMappedFile(file, memory, size);
|
||
|
}
|
||
|
|
||
|
|
||
|
PosixMemoryMappedFile::~PosixMemoryMappedFile() {
|
||
|
if (memory_) munmap(memory_, size_);
|
||
|
fclose(file_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void OS::LogSharedLibraryAddresses() {
|
||
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
||
|
UNIMPLEMENTED();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
int OS::StackWalk(Vector<OS::StackFrame> frames) {
|
||
|
int frames_size = frames.length();
|
||
|
void** addresses = NewArray<void*>(frames_size);
|
||
|
|
||
|
int frames_count = backtrace(addresses, frames_size);
|
||
|
|
||
|
char** symbols;
|
||
|
symbols = backtrace_symbols(addresses, frames_count);
|
||
|
if (symbols == NULL) {
|
||
|
DeleteArray(addresses);
|
||
|
return kStackWalkError;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < frames_count; i++) {
|
||
|
frames[i].address = addresses[i];
|
||
|
// Format a text representation of the frame based on the information
|
||
|
// available.
|
||
|
SNPrintF(MutableCStrVector(frames[i].text, kStackWalkMaxTextLen),
|
||
|
"%s",
|
||
|
symbols[i]);
|
||
|
// Make sure line termination is in place.
|
||
|
frames[i].text[kStackWalkMaxTextLen - 1] = '\0';
|
||
|
}
|
||
|
|
||
|
DeleteArray(addresses);
|
||
|
free(symbols);
|
||
|
|
||
|
return frames_count;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Constants used for mmap.
|
||
|
static const int kMmapFd = -1;
|
||
|
static const int kMmapFdOffset = 0;
|
||
|
|
||
|
|
||
|
VirtualMemory::VirtualMemory(size_t size) {
|
||
|
address_ = mmap(NULL, size, PROT_NONE,
|
||
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
|
||
|
kMmapFd, kMmapFdOffset);
|
||
|
size_ = size;
|
||
|
}
|
||
|
|
||
|
|
||
|
VirtualMemory::~VirtualMemory() {
|
||
|
if (IsReserved()) {
|
||
|
if (0 == munmap(address(), size())) address_ = MAP_FAILED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool VirtualMemory::IsReserved() {
|
||
|
return address_ != MAP_FAILED;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool VirtualMemory::Commit(void* address, size_t size, bool executable) {
|
||
|
int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0);
|
||
|
if (MAP_FAILED == mmap(address, size, prot,
|
||
|
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
|
||
|
kMmapFd, kMmapFdOffset)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
UpdateAllocatedSpaceLimits(address, size);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool VirtualMemory::Uncommit(void* address, size_t size) {
|
||
|
return mmap(address, size, PROT_NONE,
|
||
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED,
|
||
|
kMmapFd, kMmapFdOffset) != MAP_FAILED;
|
||
|
}
|
||
|
|
||
|
|
||
|
class ThreadHandle::PlatformData : public Malloced {
|
||
|
public:
|
||
|
explicit PlatformData(ThreadHandle::Kind kind) {
|
||
|
Initialize(kind);
|
||
|
}
|
||
|
|
||
|
void Initialize(ThreadHandle::Kind kind) {
|
||
|
switch (kind) {
|
||
|
case ThreadHandle::SELF: thread_ = pthread_self(); break;
|
||
|
case ThreadHandle::INVALID: thread_ = kNoThread; break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
pthread_t thread_; // Thread handle for pthread.
|
||
|
};
|
||
|
|
||
|
|
||
|
ThreadHandle::ThreadHandle(Kind kind) {
|
||
|
data_ = new PlatformData(kind);
|
||
|
}
|
||
|
|
||
|
|
||
|
void ThreadHandle::Initialize(ThreadHandle::Kind kind) {
|
||
|
data_->Initialize(kind);
|
||
|
}
|
||
|
|
||
|
|
||
|
ThreadHandle::~ThreadHandle() {
|
||
|
delete data_;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool ThreadHandle::IsSelf() const {
|
||
|
return pthread_equal(data_->thread_, pthread_self());
|
||
|
}
|
||
|
|
||
|
|
||
|
bool ThreadHandle::IsValid() const {
|
||
|
return data_->thread_ != kNoThread;
|
||
|
}
|
||
|
|
||
|
|
||
|
Thread::Thread() : ThreadHandle(ThreadHandle::INVALID) {
|
||
|
}
|
||
|
|
||
|
|
||
|
Thread::~Thread() {
|
||
|
}
|
||
|
|
||
|
|
||
|
static void* ThreadEntry(void* arg) {
|
||
|
Thread* thread = reinterpret_cast<Thread*>(arg);
|
||
|
// This is also initialized by the first argument to pthread_create() but we
|
||
|
// don't know which thread will run first (the original thread or the new
|
||
|
// one) so we initialize it here too.
