You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

593 lines
17 KiB

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_LITHIUM_H_
#define V8_LITHIUM_H_
#include "hydrogen.h"
#include "safepoint-table.h"
namespace v8 {
namespace internal {
class LOperand: public ZoneObject {
public:
enum Kind {
INVALID,
UNALLOCATED,
CONSTANT_OPERAND,
STACK_SLOT,
DOUBLE_STACK_SLOT,
REGISTER,
DOUBLE_REGISTER,
ARGUMENT
};
LOperand() : value_(KindField::encode(INVALID)) { }
Kind kind() const { return KindField::decode(value_); }
int index() const { return static_cast<int>(value_) >> kKindFieldWidth; }
bool IsConstantOperand() const { return kind() == CONSTANT_OPERAND; }
bool IsStackSlot() const { return kind() == STACK_SLOT; }
bool IsDoubleStackSlot() const { return kind() == DOUBLE_STACK_SLOT; }
bool IsRegister() const { return kind() == REGISTER; }
bool IsDoubleRegister() const { return kind() == DOUBLE_REGISTER; }
bool IsArgument() const { return kind() == ARGUMENT; }
bool IsUnallocated() const { return kind() == UNALLOCATED; }
bool Equals(LOperand* other) const { return value_ == other->value_; }
int VirtualRegister();
void PrintTo(StringStream* stream);
void ConvertTo(Kind kind, int index) {
value_ = KindField::encode(kind);
value_ |= index << kKindFieldWidth;
ASSERT(this->index() == index);
}
protected:
static const int kKindFieldWidth = 3;
class KindField : public BitField<Kind, 0, kKindFieldWidth> { };
LOperand(Kind kind, int index) { ConvertTo(kind, index); }
unsigned value_;
};
class LUnallocated: public LOperand {
public:
enum Policy {
NONE,
ANY,
FIXED_REGISTER,
FIXED_DOUBLE_REGISTER,
FIXED_SLOT,
MUST_HAVE_REGISTER,
WRITABLE_REGISTER,
SAME_AS_FIRST_INPUT,
IGNORE
};
// Lifetime of operand inside the instruction.
enum Lifetime {
// USED_AT_START operand is guaranteed to be live only at
// instruction start. Register allocator is free to assign the same register
// to some other operand used inside instruction (i.e. temporary or
// output).
USED_AT_START,
// USED_AT_END operand is treated as live until the end of
// instruction. This means that register allocator will not reuse it's
// register for any other operand inside instruction.
USED_AT_END
};
explicit LUnallocated(Policy policy) : LOperand(UNALLOCATED, 0) {
Initialize(policy, 0, USED_AT_END);
}
LUnallocated(Policy policy, int fixed_index) : LOperand(UNALLOCATED, 0) {
Initialize(policy, fixed_index, USED_AT_END);
}
LUnallocated(Policy policy, Lifetime lifetime) : LOperand(UNALLOCATED, 0) {
Initialize(policy, 0, lifetime);
}
// The superclass has a KindField. Some policies have a signed fixed
// index in the upper bits.
static const int kPolicyWidth = 4;
static const int kLifetimeWidth = 1;
static const int kVirtualRegisterWidth = 17;
static const int kPolicyShift = kKindFieldWidth;
static const int kLifetimeShift = kPolicyShift + kPolicyWidth;
static const int kVirtualRegisterShift = kLifetimeShift + kLifetimeWidth;
static const int kFixedIndexShift =
kVirtualRegisterShift + kVirtualRegisterWidth;
class PolicyField : public BitField<Policy, kPolicyShift, kPolicyWidth> { };
class LifetimeField
: public BitField<Lifetime, kLifetimeShift, kLifetimeWidth> {
};
class VirtualRegisterField
: public BitField<unsigned,
kVirtualRegisterShift,
kVirtualRegisterWidth> {
};
static const int kMaxVirtualRegisters = 1 << (kVirtualRegisterWidth + 1);
static const int kMaxFixedIndices = 128;
bool HasIgnorePolicy() const { return policy() == IGNORE; }
bool HasNoPolicy() const { return policy() == NONE; }
bool HasAnyPolicy() const {
return policy() == ANY;
}
bool HasFixedPolicy() const {
return policy() == FIXED_REGISTER ||
policy() == FIXED_DOUBLE_REGISTER ||
policy() == FIXED_SLOT;
}
bool HasRegisterPolicy() const {
return policy() == WRITABLE_REGISTER || policy() == MUST_HAVE_REGISTER;
}
bool HasSameAsInputPolicy() const {
return policy() == SAME_AS_FIRST_INPUT;
}
Policy policy() const { return PolicyField::decode(value_); }
void set_policy(Policy policy) {
value_ &= ~PolicyField::mask();
value_ |= PolicyField::encode(policy);
}
int fixed_index() const {
return static_cast<int>(value_) >> kFixedIndexShift;
}
unsigned virtual_register() const {
return VirtualRegisterField::decode(value_);
}
void set_virtual_register(unsigned id) {
value_ &= ~VirtualRegisterField::mask();
value_ |= VirtualRegisterField::encode(id);
}
LUnallocated* CopyUnconstrained() {
LUnallocated* result = new LUnallocated(ANY);
result->set_virtual_register(virtual_register());
return result;
}
static LUnallocated* cast(LOperand* op) {
ASSERT(op->IsUnallocated());
return reinterpret_cast<LUnallocated*>(op);
}
bool IsUsedAtStart() {
return LifetimeField::decode(value_) == USED_AT_START;
}
private:
void Initialize(Policy policy, int fixed_index, Lifetime lifetime) {
value_ |= PolicyField::encode(policy);
value_ |= LifetimeField::encode(lifetime);
value_ |= fixed_index << kFixedIndexShift;
ASSERT(this->fixed_index() == fixed_index);
}
};
class LMoveOperands BASE_EMBEDDED {
public:
LMoveOperands(LOperand* source, LOperand* destination)
: source_(source), destination_(destination) {
}
LOperand* source() const { return source_; }
void set_source(LOperand* operand) { source_ = operand; }
LOperand* destination() const { return destination_; }
void set_destination(LOperand* operand) { destination_ = operand; }
// The gap resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
bool IsPending() const {
return destination_ == NULL && source_ != NULL;
}
// True if this move a move into the given destination operand.
