mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4016 lines
141 KiB
4016 lines
141 KiB
14 years ago
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
#include "v8.h"
|
||
|
|
||
|
#if defined(V8_TARGET_ARCH_X64)
|
||
|
|
||
|
#include "bootstrapper.h"
|
||
|
#include "code-stubs.h"
|
||
|
#include "regexp-macro-assembler.h"
|
||
|
|
||
|
namespace v8 {
|
||
|
namespace internal {
|
||
|
|
||
|
#define __ ACCESS_MASM(masm)
|
||
|
void FastNewClosureStub::Generate(MacroAssembler* masm) {
|
||
|
// Create a new closure from the given function info in new
|
||
|
// space. Set the context to the current context in rsi.
|
||
|
Label gc;
|
||
|
__ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
|
||
|
|
||
|
// Get the function info from the stack.
|
||
|
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
|
||
|
|
||
|
// Compute the function map in the current global context and set that
|
||
|
// as the map of the allocated object.
|
||
|
__ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
||
|
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
|
||
|
__ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
|
||
|
__ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
|
||
|
|
||
|
// Initialize the rest of the function. We don't have to update the
|
||
|
// write barrier because the allocated object is in new space.
|
||
|
__ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
|
||
|
__ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
|
||
|
__ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
|
||
|
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
|
||
|
__ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
|
||
|
__ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
|
||
|
__ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
|
||
|
__ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
|
||
|
|
||
|
// Initialize the code pointer in the function to be the one
|
||
|
// found in the shared function info object.
|
||
|
__ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
|
||
|
__ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
|
||
|
__ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
|
||
|
|
||
|
|
||
|
// Return and remove the on-stack parameter.
|
||
|
__ ret(1 * kPointerSize);
|
||
|
|
||
|
// Create a new closure through the slower runtime call.
|
||
|
__ bind(&gc);
|
||
|
__ pop(rcx); // Temporarily remove return address.
|
||
|
__ pop(rdx);
|
||
|
__ push(rsi);
|
||
|
__ push(rdx);
|
||
|
__ push(rcx); // Restore return address.
|
||
|
__ TailCallRuntime(Runtime::kNewClosure, 2, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void FastNewContextStub::Generate(MacroAssembler* masm) {
|
||
|
// Try to allocate the context in new space.
|
||
|
Label gc;
|
||
|
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
|
||
|
__ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
|
||
|
rax, rbx, rcx, &gc, TAG_OBJECT);
|
||
|
|
||
|
// Get the function from the stack.
|
||
|
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
|
||
|
|
||
|
// Setup the object header.
|
||
|
__ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
|
||
|
__ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
|
||
|
__ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
|
||
|
|
||
|
// Setup the fixed slots.
|
||
|
__ xor_(rbx, rbx); // Set to NULL.
|
||
|
__ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
|
||
|
__ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
|
||
|
__ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
|
||
|
__ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
|
||
|
|
||
|
// Copy the global object from the surrounding context.
|
||
|
__ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
||
|
__ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
|
||
|
|
||
|
// Initialize the rest of the slots to undefined.
|
||
|
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
|
||
|
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
|
||
|
__ movq(Operand(rax, Context::SlotOffset(i)), rbx);
|
||
|
}
|
||
|
|
||
|
// Return and remove the on-stack parameter.
|
||
|
__ movq(rsi, rax);
|
||
|
__ ret(1 * kPointerSize);
|
||
|
|
||
|
// Need to collect. Call into runtime system.
|
||
|
__ bind(&gc);
|
||
|
__ TailCallRuntime(Runtime::kNewContext, 1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
|
||
|
// Stack layout on entry:
|
||
|
//
|
||
|
// [rsp + kPointerSize]: constant elements.
|
||
|
// [rsp + (2 * kPointerSize)]: literal index.
|
||
|
// [rsp + (3 * kPointerSize)]: literals array.
|
||
|
|
||
|
// All sizes here are multiples of kPointerSize.
|
||
|
int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
|
||
|
int size = JSArray::kSize + elements_size;
|
||
|
|
||
|
// Load boilerplate object into rcx and check if we need to create a
|
||
|
// boilerplate.
|
||
|
Label slow_case;
|
||
|
__ movq(rcx, Operand(rsp, 3 * kPointerSize));
|
||
|
__ movq(rax, Operand(rsp, 2 * kPointerSize));
|
||
|
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
|
||
|
__ movq(rcx,
|
||
|
FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
|
||
|
__ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
|
||
|
__ j(equal, &slow_case);
|
||
|
|
||
|
if (FLAG_debug_code) {
|
||
|
const char* message;
|
||
|
Heap::RootListIndex expected_map_index;
|
||
|
if (mode_ == CLONE_ELEMENTS) {
|
||
|
message = "Expected (writable) fixed array";
|
||
|
expected_map_index = Heap::kFixedArrayMapRootIndex;
|
||
|
} else {
|
||
|
ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
|
||
|
message = "Expected copy-on-write fixed array";
|
||
|
expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
|
||
|
}
|
||
|
__ push(rcx);
|
||
|
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
|
||
|
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
|
||
|
expected_map_index);
|
||
|
__ Assert(equal, message);
|
||
|
__ pop(rcx);
|
||
|
}
|
||
|
|
||
|
// Allocate both the JS array and the elements array in one big
|
||
|
// allocation. This avoids multiple limit checks.
|
||
|
__ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
|
||
|
|
||
|
// Copy the JS array part.
|
||
|
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
|
||
|
if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
|
||
|
__ movq(rbx, FieldOperand(rcx, i));
|
||
|
__ movq(FieldOperand(rax, i), rbx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (length_ > 0) {
|
||
|
// Get hold of the elements array of the boilerplate and setup the
|
||
|
// elements pointer in the resulting object.
|
||
|
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
|
||
|
__ lea(rdx, Operand(rax, JSArray::kSize));
|
||
|
__ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
|
||
|
|
||
|
// Copy the elements array.
|
||
|
for (int i = 0; i < elements_size; i += kPointerSize) {
|
||
|
__ movq(rbx, FieldOperand(rcx, i));
|
||
|
__ movq(FieldOperand(rdx, i), rbx);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return and remove the on-stack parameters.
|
||
|
__ ret(3 * kPointerSize);
|
||
|
|
||
|
__ bind(&slow_case);
|
||
|
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void ToBooleanStub::Generate(MacroAssembler* masm) {
|
||
|
Label false_result, true_result, not_string;
|
||
|
__ movq(rax, Operand(rsp, 1 * kPointerSize));
|
||
|
|
||
|
// 'null' => false.
|
||
|
__ CompareRoot(rax, Heap::kNullValueRootIndex);
|
||
|
__ j(equal, &false_result);
|
||
|
|
||
|
// Get the map and type of the heap object.
|
||
|
// We don't use CmpObjectType because we manipulate the type field.
|
||
|
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
|
||
|
|
||
|
// Undetectable => false.
|
||
|
__ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
|
||
|
__ and_(rbx, Immediate(1 << Map::kIsUndetectable));
|
||
|
__ j(not_zero, &false_result);
|
||
|
|
||
|
// JavaScript object => true.
|
||
|
__ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
|
||
|
__ j(above_equal, &true_result);
|
||
|
|
||
|
// String value => false iff empty.
|
||
|
__ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
|
||
|
__ j(above_equal, ¬_string);
|
||
|
__ movq(rdx, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ SmiTest(rdx);
|
||
|
__ j(zero, &false_result);
|
||
|
__ jmp(&true_result);
|
||
|
|
||
|
__ bind(¬_string);
|
||
|
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
|
||
|
__ j(not_equal, &true_result);
|
||
|
// HeapNumber => false iff +0, -0, or NaN.
|
||
|
// These three cases set the zero flag when compared to zero using ucomisd.
|
||
|
__ xorpd(xmm0, xmm0);
|
||
|
__ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ j(zero, &false_result);
|
||
|
// Fall through to |true_result|.
|
||
|
|
||
|
// Return 1/0 for true/false in rax.
|
||
|
__ bind(&true_result);
|
||
|
__ movq(rax, Immediate(1));
|
||
|
__ ret(1 * kPointerSize);
|
||
|
__ bind(&false_result);
|
||
|
__ xor_(rax, rax);
|
||
|
__ ret(1 * kPointerSize);
|
||
|
}
|
||
|
|
||
|
|
||
|
const char* GenericBinaryOpStub::GetName() {
|
||
|
if (name_ != NULL) return name_;
|
||
|
const int kMaxNameLength = 100;
|
||
|
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
|
||
|
if (name_ == NULL) return "OOM";
|
||
|
const char* op_name = Token::Name(op_);
|
||
|
const char* overwrite_name;
|
||
|
switch (mode_) {
|
||
|
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
|
||
|
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
|
||
|
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
|
||
|
default: overwrite_name = "UnknownOverwrite"; break;
|
||
|
}
|
||
|
|
||
|
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
|
||
|
"GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
|
||
|
op_name,
|
||
|
overwrite_name,
|
||
|
(flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
|
||
|
args_in_registers_ ? "RegArgs" : "StackArgs",
|
||
|
args_reversed_ ? "_R" : "",
|
||
|
static_operands_type_.ToString(),
|
||
|
BinaryOpIC::GetName(runtime_operands_type_));
|
||
|
return name_;
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateCall(
|
||
|
MacroAssembler* masm,
|
||
|
Register left,
|
||
|
Register right) {
|
||
|
if (!ArgsInRegistersSupported()) {
|
||
|
// Pass arguments on the stack.
|
||
|
__ push(left);
|
||
|
__ push(right);
|
||
|
} else {
|
||
|
// The calling convention with registers is left in rdx and right in rax.
|
||
|
Register left_arg = rdx;
|
||
|
Register right_arg = rax;
|
||
|
if (!(left.is(left_arg) && right.is(right_arg))) {
|
||
|
if (left.is(right_arg) && right.is(left_arg)) {
|
||
|
if (IsOperationCommutative()) {
|
||
|
SetArgsReversed();
|
||
|
} else {
|
||
|
__ xchg(left, right);
|
||
|
}
|
||
|
} else if (left.is(left_arg)) {
|
||
|
__ movq(right_arg, right);
|
||
|
} else if (right.is(right_arg)) {
|
||
|
__ movq(left_arg, left);
|
||
|
} else if (left.is(right_arg)) {
|
||
|
if (IsOperationCommutative()) {
|
||
|
__ movq(left_arg, right);
|
||
|
SetArgsReversed();
|
||
|
} else {
|
||
|
// Order of moves important to avoid destroying left argument.
|
||
|
__ movq(left_arg, left);
|
||
|
__ movq(right_arg, right);
|
||
|
}
|
||
|
} else if (right.is(left_arg)) {
|
||
|
if (IsOperationCommutative()) {
|
||
|
__ movq(right_arg, left);
|
||
|
SetArgsReversed();
|
||
|
} else {
|
||
|
// Order of moves important to avoid destroying right argument.
|
||
|
__ movq(right_arg, right);
|
||
|
__ movq(left_arg, left);
|
||
|
}
|
||
|
} else {
|
||
|
// Order of moves is not important.
|
||
|
__ movq(left_arg, left);
|
||
|
__ movq(right_arg, right);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Update flags to indicate that arguments are in registers.
|
||
|
SetArgsInRegisters();
|
||
|
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
|
||
|
}
|
||
|
|
||
|
// Call the stub.