|
||
|
thread->thread_handle_data()->thread_ = pthread_self();
|
||
|
ASSERT(thread->IsValid());
|
||
|
thread->Run();
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void Thread::Start() {
|
||
|
pthread_create(&thread_handle_data()->thread_, NULL, ThreadEntry, this);
|
||
|
ASSERT(IsValid());
|
||
|
}
|
||
|
|
||
|
|
||
|
void Thread::Join() {
|
||
|
pthread_join(thread_handle_data()->thread_, NULL);
|
||
|
}
|
||
|
|
||
|
|
||
|
Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
|
||
|
pthread_key_t key;
|
||
|
int result = pthread_key_create(&key, NULL);
|
||
|
USE(result);
|
||
|
ASSERT(result == 0);
|
||
|
return static_cast<LocalStorageKey>(key);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
|
||
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
||
|
int result = pthread_key_delete(pthread_key);
|
||
|
USE(result);
|
||
|
ASSERT(result == 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void* Thread::GetThreadLocal(LocalStorageKey key) {
|
||
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
||
|
return pthread_getspecific(pthread_key);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
|
||
|
pthread_key_t pthread_key = static_cast<pthread_key_t>(key);
|
||
|
pthread_setspecific(pthread_key, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
void Thread::YieldCPU() {
|
||
|
sched_yield();
|
||
|
}
|
||
|
|
||
|
|
||
|
class SolarisMutex : public Mutex {
|
||
|
public:
|
||
|
|
||
|
SolarisMutex() {
|
||
|
pthread_mutexattr_t attr;
|
||
|
pthread_mutexattr_init(&attr);
|
||
|
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
|
||
|
pthread_mutex_init(&mutex_, &attr);
|
||
|
}
|
||
|
|
||
|
~SolarisMutex() { pthread_mutex_destroy(&mutex_); }
|
||
|
|
||
|
int Lock() { return pthread_mutex_lock(&mutex_); }
|
||
|
|
||
|
int Unlock() { return pthread_mutex_unlock(&mutex_); }
|
||
|
|
||
|
private:
|
||
|
pthread_mutex_t mutex_;
|
||
|
};
|
||
|
|
||
|
|
||
|
Mutex* OS::CreateMutex() {
|
||
|
return new SolarisMutex();
|
||
|
}
|
||
|
|
||
|
|
||
|
class SolarisSemaphore : public Semaphore {
|
||
|
public:
|
||
|
explicit SolarisSemaphore(int count) { sem_init(&sem_, 0, count); }
|
||
|
virtual ~SolarisSemaphore() { sem_destroy(&sem_); }
|
||
|
|
||
|
virtual void Wait();
|
||
|
virtual bool Wait(int timeout);
|
||
|
virtual void Signal() { sem_post(&sem_); }
|
||
|
private:
|
||
|
sem_t sem_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void SolarisSemaphore::Wait() {
|
||
|
while (true) {
|
||
|
int result = sem_wait(&sem_);
|
||
|
if (result == 0) return; // Successfully got semaphore.
|
||
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef TIMEVAL_TO_TIMESPEC
|
||
|
#define TIMEVAL_TO_TIMESPEC(tv, ts) do { \
|
||
|
(ts)->tv_sec = (tv)->tv_sec; \
|
||
|
(ts)->tv_nsec = (tv)->tv_usec * 1000; \
|
||
|
} while (false)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#ifndef timeradd
|
||
|
#define timeradd(a, b, result) \
|
||
|
do { \
|
||
|
(result)->tv_sec = (a)->tv_sec + (b)->tv_sec; \
|
||
|
(result)->tv_usec = (a)->tv_usec + (b)->tv_usec; \
|
||
|
if ((result)->tv_usec >= 1000000) { \
|
||
|
++(result)->tv_sec; \
|
||
|
(result)->tv_usec -= 1000000; \
|
||
|
} \
|
||
|
} while (0)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
bool SolarisSemaphore::Wait(int timeout) {
|
||
|
const long kOneSecondMicros = 1000000; // NOLINT
|
||
|
|
||
|
// Split timeout into second and nanosecond parts.