bool Blocks(LOperand* operand) const {
return !IsEliminated() && source()->Equals(operand);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || source_->Equals(destination_) || IsIgnored();
}
bool IsIgnored() const {
return destination_ != NULL &&
destination_->IsUnallocated() &&
LUnallocated::cast(destination_)->HasIgnorePolicy();
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() { source_ = destination_ = NULL; }
bool IsEliminated() const {
ASSERT(source_ != NULL || destination_ == NULL);
return source_ == NULL;
}
private:
LOperand* source_;
LOperand* destination_;
};
class LConstantOperand: public LOperand {
public:
static LConstantOperand* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LConstantOperand(index);
}
static LConstantOperand* cast(LOperand* op) {
ASSERT(op->IsConstantOperand());
return reinterpret_cast<LConstantOperand*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 128;
static LConstantOperand cache[];
LConstantOperand() : LOperand() { }
explicit LConstantOperand(int index) : LOperand(CONSTANT_OPERAND, index) { }
};
class LArgument: public LOperand {
public:
explicit LArgument(int index) : LOperand(ARGUMENT, index) { }
static LArgument* cast(LOperand* op) {
ASSERT(op->IsArgument());
return reinterpret_cast<LArgument*>(op);
}
};
class LStackSlot: public LOperand {
public:
static LStackSlot* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LStackSlot(index);
}
static LStackSlot* cast(LOperand* op) {
ASSERT(op->IsStackSlot());
return reinterpret_cast<LStackSlot*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 128;
static LStackSlot cache[];
LStackSlot() : LOperand() { }
explicit LStackSlot(int index) : LOperand(STACK_SLOT, index) { }
};
class LDoubleStackSlot: public LOperand {
public:
static LDoubleStackSlot* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LDoubleStackSlot(index);
}
static LDoubleStackSlot* cast(LOperand* op) {
ASSERT(op->IsStackSlot());
return reinterpret_cast<LDoubleStackSlot*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 128;
static LDoubleStackSlot cache[];
LDoubleStackSlot() : LOperand() { }
explicit LDoubleStackSlot(int index) : LOperand(DOUBLE_STACK_SLOT, index) { }
};
class LRegister: public LOperand {
public:
static LRegister* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LRegister(index);
}
static LRegister* cast(LOperand* op) {
ASSERT(op->IsRegister());
return reinterpret_cast<LRegister*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 16;
static LRegister cache[];
LRegister() : LOperand() { }
explicit LRegister(int index) : LOperand(REGISTER, index) { }
};
class LDoubleRegister: public LOperand {
public:
static LDoubleRegister* Create(int index) {
ASSERT(index >= 0);
if (index < kNumCachedOperands) return &cache[index];
return new LDoubleRegister(index);
}
static LDoubleRegister* cast(LOperand* op) {
ASSERT(op->IsDoubleRegister());
return reinterpret_cast<LDoubleRegister*>(op);
}
static void SetupCache();
private:
static const int kNumCachedOperands = 16;
static LDoubleRegister cache[];
LDoubleRegister() : LOperand() { }
explicit LDoubleRegister(int index) : LOperand(DOUBLE_REGISTER, index) { }
};
class LParallelMove : public ZoneObject {
public:
LParallelMove() : move_operands_(4) { }
void AddMove(LOperand* from, LOperand* to) {
move_operands_.Add(LMoveOperands(from, to));
}
bool IsRedundant() const;
const ZoneList<LMoveOperands>* move_operands() const {
return &move_operands_;
}
void PrintDataTo(StringStream* stream) const;
private:
ZoneList<LMoveOperands> move_operands_;
};
class LPointerMap: public ZoneObject {
public:
explicit LPointerMap(int position)
: pointer_operands_(8), position_(position), lithium_position_(-1) { }
const ZoneList<LOperand*>* operands() const { return &pointer_operands_; }
int position() const { return position_; }
int lithium_position() const { return lithium_position_; }
void set_lithium_position(int pos) {
ASSERT(lithium_position_ == -1);
lithium_position_ = pos;
}
void RecordPointer(LOperand* op);
void PrintTo(StringStream* stream);
private:
ZoneList<LOperand*> pointer_operands_;
int position_;
int lithium_position_;
};
class LEnvironment: public ZoneObject {
public:
LEnvironment(Handle<JSFunction> closure,
int ast_id,
int parameter_count,
int argument_count,
int value_count,
LEnvironment* outer)
: closure_(closure),
arguments_stack_height_(argument_count),
deoptimization_index_(Safepoint::kNoDeoptimizationIndex),
translation_index_(-1),
ast_id_(ast_id),
parameter_count_(parameter_count),
values_(value_count),
representations_(value_count),
spilled_registers_(NULL),
spilled_double_registers_(NULL),
outer_(outer) {
}
Handle<JSFunction> closure() const { return closure_; }
int arguments_stack_height() const { return arguments_stack_height_; }
int deoptimization_index() const { return deoptimization_index_; }
int translation_index() const { return translation_index_; }
int ast_id() const { return ast_id_; }
int parameter_count() const { return parameter_count_; }
LOperand** spilled_registers() const { return spilled_registers_; }
LOperand** spilled_double_registers() const {
return spilled_double_registers_;
}
const ZoneList<LOperand*>* values() const { return &values_; }
LEnvironment* outer() const { return outer_; }
void AddValue(LOperand* operand, Representation representation) {
values_.Add(operand);
representations_.Add(representation);
}
bool HasTaggedValueAt(int index) const {
return representations_[index].IsTagged();
}
void Register(int deoptimization_index, int translation_index) {
ASSERT(!HasBeenRegistered());
deoptimization_index_ = deoptimization_index;
translation_index_ = translation_index;
}
bool HasBeenRegistered() const {
return deoptimization_index_ != Safepoint::kNoDeoptimizationIndex;
}
void SetSpilledRegisters(LOperand** registers,
LOperand** double_registers) {
spilled_registers_ = registers;
spilled_double_registers_ = double_registers;
}
void PrintTo(StringStream* stream);
private:
Handle<JSFunction> closure_;
int arguments_stack_height_;
int deoptimization_index_;
int translation_index_;
int ast_id_;
int parameter_count_;
ZoneList<LOperand*> values_;
ZoneList<Representation> representations_;
// Allocation index indexed arrays of spill slot operands for registers
// that are also in spill slots at an OSR entry. NULL for environments
// that do not correspond to an OSR entry.
LOperand** spilled_registers_;
LOperand** spilled_double_registers_;
LEnvironment* outer_;
friend class LCodegen;
};
// Iterates over the non-null, non-constant operands in an environment.
class ShallowIterator BASE_EMBEDDED {
public:
explicit ShallowIterator(LEnvironment* env)
: env_(env),
limit_(env != NULL ? env->values()->length() : 0),
current_(0) {
current_ = AdvanceToNext(0);
}
inline bool HasNext() {
return env_ != NULL && current_ < limit_;
}
inline LOperand* Next() {
ASSERT(HasNext());
return env_->values()->at(current_);
}
inline void Advance() {
current_ = AdvanceToNext(current_ + 1);
}
inline LEnvironment* env() { return env_; }
private:
inline bool ShouldSkip(LOperand* op) {
return op == NULL || op->IsConstantOperand() || op->IsArgument();
}
inline int AdvanceToNext(int start) {
while (start < limit_ && ShouldSkip(env_->values()->at(start))) {
start++;
}
return start;
}
LEnvironment* env_;
int limit_;
int current_;
};
// Iterator for non-null, non-constant operands incl. outer environments.
class DeepIterator BASE_EMBEDDED {
public:
explicit DeepIterator(LEnvironment* env)
: current_iterator_(env) { }
inline bool HasNext() {
if (current_iterator_.HasNext()) return true;
if (current_iterator_.env() == NULL) return false;
AdvanceToOuter();
return current_iterator_.HasNext();
}
inline LOperand* Next() {
ASSERT(current_iterator_.HasNext());
return current_iterator_.Next();
}
inline void Advance() {
if (current_iterator_.HasNext()) {
current_iterator_.Advance();
} else {
AdvanceToOuter();
}
}
private:
inline void AdvanceToOuter() {
current_iterator_ = ShallowIterator(current_iterator_.env()->outer());
}
ShallowIterator current_iterator_;
};
} } // namespace v8::internal
#endif // V8_LITHIUM_H_