|
||
|
__ CallStub(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateCall(
|
||
|
MacroAssembler* masm,
|
||
|
Register left,
|
||
|
Smi* right) {
|
||
|
if (!ArgsInRegistersSupported()) {
|
||
|
// Pass arguments on the stack.
|
||
|
__ push(left);
|
||
|
__ Push(right);
|
||
|
} else {
|
||
|
// The calling convention with registers is left in rdx and right in rax.
|
||
|
Register left_arg = rdx;
|
||
|
Register right_arg = rax;
|
||
|
if (left.is(left_arg)) {
|
||
|
__ Move(right_arg, right);
|
||
|
} else if (left.is(right_arg) && IsOperationCommutative()) {
|
||
|
__ Move(left_arg, right);
|
||
|
SetArgsReversed();
|
||
|
} else {
|
||
|
// For non-commutative operations, left and right_arg might be
|
||
|
// the same register. Therefore, the order of the moves is
|
||
|
// important here in order to not overwrite left before moving
|
||
|
// it to left_arg.
|
||
|
__ movq(left_arg, left);
|
||
|
__ Move(right_arg, right);
|
||
|
}
|
||
|
|
||
|
// Update flags to indicate that arguments are in registers.
|
||
|
SetArgsInRegisters();
|
||
|
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
|
||
|
}
|
||
|
|
||
|
// Call the stub.
|
||
|
__ CallStub(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateCall(
|
||
|
MacroAssembler* masm,
|
||
|
Smi* left,
|
||
|
Register right) {
|
||
|
if (!ArgsInRegistersSupported()) {
|
||
|
// Pass arguments on the stack.
|
||
|
__ Push(left);
|
||
|
__ push(right);
|
||
|
} else {
|
||
|
// The calling convention with registers is left in rdx and right in rax.
|
||
|
Register left_arg = rdx;
|
||
|
Register right_arg = rax;
|
||
|
if (right.is(right_arg)) {
|
||
|
__ Move(left_arg, left);
|
||
|
} else if (right.is(left_arg) && IsOperationCommutative()) {
|
||
|
__ Move(right_arg, left);
|
||
|
SetArgsReversed();
|
||
|
} else {
|
||
|
// For non-commutative operations, right and left_arg might be
|
||
|
// the same register. Therefore, the order of the moves is
|
||
|
// important here in order to not overwrite right before moving
|
||
|
// it to right_arg.
|
||
|
__ movq(right_arg, right);
|
||
|
__ Move(left_arg, left);
|
||
|
}
|
||
|
// Update flags to indicate that arguments are in registers.
|
||
|
SetArgsInRegisters();
|
||
|
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
|
||
|
}
|
||
|
|
||
|
// Call the stub.
|
||
|
__ CallStub(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
class FloatingPointHelper : public AllStatic {
|
||
|
public:
|
||
|
// Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
|
||
|
// If the operands are not both numbers, jump to not_numbers.
|
||
|
// Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
|
||
|
// NumberOperands assumes both are smis or heap numbers.
|
||
|
static void LoadSSE2SmiOperands(MacroAssembler* masm);
|
||
|
static void LoadSSE2NumberOperands(MacroAssembler* masm);
|
||
|
static void LoadSSE2UnknownOperands(MacroAssembler* masm,
|
||
|
Label* not_numbers);
|
||
|
|
||
|
// Takes the operands in rdx and rax and loads them as integers in rax
|
||
|
// and rcx.
|
||
|
static void LoadAsIntegers(MacroAssembler* masm,
|
||
|
Label* operand_conversion_failure,
|
||
|
Register heap_number_map);
|
||
|
// As above, but we know the operands to be numbers. In that case,
|
||
|
// conversion can't fail.
|
||
|
static void LoadNumbersAsIntegers(MacroAssembler* masm);
|
||
|
};
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
|
||
|
// 1. Move arguments into rdx, rax except for DIV and MOD, which need the
|
||
|
// dividend in rax and rdx free for the division. Use rax, rbx for those.
|
||
|
Comment load_comment(masm, "-- Load arguments");
|
||
|
Register left = rdx;
|
||
|
Register right = rax;
|
||
|
if (op_ == Token::DIV || op_ == Token::MOD) {
|
||
|
left = rax;
|
||
|
right = rbx;
|
||
|
if (HasArgsInRegisters()) {
|
||
|
__ movq(rbx, rax);
|
||
|
__ movq(rax, rdx);
|
||
|
}
|
||
|
}
|
||
|
if (!HasArgsInRegisters()) {
|
||
|
__ movq(right, Operand(rsp, 1 * kPointerSize));
|
||
|
__ movq(left, Operand(rsp, 2 * kPointerSize));
|
||
|
}
|
||
|
|
||
|
Label not_smis;
|
||
|
// 2. Smi check both operands.
|
||
|
if (static_operands_type_.IsSmi()) {
|
||
|
// Skip smi check if we know that both arguments are smis.
|
||
|
if (FLAG_debug_code) {
|
||
|
__ AbortIfNotSmi(left);
|
||
|
__ AbortIfNotSmi(right);
|
||
|
}
|
||
|
if (op_ == Token::BIT_OR) {
|
||
|
// Handle OR here, since we do extra smi-checking in the or code below.
|
||
|
__ SmiOr(right, right, left);
|
||
|
GenerateReturn(masm);
|
||
|
return;
|
||
|
}
|
||
|
} else {
|
||
|
if (op_ != Token::BIT_OR) {
|
||
|
// Skip the check for OR as it is better combined with the
|
||
|
// actual operation.
|
||
|
Comment smi_check_comment(masm, "-- Smi check arguments");
|
||
|
__ JumpIfNotBothSmi(left, right, ¬_smis);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// 3. Operands are both smis (except for OR), perform the operation leaving
|
||
|
// the result in rax and check the result if necessary.
|
||
|
Comment perform_smi(masm, "-- Perform smi operation");
|
||
|
Label use_fp_on_smis;
|
||
|
switch (op_) {
|
||
|
case Token::ADD: {
|
||
|
ASSERT(right.is(rax));
|
||
|
__ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case Token::SUB: {
|
||
|
__ SmiSub(left, left, right, &use_fp_on_smis);
|
||
|
__ movq(rax, left);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case Token::MUL:
|
||
|
ASSERT(right.is(rax));
|
||
|
__ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
|
||
|
break;
|
||
|
|
||
|
case Token::DIV:
|
||
|
ASSERT(left.is(rax));
|
||
|
__ SmiDiv(left, left, right, &use_fp_on_smis);
|
||
|
break;
|
||
|
|
||
|
case Token::MOD:
|
||
|
ASSERT(left.is(rax));
|
||
|
__ SmiMod(left, left, right, slow);
|
||
|
break;
|
||
|
|
||
|
case Token::BIT_OR:
|
||
|
ASSERT(right.is(rax));
|
||
|
__ movq(rcx, right); // Save the right operand.
|
||
|
__ SmiOr(right, right, left); // BIT_OR is commutative.
|
||
|
__ testb(right, Immediate(kSmiTagMask));
|
||
|
__ j(not_zero, ¬_smis);
|
||
|
break;
|
||
|
|
||
|
case Token::BIT_AND:
|
||
|
ASSERT(right.is(rax));
|
||
|
__ SmiAnd(right, right, left); // BIT_AND is commutative.
|
||
|
break;
|
||
|
|
||
|
case Token::BIT_XOR:
|
||
|
ASSERT(right.is(rax));
|
||
|
__ SmiXor(right, right, left); // BIT_XOR is commutative.
|
||
|
break;
|
||
|
|
||
|
case Token::SHL:
|
||
|
case Token::SHR:
|
||
|
case Token::SAR:
|
||
|
switch (op_) {
|
||
|
case Token::SAR:
|
||
|
__ SmiShiftArithmeticRight(left, left, right);
|
||
|
break;
|
||
|
case Token::SHR:
|
||
|
__ SmiShiftLogicalRight(left, left, right, slow);
|
||
|
break;
|
||
|
case Token::SHL:
|
||
|
__ SmiShiftLeft(left, left, right);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
__ movq(rax, left);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// 4. Emit return of result in rax.
|
||
|
GenerateReturn(masm);
|
||
|
|
||
|
// 5. For some operations emit inline code to perform floating point
|
||
|
// operations on known smis (e.g., if the result of the operation
|
||
|
// overflowed the smi range).
|
||
|
switch (op_) {
|
||
|
case Token::ADD:
|
||
|
case Token::SUB:
|
||
|
case Token::MUL:
|
||
|
case Token::DIV: {
|
||
|
ASSERT(use_fp_on_smis.is_linked());
|
||
|
__ bind(&use_fp_on_smis);
|
||
|
if (op_ == Token::DIV) {
|
||
|
__ movq(rdx, rax);
|
||
|
__ movq(rax, rbx);
|
||
|
}
|
||
|
// left is rdx, right is rax.
|
||
|
__ AllocateHeapNumber(rbx, rcx, slow);
|
||
|
FloatingPointHelper::LoadSSE2SmiOperands(masm);
|
||
|
switch (op_) {
|
||
|
case Token::ADD: __ addsd(xmm0, xmm1); break;
|
||
|
case Token::SUB: __ subsd(xmm0, xmm1); break;
|
||
|
case Token::MUL: __ mulsd(xmm0, xmm1); break;
|
||
|
case Token::DIV: __ divsd(xmm0, xmm1); break;
|
||
|
default: UNREACHABLE();
|
||
|
}
|
||
|
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
|
||
|
__ movq(rax, rbx);
|
||
|
GenerateReturn(masm);
|
||
|
}
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// 6. Non-smi operands, fall out to the non-smi code with the operands in
|
||
|
// rdx and rax.
|
||
|
Comment done_comment(masm, "-- Enter non-smi code");
|
||
|
__ bind(¬_smis);
|
||
|
|
||
|
switch (op_) {
|
||
|
case Token::DIV:
|
||
|
case Token::MOD:
|
||
|
// Operands are in rax, rbx at this point.
|
||
|
__ movq(rdx, rax);
|
||
|
__ movq(rax, rbx);
|
||
|
break;
|
||
|
|
||
|
case Token::BIT_OR:
|
||
|
// Right operand is saved in rcx and rax was destroyed by the smi
|
||
|
// operation.
|
||
|
__ movq(rax, rcx);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
|
||
|
Label call_runtime;
|
||
|
|
||
|
if (ShouldGenerateSmiCode()) {
|
||
|
GenerateSmiCode(masm, &call_runtime);
|
||
|
} else if (op_ != Token::MOD) {
|
||
|
if (!HasArgsInRegisters()) {
|
||
|
GenerateLoadArguments(masm);
|
||
|
}
|
||
|
}
|
||
|
// Floating point case.
|
||
|
if (ShouldGenerateFPCode()) {
|
||
|
switch (op_) {
|
||
|
case Token::ADD:
|
||
|
case Token::SUB:
|
||
|
case Token::MUL:
|
||
|
case Token::DIV: {
|
||
|
if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
|
||
|
HasSmiCodeInStub()) {
|
||
|
// Execution reaches this point when the first non-smi argument occurs
|
||
|
// (and only if smi code is generated). This is the right moment to
|
||
|
// patch to HEAP_NUMBERS state. The transition is attempted only for
|
||
|
// the four basic operations. The stub stays in the DEFAULT state
|
||
|
// forever for all other operations (also if smi code is skipped).