|
||
|
struct timeval delta;
|
||
|
delta.tv_usec = timeout % kOneSecondMicros;
|
||
|
delta.tv_sec = timeout / kOneSecondMicros;
|
||
|
|
||
|
struct timeval current_time;
|
||
|
// Get the current time.
|
||
|
if (gettimeofday(¤t_time, NULL) == -1) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Calculate time for end of timeout.
|
||
|
struct timeval end_time;
|
||
|
timeradd(¤t_time, &delta, &end_time);
|
||
|
|
||
|
struct timespec ts;
|
||
|
TIMEVAL_TO_TIMESPEC(&end_time, &ts);
|
||
|
// Wait for semaphore signalled or timeout.
|
||
|
while (true) {
|
||
|
int result = sem_timedwait(&sem_, &ts);
|
||
|
if (result == 0) return true; // Successfully got semaphore.
|
||
|
if (result == -1 && errno == ETIMEDOUT) return false; // Timeout.
|
||
|
CHECK(result == -1 && errno == EINTR); // Signal caused spurious wakeup.
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
Semaphore* OS::CreateSemaphore(int count) {
|
||
|
return new SolarisSemaphore(count);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
||
|
|
||
|
static Sampler* active_sampler_ = NULL;
|
||
|
|
||
|
static void ProfilerSignalHandler(int signal, siginfo_t* info, void* context) {
|
||
|
USE(info);
|
||
|
if (signal != SIGPROF) return;
|
||
|
if (active_sampler_ == NULL) return;
|
||
|
|
||
|
TickSample sample;
|
||
|
|
||
|
// We always sample the VM state.
|
||
|
sample.state = Logger::state();
|
||
|
|
||
|
active_sampler_->Tick(&sample);
|
||
|
}
|
||
|
|
||
|
|
||
|
class Sampler::PlatformData : public Malloced {
|
||
|
public:
|
||
|
PlatformData() {
|
||
|
signal_handler_installed_ = false;
|
||
|
}
|
||
|
|
||
|
bool signal_handler_installed_;
|
||
|
struct sigaction old_signal_handler_;
|
||
|
struct itimerval old_timer_value_;
|
||
|
};
|
||
|
|
||
|
|
||
|
Sampler::Sampler(int interval, bool profiling)
|
||
|
: interval_(interval), profiling_(profiling), active_(false) {
|
||
|
data_ = new PlatformData();
|
||
|
}
|
||
|
|
||
|
|
||
|
Sampler::~Sampler() {
|
||
|
delete data_;
|
||
|
}
|
||
|
|
||
|
|
||
|
void Sampler::Start() {
|
||
|
// There can only be one active sampler at the time on POSIX
|
||
|
// platforms.
|
||
|
if (active_sampler_ != NULL) return;
|
||
|
|
||
|
// Request profiling signals.
|
||
|
struct sigaction sa;
|
||
|
sa.sa_sigaction = ProfilerSignalHandler;
|
||
|
sigemptyset(&sa.sa_mask);
|
||
|
sa.sa_flags = SA_SIGINFO;
|
||
|
if (sigaction(SIGPROF, &sa, &data_->old_signal_handler_) != 0) return;
|
||
|
data_->signal_handler_installed_ = true;
|
||
|
|
||
|
// Set the itimer to generate a tick for each interval.
|
||
|
itimerval itimer;
|
||
|
itimer.it_interval.tv_sec = interval_ / 1000;
|
||
|
itimer.it_interval.tv_usec = (interval_ % 1000) * 1000;
|
||
|
itimer.it_value.tv_sec = itimer.it_interval.tv_sec;
|
||
|
itimer.it_value.tv_usec = itimer.it_interval.tv_usec;
|
||
|
setitimer(ITIMER_PROF, &itimer, &data_->old_timer_value_);
|
||
|
|
||
|
// Set this sampler as the active sampler.
|
||
|
active_sampler_ = this;
|
||
|
active_ = true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void Sampler::Stop() {
|
||
|
// Restore old signal handler
|
||
|
if (data_->signal_handler_installed_) {
|
||
|
setitimer(ITIMER_PROF, &data_->old_timer_value_, NULL);
|
||
|
sigaction(SIGPROF, &data_->old_signal_handler_, 0);
|
||
|
data_->signal_handler_installed_ = false;
|
||
|
}
|
||
|
|
||
|
// This sampler is no longer the active sampler.
|
||
|
active_sampler_ = NULL;
|
||
|
active_ = false;
|
||
|
}
|
||
|
|
||
|
#endif // ENABLE_LOGGING_AND_PROFILING
|
||
|
|
||
|
} } // namespace v8::internal
|