|
||
|
GenerateTypeTransition(masm);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
Label not_floats;
|
||
|
// rax: y
|
||
|
// rdx: x
|
||
|
if (static_operands_type_.IsNumber()) {
|
||
|
if (FLAG_debug_code) {
|
||
|
// Assert at runtime that inputs are only numbers.
|
||
|
__ AbortIfNotNumber(rdx);
|
||
|
__ AbortIfNotNumber(rax);
|
||
|
}
|
||
|
FloatingPointHelper::LoadSSE2NumberOperands(masm);
|
||
|
} else {
|
||
|
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
|
||
|
}
|
||
|
|
||
|
switch (op_) {
|
||
|
case Token::ADD: __ addsd(xmm0, xmm1); break;
|
||
|
case Token::SUB: __ subsd(xmm0, xmm1); break;
|
||
|
case Token::MUL: __ mulsd(xmm0, xmm1); break;
|
||
|
case Token::DIV: __ divsd(xmm0, xmm1); break;
|
||
|
default: UNREACHABLE();
|
||
|
}
|
||
|
// Allocate a heap number, if needed.
|
||
|
Label skip_allocation;
|
||
|
OverwriteMode mode = mode_;
|
||
|
if (HasArgsReversed()) {
|
||
|
if (mode == OVERWRITE_RIGHT) {
|
||
|
mode = OVERWRITE_LEFT;
|
||
|
} else if (mode == OVERWRITE_LEFT) {
|
||
|
mode = OVERWRITE_RIGHT;
|
||
|
}
|
||
|
}
|
||
|
switch (mode) {
|
||
|
case OVERWRITE_LEFT:
|
||
|
__ JumpIfNotSmi(rdx, &skip_allocation);
|
||
|
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
|
||
|
__ movq(rdx, rbx);
|
||
|
__ bind(&skip_allocation);
|
||
|
__ movq(rax, rdx);
|
||
|
break;
|
||
|
case OVERWRITE_RIGHT:
|
||
|
// If the argument in rax is already an object, we skip the
|
||
|
// allocation of a heap number.
|
||
|
__ JumpIfNotSmi(rax, &skip_allocation);
|
||
|
// Fall through!
|
||
|
case NO_OVERWRITE:
|
||
|
// Allocate a heap number for the result. Keep rax and rdx intact
|
||
|
// for the possible runtime call.
|
||
|
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
|
||
|
__ movq(rax, rbx);
|
||
|
__ bind(&skip_allocation);
|
||
|
break;
|
||
|
default: UNREACHABLE();
|
||
|
}
|
||
|
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
|
||
|
GenerateReturn(masm);
|
||
|
__ bind(¬_floats);
|
||
|
if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
|
||
|
!HasSmiCodeInStub()) {
|
||
|
// Execution reaches this point when the first non-number argument
|
||
|
// occurs (and only if smi code is skipped from the stub, otherwise
|
||
|
// the patching has already been done earlier in this case branch).
|
||
|
// A perfect moment to try patching to STRINGS for ADD operation.
|
||
|
if (op_ == Token::ADD) {
|
||
|
GenerateTypeTransition(masm);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case Token::MOD: {
|
||
|
// For MOD we go directly to runtime in the non-smi case.
|
||
|
break;
|
||
|
}
|
||
|
case Token::BIT_OR:
|
||
|
case Token::BIT_AND:
|
||
|
case Token::BIT_XOR:
|
||
|
case Token::SAR:
|
||
|
case Token::SHL:
|
||
|
case Token::SHR: {
|
||
|
Label skip_allocation, non_smi_shr_result;
|
||
|
Register heap_number_map = r9;
|
||
|
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
||
|
if (static_operands_type_.IsNumber()) {
|
||
|
if (FLAG_debug_code) {
|
||
|
// Assert at runtime that inputs are only numbers.
|
||
|
__ AbortIfNotNumber(rdx);
|
||
|
__ AbortIfNotNumber(rax);
|
||
|
}
|
||
|
FloatingPointHelper::LoadNumbersAsIntegers(masm);
|
||
|
} else {
|
||
|
FloatingPointHelper::LoadAsIntegers(masm,
|
||
|
&call_runtime,
|
||
|
heap_number_map);
|
||
|
}
|
||
|
switch (op_) {
|
||
|
case Token::BIT_OR: __ orl(rax, rcx); break;
|
||
|
case Token::BIT_AND: __ andl(rax, rcx); break;
|
||
|
case Token::BIT_XOR: __ xorl(rax, rcx); break;
|
||
|
case Token::SAR: __ sarl_cl(rax); break;
|
||
|
case Token::SHL: __ shll_cl(rax); break;
|
||
|
case Token::SHR: {
|
||
|
__ shrl_cl(rax);
|
||
|
// Check if result is negative. This can only happen for a shift
|
||
|
// by zero.
|
||
|
__ testl(rax, rax);
|
||
|
__ j(negative, &non_smi_shr_result);
|
||
|
break;
|
||
|
}
|
||
|
default: UNREACHABLE();
|
||
|
}
|
||
|
|
||
|
STATIC_ASSERT(kSmiValueSize == 32);
|
||
|
// Tag smi result and return.
|
||
|
__ Integer32ToSmi(rax, rax);
|
||
|
GenerateReturn(masm);
|
||
|
|
||
|
// All bit-ops except SHR return a signed int32 that can be
|
||
|
// returned immediately as a smi.
|
||
|
// We might need to allocate a HeapNumber if we shift a negative
|
||
|
// number right by zero (i.e., convert to UInt32).
|
||
|
if (op_ == Token::SHR) {
|
||
|
ASSERT(non_smi_shr_result.is_linked());
|
||
|
__ bind(&non_smi_shr_result);
|
||
|
// Allocate a heap number if needed.
|
||
|
__ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
|
||
|
switch (mode_) {
|
||
|
case OVERWRITE_LEFT:
|
||
|
case OVERWRITE_RIGHT:
|
||
|
// If the operand was an object, we skip the
|
||
|
// allocation of a heap number.
|
||
|
__ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
|
||
|
1 * kPointerSize : 2 * kPointerSize));
|
||
|
__ JumpIfNotSmi(rax, &skip_allocation);
|
||
|
// Fall through!
|
||
|
case NO_OVERWRITE:
|
||
|
// Allocate heap number in new space.
|
||
|
// Not using AllocateHeapNumber macro in order to reuse
|
||
|
// already loaded heap_number_map.
|
||
|
__ AllocateInNewSpace(HeapNumber::kSize,
|
||
|
rax,
|
||
|
rcx,
|
||
|
no_reg,
|
||
|
&call_runtime,
|
||
|
TAG_OBJECT);
|
||
|
// Set the map.
|
||
|
if (FLAG_debug_code) {
|
||
|
__ AbortIfNotRootValue(heap_number_map,
|
||
|
Heap::kHeapNumberMapRootIndex,
|
||
|
"HeapNumberMap register clobbered.");
|
||
|
}
|
||
|
__ movq(FieldOperand(rax, HeapObject::kMapOffset),
|
||
|
heap_number_map);
|
||
|
__ bind(&skip_allocation);
|
||
|
break;
|
||
|
default: UNREACHABLE();
|
||
|
}
|
||
|
// Store the result in the HeapNumber and return.
|
||
|
__ cvtqsi2sd(xmm0, rbx);
|
||
|
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
|
||
|
GenerateReturn(masm);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
default: UNREACHABLE(); break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If all else fails, use the runtime system to get the correct
|
||
|
// result. If arguments was passed in registers now place them on the
|
||
|
// stack in the correct order below the return address.
|
||
|
__ bind(&call_runtime);
|
||
|
|
||
|
if (HasArgsInRegisters()) {
|
||
|
GenerateRegisterArgsPush(masm);
|
||
|
}
|
||
|
|
||
|
switch (op_) {
|
||
|
case Token::ADD: {
|
||
|
// Registers containing left and right operands respectively.
|
||
|
Register lhs, rhs;
|
||
|
|
||
|
if (HasArgsReversed()) {
|
||
|
lhs = rax;
|
||
|
rhs = rdx;
|
||
|
} else {
|
||
|
lhs = rdx;
|
||
|
rhs = rax;
|
||
|
}
|
||
|
|
||
|
// Test for string arguments before calling runtime.
|
||
|
Label not_strings, both_strings, not_string1, string1, string1_smi2;
|
||
|
|
||
|
// If this stub has already generated FP-specific code then the arguments
|
||
|
// are already in rdx and rax.
|
||
|
if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
|
||
|
GenerateLoadArguments(masm);
|
||
|
}
|
||
|
|
||
|
Condition is_smi;
|
||
|
is_smi = masm->CheckSmi(lhs);
|
||
|
__ j(is_smi, ¬_string1);
|
||
|
__ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
|
||
|
__ j(above_equal, ¬_string1);
|
||
|
|
||
|
// First argument is a a string, test second.
|
||
|
is_smi = masm->CheckSmi(rhs);
|
||
|
__ j(is_smi, &string1_smi2);
|
||
|
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
|
||
|
__ j(above_equal, &string1);
|
||
|
|
||
|
// First and second argument are strings.
|
||
|
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
|
||
|
__ TailCallStub(&string_add_stub);
|
||
|
|
||
|
__ bind(&string1_smi2);
|
||
|
// First argument is a string, second is a smi. Try to lookup the number
|
||
|
// string for the smi in the number string cache.
|
||
|
NumberToStringStub::GenerateLookupNumberStringCache(
|
||
|
masm, rhs, rbx, rcx, r8, true, &string1);
|
||
|
|
||
|
// Replace second argument on stack and tailcall string add stub to make
|
||
|
// the result.
|
||
|
__ movq(Operand(rsp, 1 * kPointerSize), rbx);
|
||
|
__ TailCallStub(&string_add_stub);
|
||
|
|
||
|
// Only first argument is a string.
|
||
|
__ bind(&string1);
|
||
|
__ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
|
||
|
|
||
|
// First argument was not a string, test second.
|
||
|
__ bind(¬_string1);
|
||
|
is_smi = masm->CheckSmi(rhs);
|
||
|
__ j(is_smi, ¬_strings);
|
||
|
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
|
||
|
__ j(above_equal, ¬_strings);
|
||
|
|
||
|
// Only second argument is a string.
|
||
|
__ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
|
||
|
|
||
|
__ bind(¬_strings);
|
||
|
// Neither argument is a string.
|
||
|
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
|
||
|
break;
|
||
|
}
|
||
|
case Token::SUB:
|
||
|
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::MUL:
|
||
|
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::DIV:
|
||
|
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::MOD:
|
||
|
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::BIT_OR:
|
||
|
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::BIT_AND:
|
||
|
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::BIT_XOR:
|
||
|
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::SAR:
|
||
|
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::SHL:
|
||
|
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::SHR:
|
||
|
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
|
||
|
ASSERT(!HasArgsInRegisters());
|
||
|
__ movq(rax, Operand(rsp, 1 * kPointerSize));
|
||
|
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
|
||
|
// If arguments are not passed in registers remove them from the stack before
|
||
|
// returning.
|
||
|
if (!HasArgsInRegisters()) {
|
||
|
__ ret(2 * kPointerSize); // Remove both operands
|
||
|
} else {
|
||
|
__ ret(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
|
||
|
ASSERT(HasArgsInRegisters());
|
||
|
__ pop(rcx);
|
||
|
if (HasArgsReversed()) {
|
||
|
__ push(rax);
|
||
|
__ push(rdx);
|
||
|
} else {
|
||
|
__ push(rdx);
|
||
|
__ push(rax);
|
||
|
}
|
||
|
__ push(rcx);
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
|
||
|
Label get_result;
|
||
|
|
||
|
// Ensure the operands are on the stack.
|
||
|
if (HasArgsInRegisters()) {
|
||
|
GenerateRegisterArgsPush(masm);
|
||
|
}
|
||
|
|
||
|
// Left and right arguments are already on stack.
|
||
|
__ pop(rcx); // Save the return address.
|
||
|
|
||
|
// Push this stub's key.
|
||
|
__ Push(Smi::FromInt(MinorKey()));
|
||
|
|
||
|
// Although the operation and the type info are encoded into the key,
|
||
|
// the encoding is opaque, so push them too.
|
||
|
__ Push(Smi::FromInt(op_));
|
||
|
|
||
|
__ Push(Smi::FromInt(runtime_operands_type_));
|
||
|
|
||
|
__ push(rcx); // The return address.
|
||
|
|
||
|
// Perform patching to an appropriate fast case and return the result.
|
||
|
__ TailCallExternalReference(
|
||
|
ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
|
||
|
5,
|
||
|
1);
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
|
||
|
GenericBinaryOpStub stub(key, type_info);
|
||
|
return stub.GetCode();
|
||
|
}
|
||
|
|
||
|
|
||
|
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
|
||
|
// Input on stack:
|
||
|
// rsp[8]: argument (should be number).
|
||
|
// rsp[0]: return address.
|
||
|
Label runtime_call;
|
||
|
Label runtime_call_clear_stack;
|
||
|
Label input_not_smi;
|
||
|
Label loaded;
|
||
|
// Test that rax is a number.
|
||
|
__ movq(rax, Operand(rsp, kPointerSize));
|
||
|
__ JumpIfNotSmi(rax, &input_not_smi);
|
||
|
// Input is a smi. Untag and load it onto the FPU stack.
|
||
|
// Then load the bits of the double into rbx.
|
||
|
__ SmiToInteger32(rax, rax);
|
||
|
__ subq(rsp, Immediate(kPointerSize));
|
||
|
__ cvtlsi2sd(xmm1, rax);
|
||
|
__ movsd(Operand(rsp, 0), xmm1);
|
||
|
__ movq(rbx, xmm1);
|
||
|
__ movq(rdx, xmm1);
|
||
|
__ fld_d(Operand(rsp, 0));
|
||
|
__ addq(rsp, Immediate(kPointerSize));
|
||
|
__ jmp(&loaded);
|
||
|
|
||
|
__ bind(&input_not_smi);
|
||
|
// Check if input is a HeapNumber.
|
||
|
__ Move(rbx, Factory::heap_number_map());
|
||
|
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ j(not_equal, &runtime_call);
|
||
|
// Input is a HeapNumber. Push it on the FPU stack and load its
|
||
|
// bits into rbx.
|
||
|
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ movq(rdx, rbx);
|
||
|
__ bind(&loaded);
|
||
|
// ST[0] == double value
|
||
|
// rbx = bits of double value.
|
||
|
// rdx = also bits of double value.
|
||
|
// Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
|
||
|
// h = h0 = bits ^ (bits >> 32);
|
||
|
// h ^= h >> 16;
|
||
|
// h ^= h >> 8;
|
||
|
// h = h & (cacheSize - 1);
|
||
|
// or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
|
||
|
__ sar(rdx, Immediate(32));
|
||
|
__ xorl(rdx, rbx);
|
||
|
__ movl(rcx, rdx);
|
||
|
__ movl(rax, rdx);
|
||
|
__ movl(rdi, rdx);
|
||
|
__ sarl(rdx, Immediate(8));
|
||
|
__ sarl(rcx, Immediate(16));
|
||
|
__ sarl(rax, Immediate(24));
|
||
|
__ xorl(rcx, rdx);
|
||
|
__ xorl(rax, rdi);
|
||
|
__ xorl(rcx, rax);
|
||
|
ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
|
||
|
__ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1));
|
||
|
|
||
|
// ST[0] == double value.
|
||
|
// rbx = bits of double value.
|
||
|
// rcx = TranscendentalCache::hash(double value).
|
||
|
__ movq(rax, ExternalReference::transcendental_cache_array_address());
|
||
|
// rax points to cache array.
|
||
|
__ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0])));
|
||
|
// rax points to the cache for the type type_.
|
||
|
// If NULL, the cache hasn't been initialized yet, so go through runtime.
|
||
|
__ testq(rax, rax);
|
||
|
__ j(zero, &runtime_call_clear_stack);
|
||
|
#ifdef DEBUG
|
||
|
// Check that the layout of cache elements match expectations.
|
||
|
{ // NOLINT - doesn't like a single brace on a line.
|
||
|
TranscendentalCache::Element test_elem[2];
|
||
|
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
|
||
|
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
|
||
|
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
|
||
|
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
|
||
|
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
|
||
|
// Two uint_32's and a pointer per element.
|
||
|
CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
|
||
|
CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
|
||
|
CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
|
||
|
CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
|
||
|
}
|
||
|
#endif
|
||
|
// Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
|
||
|
__ addl(rcx, rcx);
|
||
|
__ lea(rcx, Operand(rax, rcx, times_8, 0));
|
||
|
// Check if cache matches: Double value is stored in uint32_t[2] array.
|
||
|
Label cache_miss;
|
||
|
__ cmpq(rbx, Operand(rcx, 0));
|
||
|
__ j(not_equal, &cache_miss);
|
||
|
// Cache hit!
|
||
|
__ movq(rax, Operand(rcx, 2 * kIntSize));
|
||
|
__ fstp(0); // Clear FPU stack.
|
||
|
__ ret(kPointerSize);
|
||
|
|
||
|
__ bind(&cache_miss);
|
||
|
// Update cache with new value.
|
||
|
Label nan_result;
|
||
|
GenerateOperation(masm, &nan_result);
|
||
|
__ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
|
||
|
__ movq(Operand(rcx, 0), rbx);
|
||
|
__ movq(Operand(rcx, 2 * kIntSize), rax);
|
||
|
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ ret(kPointerSize);
|
||
|
|
||
|
__ bind(&runtime_call_clear_stack);
|
||
|
__ fstp(0);
|
||
|
__ bind(&runtime_call);
|
||
|
__ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
|
||
|
|
||
|
__ bind(&nan_result);
|
||
|
__ fstp(0); // Remove argument from FPU stack.
|
||
|
__ LoadRoot(rax, Heap::kNanValueRootIndex);
|
||
|
__ movq(Operand(rcx, 0), rbx);
|
||
|
__ movq(Operand(rcx, 2 * kIntSize), rax);
|
||
|
__ ret(kPointerSize);
|
||
|
}
|
||
|
|
||
|
|
||
|
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
|
||
|
switch (type_) {
|
||
|
// Add more cases when necessary.
|
||
|
case TranscendentalCache::SIN: return Runtime::kMath_sin;
|
||
|
case TranscendentalCache::COS: return Runtime::kMath_cos;
|
||
|
default:
|
||
|
UNIMPLEMENTED();
|
||
|
return Runtime::kAbort;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
|
||
|
Label* on_nan_result) {
|
||
|
// Registers:
|
||
|
// rbx: Bits of input double. Must be preserved.
|
||
|
// rcx: Pointer to cache entry. Must be preserved.
|
||
|
// st(0): Input double
|
||
|
Label done;
|
||
|
ASSERT(type_ == TranscendentalCache::SIN ||
|
||
|
type_ == TranscendentalCache::COS);
|
||
|
// More transcendental types can be added later.
|
||
|
|
||
|
// Both fsin and fcos require arguments in the range +/-2^63 and
|
||
|
// return NaN for infinities and NaN. They can share all code except
|
||
|
// the actual fsin/fcos operation.
|
||
|
Label in_range;
|
||
|
// If argument is outside the range -2^63..2^63, fsin/cos doesn't
|
||
|
// work. We must reduce it to the appropriate range.
|
||
|
__ movq(rdi, rbx);
|
||
|
// Move exponent and sign bits to low bits.
|
||
|
__ shr(rdi, Immediate(HeapNumber::kMantissaBits));
|
||
|
// Remove sign bit.
|
||
|
__ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
|
||
|
int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
|
||
|
__ cmpl(rdi, Immediate(supported_exponent_limit));
|
||
|
__ j(below, &in_range);
|
||
|
// Check for infinity and NaN. Both return NaN for sin.
|
||
|
__ cmpl(rdi, Immediate(0x7ff));
|
||
|
__ j(equal, on_nan_result);
|
||
|
|
||
|
// Use fpmod to restrict argument to the range +/-2*PI.
|
||
|
__ fldpi();
|
||
|
__ fadd(0);
|
||
|
__ fld(1);
|
||
|
// FPU Stack: input, 2*pi, input.
|
||
|
{
|
||
|
Label no_exceptions;
|
||
|
__ fwait();
|
||
|
__ fnstsw_ax();
|
||
|
// Clear if Illegal Operand or Zero Division exceptions are set.
|
||
|
__ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word.
|
||
|
__ j(zero, &no_exceptions);
|
||
|
__ fnclex();
|
||
|
__ bind(&no_exceptions);
|
||
|
}
|
||
|
|
||
|
// Compute st(0) % st(1)
|
||
|
{
|
||
|
Label partial_remainder_loop;
|
||
|
__ bind(&partial_remainder_loop);
|
||
|
__ fprem1();
|
||
|
__ fwait();
|
||
|
__ fnstsw_ax();
|
||
|
__ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word.
|
||
|
// If C2 is set, computation only has partial result. Loop to
|
||
|
// continue computation.
|
||
|
__ j(not_zero, &partial_remainder_loop);
|
||
|
}
|
||
|
// FPU Stack: input, 2*pi, input % 2*pi
|
||
|
__ fstp(2);
|
||
|
// FPU Stack: input % 2*pi, 2*pi,
|
||
|
__ fstp(0);
|
||
|
// FPU Stack: input % 2*pi
|
||
|
__ bind(&in_range);
|
||
|
switch (type_) {
|
||
|
case TranscendentalCache::SIN:
|
||
|
__ fsin();
|
||
|
break;
|
||
|
case TranscendentalCache::COS:
|
||
|
__ fcos();
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
__ bind(&done);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Get the integer part of a heap number.
|
||
|
// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
|
||
|
void IntegerConvert(MacroAssembler* masm,
|
||
|
Register result,
|
||
|
Register source) {
|
||
|
// Result may be rcx. If result and source are the same register, source will
|
||
|
// be overwritten.
|
||
|
ASSERT(!result.is(rdi) && !result.is(rbx));
|
||
|
// TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
|
||
|
// cvttsd2si (32-bit version) directly.
|
||
|
Register double_exponent = rbx;
|
||
|
Register double_value = rdi;
|
||
|
Label done, exponent_63_plus;
|
||
|
// Get double and extract exponent.
|
||
|
__ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
|
||
|
// Clear result preemptively, in case we need to return zero.
|
||
|
__ xorl(result, result);
|
||
|
__ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there.
|
||
|
// Double to remove sign bit, shift exponent down to least significant bits.
|
||
|
// and subtract bias to get the unshifted, unbiased exponent.
|
||
|
__ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
|
||
|
__ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
|
||
|
__ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
|
||
|
// Check whether the exponent is too big for a 63 bit unsigned integer.
|
||
|
__ cmpl(double_exponent, Immediate(63));
|
||
|
__ j(above_equal, &exponent_63_plus);
|
||
|
// Handle exponent range 0..62.
|
||
|
__ cvttsd2siq(result, xmm0);
|
||
|
__ jmp(&done);
|
||
|
|
||
|
__ bind(&exponent_63_plus);
|
||
|
// Exponent negative or 63+.
|
||
|
__ cmpl(double_exponent, Immediate(83));
|
||
|
// If exponent negative or above 83, number contains no significant bits in
|
||
|
// the range 0..2^31, so result is zero, and rcx already holds zero.
|
||
|
__ j(above, &done);
|
||
|
|
||
|
// Exponent in rage 63..83.
|
||
|
// Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
|
||
|
// the least significant exponent-52 bits.
|
||
|
|
||
|
// Negate low bits of mantissa if value is negative.
|
||
|
__ addq(double_value, double_value); // Move sign bit to carry.
|
||
|
__ sbbl(result, result); // And convert carry to -1 in result register.
|
||
|
// if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
|
||
|
__ addl(double_value, result);
|
||
|
// Do xor in opposite directions depending on where we want the result
|
||
|
// (depending on whether result is rcx or not).
|
||
|
|
||
|
if (result.is(rcx)) {
|
||
|
__ xorl(double_value, result);
|
||
|
// Left shift mantissa by (exponent - mantissabits - 1) to save the
|
||
|
// bits that have positional values below 2^32 (the extra -1 comes from the
|
||
|
// doubling done above to move the sign bit into the carry flag).
|
||
|
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
|
||
|
__ shll_cl(double_value);
|
||
|
__ movl(result, double_value);
|
||
|
} else {
|
||
|
// As the then-branch, but move double-value to result before shifting.
|
||
|
__ xorl(result, double_value);
|
||
|
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
|
||
|
__ shll_cl(result);
|
||
|
}
|
||
|
|
||
|
__ bind(&done);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Input: rdx, rax are the left and right objects of a bit op.
|
||
|
// Output: rax, rcx are left and right integers for a bit op.
|
||
|
void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
|
||
|
// Check float operands.
|
||
|
Label done;
|
||
|
Label rax_is_smi;
|
||
|
Label rax_is_object;
|
||
|
Label rdx_is_object;
|
||
|
|
||
|
__ JumpIfNotSmi(rdx, &rdx_is_object);
|
||
|
__ SmiToInteger32(rdx, rdx);
|
||
|
__ JumpIfSmi(rax, &rax_is_smi);
|
||
|
|
||
|
__ bind(&rax_is_object);
|
||
|
IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
|
||
|
__ jmp(&done);
|
||
|
|
||
|
__ bind(&rdx_is_object);
|
||
|
IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
|
||
|
__ JumpIfNotSmi(rax, &rax_is_object);
|
||
|
__ bind(&rax_is_smi);
|
||
|
__ SmiToInteger32(rcx, rax);
|
||
|
|
||
|
__ bind(&done);
|
||
|
__ movl(rax, rdx);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Input: rdx, rax are the left and right objects of a bit op.
|
||
|
// Output: rax, rcx are left and right integers for a bit op.
|
||
|
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
|
||
|
Label* conversion_failure,
|
||
|
Register heap_number_map) {
|
||
|
// Check float operands.
|
||
|
Label arg1_is_object, check_undefined_arg1;
|
||
|
Label arg2_is_object, check_undefined_arg2;
|
||
|
Label load_arg2, done;
|
||
|
|
||
|
__ JumpIfNotSmi(rdx, &arg1_is_object);
|
||
|
__ SmiToInteger32(rdx, rdx);
|
||
|
__ jmp(&load_arg2);
|
||
|
|
||
|
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
|
||
|
__ bind(&check_undefined_arg1);
|
||
|
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
|
||
|
__ j(not_equal, conversion_failure);
|
||
|
__ movl(rdx, Immediate(0));
|
||
|
__ jmp(&load_arg2);
|
||
|
|
||
|
__ bind(&arg1_is_object);
|
||
|
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
|
||
|
__ j(not_equal, &check_undefined_arg1);
|
||
|
// Get the untagged integer version of the edx heap number in rcx.
|
||
|
IntegerConvert(masm, rdx, rdx);
|
||
|
|
||
|
// Here rdx has the untagged integer, rax has a Smi or a heap number.
|
||
|
__ bind(&load_arg2);
|
||
|
// Test if arg2 is a Smi.
|
||
|
__ JumpIfNotSmi(rax, &arg2_is_object);
|
||
|
__ SmiToInteger32(rax, rax);
|
||
|
__ movl(rcx, rax);
|
||
|
__ jmp(&done);
|
||
|
|
||
|
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
|
||
|
__ bind(&check_undefined_arg2);
|
||
|
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
|
||
|
__ j(not_equal, conversion_failure);
|
||
|
__ movl(rcx, Immediate(0));
|
||
|
__ jmp(&done);
|
||
|
|
||
|
__ bind(&arg2_is_object);
|
||
|
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
|
||
|
__ j(not_equal, &check_undefined_arg2);
|
||
|
// Get the untagged integer version of the rax heap number in rcx.
|
||
|
IntegerConvert(masm, rcx, rax);
|
||
|
__ bind(&done);
|
||
|
__ movl(rax, rdx);
|
||
|
}
|
||
|
|
||
|
|
||
|
void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
|
||
|
__ SmiToInteger32(kScratchRegister, rdx);
|
||
|
__ cvtlsi2sd(xmm0, kScratchRegister);
|
||
|
__ SmiToInteger32(kScratchRegister, rax);
|
||
|
__ cvtlsi2sd(xmm1, kScratchRegister);
|
||
|
}
|
||
|
|
||
|
|
||
|
void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
|
||
|
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
|
||
|
// Load operand in rdx into xmm0.
|
||
|
__ JumpIfSmi(rdx, &load_smi_rdx);
|
||
|
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
|
||
|
// Load operand in rax into xmm1.
|
||
|
__ JumpIfSmi(rax, &load_smi_rax);
|
||
|
__ bind(&load_nonsmi_rax);
|
||
|
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ jmp(&done);
|
||
|
|
||
|
__ bind(&load_smi_rdx);
|
||
|
__ SmiToInteger32(kScratchRegister, rdx);
|
||
|
__ cvtlsi2sd(xmm0, kScratchRegister);
|
||
|
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
|
||
|
|
||
|
__ bind(&load_smi_rax);
|
||
|
__ SmiToInteger32(kScratchRegister, rax);
|
||
|
__ cvtlsi2sd(xmm1, kScratchRegister);
|
||
|
|
||
|
__ bind(&done);
|
||
|
}
|
||
|
|
||
|
|
||
|
void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
|
||
|
Label* not_numbers) {
|
||
|
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
|
||
|
// Load operand in rdx into xmm0, or branch to not_numbers.
|
||
|
__ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
|
||
|
__ JumpIfSmi(rdx, &load_smi_rdx);
|
||
|
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
|
||
|
__ j(not_equal, not_numbers); // Argument in rdx is not a number.
|
||
|
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
|
||
|
// Load operand in rax into xmm1, or branch to not_numbers.
|
||
|
__ JumpIfSmi(rax, &load_smi_rax);
|
||
|
|
||
|
__ bind(&load_nonsmi_rax);
|
||
|
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
|
||
|
__ j(not_equal, not_numbers);
|
||
|
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ jmp(&done);
|
||
|
|
||
|
__ bind(&load_smi_rdx);
|
||
|
__ SmiToInteger32(kScratchRegister, rdx);
|
||
|
__ cvtlsi2sd(xmm0, kScratchRegister);
|
||
|
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
|
||
|
|
||
|
__ bind(&load_smi_rax);
|
||
|
__ SmiToInteger32(kScratchRegister, rax);
|
||
|
__ cvtlsi2sd(xmm1, kScratchRegister);
|
||
|
__ bind(&done);
|
||
|
}
|
||
|
|
||
|
|
||
|
void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
|
||
|
Label slow, done;
|
||
|
|
||
|
if (op_ == Token::SUB) {
|
||
|
// Check whether the value is a smi.
|
||
|
Label try_float;
|
||
|
__ JumpIfNotSmi(rax, &try_float);
|
||
|
|
||
|
if (negative_zero_ == kIgnoreNegativeZero) {
|
||
|
__ SmiCompare(rax, Smi::FromInt(0));
|
||
|
__ j(equal, &done);
|
||
|
}
|
||
|
|
||
|
// Enter runtime system if the value of the smi is zero
|
||
|
// to make sure that we switch between 0 and -0.
|
||
|
// Also enter it if the value of the smi is Smi::kMinValue.
|
||
|
__ SmiNeg(rax, rax, &done);
|
||
|
|
||
|
// Either zero or Smi::kMinValue, neither of which become a smi when
|
||
|
// negated.
|
||
|
if (negative_zero_ == kStrictNegativeZero) {
|
||
|
__ SmiCompare(rax, Smi::FromInt(0));
|
||
|
__ j(not_equal, &slow);
|
||
|
__ Move(rax, Factory::minus_zero_value());
|
||
|
__ jmp(&done);
|
||
|
} else {
|
||
|
__ jmp(&slow);
|
||
|
}
|
||
|
|
||
|
// Try floating point case.
|
||
|
__ bind(&try_float);
|
||
|
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
|
||
|
__ j(not_equal, &slow);
|
||
|
// Operand is a float, negate its value by flipping sign bit.
|
||
|
__ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
|
||
|
__ movq(kScratchRegister, Immediate(0x01));
|
||
|
__ shl(kScratchRegister, Immediate(63));
|
||
|
__ xor_(rdx, kScratchRegister); // Flip sign.
|
||
|
// rdx is value to store.
|
||
|
if (overwrite_ == UNARY_OVERWRITE) {
|
||
|
__ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
|
||
|
} else {
|
||
|
__ AllocateHeapNumber(rcx, rbx, &slow);
|
||
|
// rcx: allocated 'empty' number
|
||
|
__ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
|
||
|
__ movq(rax, rcx);
|
||
|
}
|
||
|
} else if (op_ == Token::BIT_NOT) {
|
||
|
// Check if the operand is a heap number.
|
||
|
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
|
||
|
__ j(not_equal, &slow);
|
||
|
|
||
|
// Convert the heap number in rax to an untagged integer in rcx.
|
||
|
IntegerConvert(masm, rax, rax);
|
||
|
|
||
|
// Do the bitwise operation and smi tag the result.
|
||
|
__ notl(rax);
|
||
|
__ Integer32ToSmi(rax, rax);
|
||
|
}
|
||
|
|
||
|
// Return from the stub.
|
||
|
__ bind(&done);
|
||
|
__ StubReturn(1);
|
||
|
|
||
|
// Handle the slow case by jumping to the JavaScript builtin.
|
||
|
__ bind(&slow);
|
||
|
__ pop(rcx); // pop return address
|
||
|
__ push(rax);
|
||
|
__ push(rcx); // push return address
|
||
|
switch (op_) {
|
||
|
case Token::SUB:
|
||
|
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
|
||
|
break;
|
||
|
case Token::BIT_NOT:
|
||
|
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
||
|
// The key is in rdx and the parameter count is in rax.
|
||
|
|
||
|
// The displacement is used for skipping the frame pointer on the
|
||
|
// stack. It is the offset of the last parameter (if any) relative
|
||
|
// to the frame pointer.
|
||
|
static const int kDisplacement = 1 * kPointerSize;
|
||
|
|
||
|
// Check that the key is a smi.
|
||
|
Label slow;
|
||
|
__ JumpIfNotSmi(rdx, &slow);
|
||
|
|
||
|
// Check if the calling frame is an arguments adaptor frame.
|
||
|
Label adaptor;
|
||
|
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
||
|
__ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
|
||
|
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
||
|
__ j(equal, &adaptor);
|
||
|
|
||
|
// Check index against formal parameters count limit passed in
|
||
|
// through register rax. Use unsigned comparison to get negative
|
||
|
// check for free.
|
||
|
__ cmpq(rdx, rax);
|
||
|
__ j(above_equal, &slow);
|
||
|
|
||
|
// Read the argument from the stack and return it.
|
||
|
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
|
||
|
__ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
|
||
|
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
|
||
|
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
|
||
|
__ Ret();
|
||
|
|
||
|
// Arguments adaptor case: Check index against actual arguments
|
||
|
// limit found in the arguments adaptor frame. Use unsigned
|
||
|
// comparison to get negative check for free.
|
||
|
__ bind(&adaptor);
|
||
|
__ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
||
|
__ cmpq(rdx, rcx);
|
||
|
__ j(above_equal, &slow);
|
||
|
|
||
|
// Read the argument from the stack and return it.
|
||
|
index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
|
||
|
__ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
|
||
|
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
|
||
|
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
|
||
|
__ Ret();
|
||
|
|
||
|
// Slow-case: Handle non-smi or out-of-bounds access to arguments
|
||
|
// by calling the runtime system.
|
||
|
__ bind(&slow);
|
||
|
__ pop(rbx); // Return address.
|
||
|
__ push(rdx);
|
||
|
__ push(rbx);
|
||
|
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
|
||
|
// rsp[0] : return address
|
||
|
// rsp[8] : number of parameters
|
||
|
// rsp[16] : receiver displacement
|
||
|
// rsp[24] : function
|
||
|
|
||
|
// The displacement is used for skipping the return address and the
|
||
|
// frame pointer on the stack. It is the offset of the last
|
||
|
// parameter (if any) relative to the frame pointer.
|
||
|
static const int kDisplacement = 2 * kPointerSize;
|
||
|
|
||
|
// Check if the calling frame is an arguments adaptor frame.
|
||
|
Label adaptor_frame, try_allocate, runtime;
|
||
|
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
|
||
|
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
|
||
|
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
|
||
|
__ j(equal, &adaptor_frame);
|
||
|
|
||
|
// Get the length from the frame.
|
||
|
__ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
|
||
|
__ jmp(&try_allocate);
|
||
|
|
||
|
// Patch the arguments.length and the parameters pointer.
|
||
|
__ bind(&adaptor_frame);
|
||
|
__ SmiToInteger32(rcx,
|
||
|
Operand(rdx,
|
||
|
ArgumentsAdaptorFrameConstants::kLengthOffset));
|
||
|
// Space on stack must already hold a smi.
|
||
|
__ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
|
||
|
// Do not clobber the length index for the indexing operation since
|
||
|
// it is used compute the size for allocation later.
|
||
|
__ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
|
||
|
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
|
||
|
|
||
|
// Try the new space allocation. Start out with computing the size of
|
||
|
// the arguments object and the elements array.
|
||
|
Label add_arguments_object;
|
||
|
__ bind(&try_allocate);
|
||
|
__ testl(rcx, rcx);
|
||
|
__ j(zero, &add_arguments_object);
|
||
|
__ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
|
||
|
__ bind(&add_arguments_object);
|
||
|
__ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
|
||
|
|
||
|
// Do the allocation of both objects in one go.
|
||
|
__ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
|
||
|
|
||
|
// Get the arguments boilerplate from the current (global) context.
|
||
|
int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
|
||
|
__ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
||
|
__ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
|
||
|
__ movq(rdi, Operand(rdi, offset));
|
||
|
|
||
|
// Copy the JS object part.
|
||
|
STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
|
||
|
__ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
|
||
|
__ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
|
||
|
__ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
|
||
|
__ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
|
||
|
__ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
|
||
|
__ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
|
||
|
|
||
|
// Setup the callee in-object property.
|
||
|
ASSERT(Heap::arguments_callee_index == 0);
|
||
|
__ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
|
||
|
__ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
|
||
|
|
||
|
// Get the length (smi tagged) and set that as an in-object property too.
|
||
|
ASSERT(Heap::arguments_length_index == 1);
|
||
|
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
|
||
|
__ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
|
||
|
|
||
|
// If there are no actual arguments, we're done.
|
||
|
Label done;
|
||
|
__ SmiTest(rcx);
|
||
|
__ j(zero, &done);
|
||
|
|
||
|
// Get the parameters pointer from the stack and untag the length.
|
||
|
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
|
||
|
|
||
|
// Setup the elements pointer in the allocated arguments object and
|
||
|
// initialize the header in the elements fixed array.
|
||
|
__ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
|
||
|
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
|
||
|
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
|
||
|
__ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
|
||
|
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
|
||
|
__ SmiToInteger32(rcx, rcx); // Untag length for the loop below.
|
||
|
|
||
|
// Copy the fixed array slots.
|
||
|
Label loop;
|
||
|
__ bind(&loop);
|
||
|
__ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
|
||
|
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
|
||
|
__ addq(rdi, Immediate(kPointerSize));
|
||
|
__ subq(rdx, Immediate(kPointerSize));
|
||
|
__ decl(rcx);
|
||
|
__ j(not_zero, &loop);
|
||
|
|
||
|
// Return and remove the on-stack parameters.
|
||
|
__ bind(&done);
|
||
|
__ ret(3 * kPointerSize);
|
||
|
|
||
|
// Do the runtime call to allocate the arguments object.
|
||
|
__ bind(&runtime);
|
||
|
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void RegExpExecStub::Generate(MacroAssembler* masm) {
|
||
|
// Just jump directly to runtime if native RegExp is not selected at compile
|
||
|
// time or if regexp entry in generated code is turned off runtime switch or
|
||
|
// at compilation.
|
||
|
#ifdef V8_INTERPRETED_REGEXP
|
||
|
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
||
|
#else // V8_INTERPRETED_REGEXP
|
||
|
if (!FLAG_regexp_entry_native) {
|
||
|
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Stack frame on entry.
|
||
|
// esp[0]: return address
|
||
|
// esp[8]: last_match_info (expected JSArray)
|
||
|
// esp[16]: previous index
|
||
|
// esp[24]: subject string
|
||
|
// esp[32]: JSRegExp object
|
||
|
|
||
|
static const int kLastMatchInfoOffset = 1 * kPointerSize;
|
||
|
static const int kPreviousIndexOffset = 2 * kPointerSize;
|
||
|
static const int kSubjectOffset = 3 * kPointerSize;
|
||
|
static const int kJSRegExpOffset = 4 * kPointerSize;
|
||
|
|
||
|
Label runtime;
|
||
|
|
||
|
// Ensure that a RegExp stack is allocated.
|
||
|
ExternalReference address_of_regexp_stack_memory_address =
|
||
|
ExternalReference::address_of_regexp_stack_memory_address();
|
||
|
ExternalReference address_of_regexp_stack_memory_size =
|
||
|
ExternalReference::address_of_regexp_stack_memory_size();
|
||
|
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
|
||
|
__ movq(kScratchRegister, Operand(kScratchRegister, 0));
|
||
|
__ testq(kScratchRegister, kScratchRegister);
|
||
|
__ j(zero, &runtime);
|
||
|
|
||
|
|
||
|
// Check that the first argument is a JSRegExp object.
|
||
|
__ movq(rax, Operand(rsp, kJSRegExpOffset));
|
||
|
__ JumpIfSmi(rax, &runtime);
|
||
|
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
|
||
|
__ j(not_equal, &runtime);
|
||
|
// Check that the RegExp has been compiled (data contains a fixed array).
|
||
|
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
|
||
|
if (FLAG_debug_code) {
|
||
|
Condition is_smi = masm->CheckSmi(rcx);
|
||
|
__ Check(NegateCondition(is_smi),
|
||
|
"Unexpected type for RegExp data, FixedArray expected");
|
||
|
__ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
|
||
|
__ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
|
||
|
}
|
||
|
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
||
|
__ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
|
||
|
__ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
|
||
|
__ j(not_equal, &runtime);
|
||
|
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
// Check that the number of captures fit in the static offsets vector buffer.
|
||
|
__ SmiToInteger32(rdx,
|
||
|
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
|
||
|
// Calculate number of capture registers (number_of_captures + 1) * 2.
|
||
|
__ leal(rdx, Operand(rdx, rdx, times_1, 2));
|
||
|
// Check that the static offsets vector buffer is large enough.
|
||
|
__ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
|
||
|
__ j(above, &runtime);
|
||
|
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
// rdx: Number of capture registers
|
||
|
// Check that the second argument is a string.
|
||
|
__ movq(rax, Operand(rsp, kSubjectOffset));
|
||
|
__ JumpIfSmi(rax, &runtime);
|
||
|
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
|
||
|
__ j(NegateCondition(is_string), &runtime);
|
||
|
|
||
|
// rax: Subject string.
|
||
|
// rcx: RegExp data (FixedArray).
|
||
|
// rdx: Number of capture registers.
|
||
|
// Check that the third argument is a positive smi less than the string
|
||
|
// length. A negative value will be greater (unsigned comparison).
|
||
|
__ movq(rbx, Operand(rsp, kPreviousIndexOffset));
|
||
|
__ JumpIfNotSmi(rbx, &runtime);
|
||
|
__ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ j(above_equal, &runtime);
|
||
|
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
// rdx: Number of capture registers
|
||
|
// Check that the fourth object is a JSArray object.
|
||
|
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
|
||
|
__ JumpIfSmi(rax, &runtime);
|
||
|
__ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
|
||
|
__ j(not_equal, &runtime);
|
||
|
// Check that the JSArray is in fast case.
|
||
|
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
|
||
|
__ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
|
||
|
__ Cmp(rax, Factory::fixed_array_map());
|
||
|
__ j(not_equal, &runtime);
|
||
|
// Check that the last match info has space for the capture registers and the
|
||
|
// additional information. Ensure no overflow in add.
|
||
|
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
|
||
|
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
|
||
|
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
|
||
|
__ cmpl(rdx, rax);
|
||
|
__ j(greater, &runtime);
|
||
|
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
// Check the representation and encoding of the subject string.
|
||
|
Label seq_ascii_string, seq_two_byte_string, check_code;
|
||
|
__ movq(rax, Operand(rsp, kSubjectOffset));
|
||
|
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
||
|
// First check for flat two byte string.
|
||
|
__ andb(rbx, Immediate(
|
||
|
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
|
||
|
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
|
||
|
__ j(zero, &seq_two_byte_string);
|
||
|
// Any other flat string must be a flat ascii string.
|
||
|
__ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
|
||
|
__ j(zero, &seq_ascii_string);
|
||
|
|
||
|
// Check for flat cons string.
|
||
|
// A flat cons string is a cons string where the second part is the empty
|
||
|
// string. In that case the subject string is just the first part of the cons
|
||
|
// string. Also in this case the first part of the cons string is known to be
|
||
|
// a sequential string or an external string.
|
||
|
STATIC_ASSERT(kExternalStringTag !=0);
|
||
|
STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
|
||
|
__ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
|
||
|
__ j(not_zero, &runtime);
|
||
|
// String is a cons string.
|
||
|
__ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
|
||
|
__ Cmp(rdx, Factory::empty_string());
|
||
|
__ j(not_equal, &runtime);
|
||
|
__ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
|
||
|
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
// String is a cons string with empty second part.
|
||
|
// rax: first part of cons string.
|
||
|
// rbx: map of first part of cons string.
|
||
|
// Is first part a flat two byte string?
|
||
|
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
|
||
|
Immediate(kStringRepresentationMask | kStringEncodingMask));
|
||
|
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
|
||
|
__ j(zero, &seq_two_byte_string);
|
||
|
// Any other flat string must be ascii.
|
||
|
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
|
||
|
Immediate(kStringRepresentationMask));
|
||
|
__ j(not_zero, &runtime);
|
||
|
|
||
|
__ bind(&seq_ascii_string);
|
||
|
// rax: subject string (sequential ascii)
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
__ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
|
||
|
__ Set(rdi, 1); // Type is ascii.
|
||
|
__ jmp(&check_code);
|
||
|
|
||
|
__ bind(&seq_two_byte_string);
|
||
|
// rax: subject string (flat two-byte)
|
||
|
// rcx: RegExp data (FixedArray)
|
||
|
__ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
|
||
|
__ Set(rdi, 0); // Type is two byte.
|
||
|
|
||
|
__ bind(&check_code);
|
||
|
// Check that the irregexp code has been generated for the actual string
|
||
|
// encoding. If it has, the field contains a code object otherwise it contains
|
||
|
// the hole.
|
||
|
__ CmpObjectType(r11, CODE_TYPE, kScratchRegister);
|
||
|
__ j(not_equal, &runtime);
|
||
|
|
||
|
// rax: subject string
|
||
|
// rdi: encoding of subject string (1 if ascii, 0 if two_byte);
|
||
|
// r11: code
|
||
|
// Load used arguments before starting to push arguments for call to native
|
||
|
// RegExp code to avoid handling changing stack height.
|
||
|
__ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
|
||
|
|
||
|
// rax: subject string
|
||
|
// rbx: previous index
|
||
|
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
|
||
|
// r11: code
|
||
|
// All checks done. Now push arguments for native regexp code.
|
||
|
__ IncrementCounter(&Counters::regexp_entry_native, 1);
|
||
|
|
||
|
// rsi is caller save on Windows and used to pass parameter on Linux.
|
||
|
__ push(rsi);
|
||
|
|
||
|
static const int kRegExpExecuteArguments = 7;
|
||
|
__ PrepareCallCFunction(kRegExpExecuteArguments);
|
||
|
int argument_slots_on_stack =
|
||
|
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
|
||
|
|
||
|
// Argument 7: Indicate that this is a direct call from JavaScript.
|
||
|
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
|
||
|
Immediate(1));
|
||
|
|
||
|
// Argument 6: Start (high end) of backtracking stack memory area.
|
||
|
__ movq(kScratchRegister, address_of_regexp_stack_memory_address);
|
||
|
__ movq(r9, Operand(kScratchRegister, 0));
|
||
|
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
|
||
|
__ addq(r9, Operand(kScratchRegister, 0));
|
||
|
// Argument 6 passed in r9 on Linux and on the stack on Windows.
|
||
|
#ifdef _WIN64
|
||
|
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
|
||
|
#endif
|
||
|
|
||
|
// Argument 5: static offsets vector buffer.
|
||
|
__ movq(r8, ExternalReference::address_of_static_offsets_vector());
|
||
|
// Argument 5 passed in r8 on Linux and on the stack on Windows.
|
||
|
#ifdef _WIN64
|
||
|
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
|
||
|
#endif
|
||
|
|
||
|
// First four arguments are passed in registers on both Linux and Windows.
|
||
|
#ifdef _WIN64
|
||
|
Register arg4 = r9;
|
||
|
Register arg3 = r8;
|
||
|
Register arg2 = rdx;
|
||
|
Register arg1 = rcx;
|
||
|
#else
|
||
|
Register arg4 = rcx;
|
||
|
Register arg3 = rdx;
|
||
|
Register arg2 = rsi;
|
||
|
Register arg1 = rdi;
|
||
|
#endif
|
||
|
|
||
|
// Keep track on aliasing between argX defined above and the registers used.
|
||
|
// rax: subject string
|
||
|
// rbx: previous index
|
||
|
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
|
||
|
// r11: code
|
||
|
|
||
|
// Argument 4: End of string data
|
||
|
// Argument 3: Start of string data
|
||
|
Label setup_two_byte, setup_rest;
|
||
|
__ testb(rdi, rdi);
|
||
|
__ j(zero, &setup_two_byte);
|
||
|
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
|
||
|
__ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
|
||
|
__ jmp(&setup_rest);
|
||
|
__ bind(&setup_two_byte);
|
||
|
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
|
||
|
__ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));
|
||
|
|
||
|
__ bind(&setup_rest);
|
||
|
// Argument 2: Previous index.
|
||
|
__ movq(arg2, rbx);
|
||
|
|
||
|
// Argument 1: Subject string.
|
||
|
__ movq(arg1, rax);
|
||
|
|
||
|
// Locate the code entry and call it.
|
||
|
__ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
|
||
|
__ CallCFunction(r11, kRegExpExecuteArguments);
|
||
|
|
||
|
// rsi is caller save, as it is used to pass parameter.
|
||
|
__ pop(rsi);
|
||
|
|
||
|
// Check the result.
|
||
|
Label success;
|
||
|
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
|
||
|
__ j(equal, &success);
|
||
|
Label failure;
|
||
|
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
|
||
|
__ j(equal, &failure);
|
||
|
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
|
||
|
// If not exception it can only be retry. Handle that in the runtime system.
|
||
|
__ j(not_equal, &runtime);
|
||
|
// Result must now be exception. If there is no pending exception already a
|
||
|
// stack overflow (on the backtrack stack) was detected in RegExp code but
|
||
|
// haven't created the exception yet. Handle that in the runtime system.
|
||
|
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
|
||
|
ExternalReference pending_exception_address(Top::k_pending_exception_address);
|
||
|
__ movq(kScratchRegister, pending_exception_address);
|
||
|
__ Cmp(kScratchRegister, Factory::the_hole_value());
|
||
|
__ j(equal, &runtime);
|
||
|
__ bind(&failure);
|
||
|
// For failure and exception return null.
|
||
|
__ Move(rax, Factory::null_value());
|
||
|
__ ret(4 * kPointerSize);
|
||
|
|
||
|
// Load RegExp data.
|
||
|
__ bind(&success);
|
||
|
__ movq(rax, Operand(rsp, kJSRegExpOffset));
|
||
|
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
|
||
|
__ SmiToInteger32(rax,
|
||
|
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
|
||
|
// Calculate number of capture registers (number_of_captures + 1) * 2.
|
||
|
__ leal(rdx, Operand(rax, rax, times_1, 2));
|
||
|
|
||
|
// rdx: Number of capture registers
|
||
|
// Load last_match_info which is still known to be a fast case JSArray.
|
||
|
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
|
||
|
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
|
||
|
|
||
|
// rbx: last_match_info backing store (FixedArray)
|
||
|
// rdx: number of capture registers
|
||
|
// Store the capture count.
|
||
|
__ Integer32ToSmi(kScratchRegister, rdx);
|
||
|
__ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
|
||
|
kScratchRegister);
|
||
|
// Store last subject and last input.
|
||
|
__ movq(rax, Operand(rsp, kSubjectOffset));
|
||
|
__ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
|
||
|
__ movq(rcx, rbx);
|
||
|
__ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
|
||
|
__ movq(rax, Operand(rsp, kSubjectOffset));
|
||
|
__ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
|
||
|
__ movq(rcx, rbx);
|
||
|
__ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);
|
||
|
|
||
|
// Get the static offsets vector filled by the native regexp code.
|
||
|
__ movq(rcx, ExternalReference::address_of_static_offsets_vector());
|
||
|
|
||
|
// rbx: last_match_info backing store (FixedArray)
|
||
|
// rcx: offsets vector
|
||
|
// rdx: number of capture registers
|
||
|
Label next_capture, done;
|
||
|
// Capture register counter starts from number of capture registers and
|
||
|
// counts down until wraping after zero.
|
||
|
__ bind(&next_capture);
|
||
|
__ subq(rdx, Immediate(1));
|
||
|
__ j(negative, &done);
|
||
|
// Read the value from the static offsets vector buffer and make it a smi.
|
||
|
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
|
||
|
__ Integer32ToSmi(rdi, rdi, &runtime);
|
||
|
// Store the smi value in the last match info.
|
||
|
__ movq(FieldOperand(rbx,
|
||
|
rdx,
|
||
|
times_pointer_size,
|
||
|
RegExpImpl::kFirstCaptureOffset),
|
||
|
rdi);
|
||
|
__ jmp(&next_capture);
|
||
|
__ bind(&done);
|
||
|
|
||
|
// Return last match info.
|
||
|
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
|
||
|
__ ret(4 * kPointerSize);
|
||
|
|
||
|
// Do the runtime call to execute the regexp.
|
||
|
__ bind(&runtime);
|
||
|
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
||
|
#endif // V8_INTERPRETED_REGEXP
|
||
|
}
|
||
|
|
||
|
|
||
|
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
||
|
Register object,
|
||
|
Register result,
|
||
|
Register scratch1,
|
||
|
Register scratch2,
|
||
|
bool object_is_smi,
|
||
|
Label* not_found) {
|
||
|
// Use of registers. Register result is used as a temporary.
|
||
|
Register number_string_cache = result;
|
||
|
Register mask = scratch1;
|
||
|
Register scratch = scratch2;
|
||
|
|
||
|
// Load the number string cache.
|
||
|
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
|
||
|
|
||
|
// Make the hash mask from the length of the number string cache. It
|
||
|
// contains two elements (number and string) for each cache entry.
|
||
|
__ SmiToInteger32(
|
||
|
mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
|
||
|
__ shrl(mask, Immediate(1));
|
||
|
__ subq(mask, Immediate(1)); // Make mask.
|
||
|
|
||
|
// Calculate the entry in the number string cache. The hash value in the
|
||
|
// number string cache for smis is just the smi value, and the hash for
|
||
|
// doubles is the xor of the upper and lower words. See
|
||
|
// Heap::GetNumberStringCache.
|
||
|
Label is_smi;
|
||
|
Label load_result_from_cache;
|
||
|
if (!object_is_smi) {
|
||
|
__ JumpIfSmi(object, &is_smi);
|
||
|
__ CheckMap(object, Factory::heap_number_map(), not_found, true);
|
||
|
|
||
|
STATIC_ASSERT(8 == kDoubleSize);
|
||
|
__ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
|
||
|
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
|
||
|
GenerateConvertHashCodeToIndex(masm, scratch, mask);
|
||
|
|
||
|
Register index = scratch;
|
||
|
Register probe = mask;
|
||
|
__ movq(probe,
|
||
|
FieldOperand(number_string_cache,
|
||
|
index,
|
||
|
times_1,
|
||
|
FixedArray::kHeaderSize));
|
||
|
__ JumpIfSmi(probe, not_found);
|
||
|
ASSERT(CpuFeatures::IsSupported(SSE2));
|
||
|
CpuFeatures::Scope fscope(SSE2);
|
||
|
__ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
|
||
|
__ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
|
||
|
__ ucomisd(xmm0, xmm1);
|
||
|
__ j(parity_even, not_found); // Bail out if NaN is involved.
|
||
|
__ j(not_equal, not_found); // The cache did not contain this value.
|
||
|
__ jmp(&load_result_from_cache);
|
||
|
}
|
||
|
|
||
|
__ bind(&is_smi);
|
||
|
__ SmiToInteger32(scratch, object);
|
||
|
GenerateConvertHashCodeToIndex(masm, scratch, mask);
|
||
|
|
||
|
Register index = scratch;
|
||
|
// Check if the entry is the smi we are looking for.
|
||
|
__ cmpq(object,
|
||
|
FieldOperand(number_string_cache,
|
||
|
index,
|
||
|
times_1,
|
||
|
FixedArray::kHeaderSize));
|
||
|
__ j(not_equal, not_found);
|
||
|
|
||
|
// Get the result from the cache.
|
||
|
__ bind(&load_result_from_cache);
|
||
|
__ movq(result,
|
||
|
FieldOperand(number_string_cache,
|
||
|
index,
|
||
|
times_1,
|
||
|
FixedArray::kHeaderSize + kPointerSize));
|
||
|
__ IncrementCounter(&Counters::number_to_string_native, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
|
||
|
Register hash,
|
||
|
Register mask) {
|
||
|
__ and_(hash, mask);
|
||
|
// Each entry in string cache consists of two pointer sized fields,
|
||
|
// but times_twice_pointer_size (multiplication by 16) scale factor
|
||
|
// is not supported by addrmode on x64 platform.
|
||
|
// So we have to premultiply entry index before lookup.
|
||
|
__ shl(hash, Immediate(kPointerSizeLog2 + 1));
|
||
|
}
|
||
|
|
||
|
|
||
|
void NumberToStringStub::Generate(MacroAssembler* masm) {
|
||
|
Label runtime;
|
||
|
|
||
|
__ movq(rbx, Operand(rsp, kPointerSize));
|
||
|
|
||
|
// Generate code to lookup number in the number string cache.
|
||
|
GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
|
||
|
__ ret(1 * kPointerSize);
|
||
|
|
||
|
__ bind(&runtime);
|
||
|
// Handle number to string in the runtime system if not found in the cache.
|
||
|
__ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int NegativeComparisonResult(Condition cc) {
|
||
|
ASSERT(cc != equal);
|
||
|
ASSERT((cc == less) || (cc == less_equal)
|
||
|
|| (cc == greater) || (cc == greater_equal));
|
||
|
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CompareStub::Generate(MacroAssembler* masm) {
|
||
|
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
|
||
|
|
||
|
Label check_unequal_objects, done;
|
||
|
// The compare stub returns a positive, negative, or zero 64-bit integer
|
||
|
// value in rax, corresponding to result of comparing the two inputs.
|
||
|
// NOTICE! This code is only reached after a smi-fast-case check, so
|
||
|
// it is certain that at least one operand isn't a smi.
|
||
|
|
||
|
// Two identical objects are equal unless they are both NaN or undefined.
|
||
|
{
|
||
|
Label not_identical;
|
||
|
__ cmpq(rax, rdx);
|
||
|
__ j(not_equal, ¬_identical);
|
||
|
|
||
|
if (cc_ != equal) {
|
||
|
// Check for undefined. undefined OP undefined is false even though
|
||
|
// undefined == undefined.
|
||
|
Label check_for_nan;
|
||
|
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
|
||
|
__ j(not_equal, &check_for_nan);
|
||
|
__ Set(rax, NegativeComparisonResult(cc_));
|
||
|
__ ret(0);
|
||
|
__ bind(&check_for_nan);
|
||
|
}
|
||
|
|
||
|
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
|
||
|
// so we do the second best thing - test it ourselves.
|
||
|
// Note: if cc_ != equal, never_nan_nan_ is not used.
|
||
|
// We cannot set rax to EQUAL until just before return because
|
||
|
// rax must be unchanged on jump to not_identical.
|
||
|
|
||
|
if (never_nan_nan_ && (cc_ == equal)) {
|
||
|
__ Set(rax, EQUAL);
|
||
|
__ ret(0);
|
||
|
} else {
|
||
|
Label heap_number;
|
||
|
// If it's not a heap number, then return equal for (in)equality operator.
|
||
|
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
|
||
|
Factory::heap_number_map());
|
||
|
__ j(equal, &heap_number);
|
||
|
if (cc_ != equal) {
|
||
|
// Call runtime on identical JSObjects. Otherwise return equal.
|
||
|
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
|
||
|
__ j(above_equal, ¬_identical);
|
||
|
}
|
||
|
__ Set(rax, EQUAL);
|
||
|
__ ret(0);
|
||
|
|
||
|
__ bind(&heap_number);
|
||
|
// It is a heap number, so return equal if it's not NaN.
|
||
|
// For NaN, return 1 for every condition except greater and
|
||
|
// greater-equal. Return -1 for them, so the comparison yields
|
||
|
// false for all conditions except not-equal.
|
||
|
__ Set(rax, EQUAL);
|
||
|
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
|
||
|
__ ucomisd(xmm0, xmm0);
|
||
|
__ setcc(parity_even, rax);
|
||
|
// rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
|
||
|
if (cc_ == greater_equal || cc_ == greater) {
|
||
|
__ neg(rax);
|
||
|
}
|
||
|
__ ret(0);
|
||
|
}
|
||
|
|
||
|
__ bind(¬_identical);
|
||
|
}
|
||
|
|
||
|
if (cc_ == equal) { // Both strict and non-strict.
|
||
|
Label slow; // Fallthrough label.
|
||
|
|
||
|
// If we're doing a strict equality comparison, we don't have to do
|
||
|
// type conversion, so we generate code to do fast comparison for objects
|
||
|
// and oddballs. Non-smi numbers and strings still go through the usual
|
||
|
// slow-case code.
|
||
|
if (strict_) {
|
||
|
// If either is a Smi (we know that not both are), then they can only
|
||
|
// be equal if the other is a HeapNumber. If so, use the slow case.
|
||
|
{
|
||
|
Label not_smis;
|
||
|
__ SelectNonSmi(rbx, rax, rdx, ¬_smis);
|
||
|
|
||
|
// Check if the non-smi operand is a heap number.
|
||
|
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
|
||
|
Factory::heap_number_map());
|
||
|
// If heap number, handle it in the slow case.
|
||
|
__ j(equal, &slow);
|
||
|
// Return non-equal. ebx (the lower half of rbx) is not zero.
|
||
|
__ movq(rax, rbx);
|
||
|
__ ret(0);
|
||
|
|
||
|
__ bind(¬_smis);
|
||
|
}
|
||
|
|
||
|
// If either operand is a JSObject or an oddball value, then they are not
|
||
|
// equal since their pointers are different
|
||
|
// There is no test for undetectability in strict equality.
|
||
|
|
||
|
// If the first object is a JS object, we have done pointer comparison.
|
||
|
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
|
||
|
Label first_non_object;
|
||
|
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
|
||
|
__ j(below, &first_non_object);
|
||
|
// Return non-zero (eax (not rax) is not zero)
|
||
|
Label return_not_equal;
|
||
|
STATIC_ASSERT(kHeapObjectTag != 0);
|
||
|
__ bind(&return_not_equal);
|
||
|
__ ret(0);
|
||
|
|
||
|
__ bind(&first_non_object);
|
||
|
// Check for oddballs: true, false, null, undefined.
|
||
|
__ CmpInstanceType(rcx, ODDBALL_TYPE);
|
||
|
__ j(equal, &return_not_equal);
|
||
|
|
||
|
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
|
||
|
__ j(above_equal, &return_not_equal);
|
||
|
|
||
|
// Check for oddballs: true, false, null, undefined.
|
||
|
__ CmpInstanceType(rcx, ODDBALL_TYPE);
|
||
|
__ j(equal, &return_not_equal);
|
||
|
|
||
|
// Fall through to the general case.
|
||
|
}
|
||
|
__ bind(&slow);
|
||
|
}
|
||
|
|
||
|
// Generate the number comparison code.
|
||
|
if (include_number_compare_) {
|
||
|
Label non_number_comparison;
|
||
|
Label unordered;
|
||
|
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
|
||
|
__ xorl(rax, rax);
|
||
|
__ xorl(rcx, rcx);
|
||
|
__ ucomisd(xmm0, xmm1);
|
||
|
|
||
|
// Don't base result on EFLAGS when a NaN is involved.
|
||
|
__ j(parity_even, &unordered);
|
||
|
// Return a result of -1, 0, or 1, based on EFLAGS.
|
||
|
__ setcc(above, rax);
|
||
|
__ setcc(below, rcx);
|
||
|
__ subq(rax, rcx);
|
||
|
__ ret(0);
|
||
|
|
||
|
// If one of the numbers was NaN, then the result is always false.
|
||
|
// The cc is never not-equal.
|
||
|
__ bind(&unordered);
|
||
|
ASSERT(cc_ != not_equal);
|
||
|
if (cc_ == less || cc_ == less_equal) {
|
||
|
__ Set(rax, 1);
|
||
|
} else {
|
||
|
__ Set(rax, -1);
|
||
|
}
|
||
|
__ ret(0);
|
||
|
|
||
|
// The number comparison code did not provide a valid result.
|
||
|
__ bind(&non_number_comparison);
|
||
|
}
|
||
|
|
||
|
// Fast negative check for symbol-to-symbol equality.
|
||
|
Label check_for_strings;
|
||
|
if (cc_ == equal) {
|
||
|
BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
|
||
|
BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
|
||
|
|
||
|
// We've already checked for object identity, so if both operands
|
||
|
// are symbols they aren't equal. Register eax (not rax) already holds a
|
||
|
// non-zero value, which indicates not equal, so just return.
|
||
|
__ ret(0);
|
||
|
}
|
||
|
|
||
|
__ bind(&check_for_strings);
|
||
|
|
||
|
__ JumpIfNotBothSequentialAsciiStrings(
|
||
|
rdx, rax, rcx, rbx, &check_unequal_objects);
|
||
|
|
||
|
// Inline comparison of ascii strings.
|
||
|
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
|
||
|
rdx,
|
||
|
rax,
|
||
|
rcx,
|
||
|
rbx,
|
||
|
rdi,
|
||
|
r8);
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
__ Abort("Unexpected fall-through from string comparison");
|
||
|
#endif
|
||
|
|
||
|
__ bind(&check_unequal_objects);
|
||
|
if (cc_ == equal && !strict_) {
|
||
|
// Not strict equality. Objects are unequal if
|
||
|
// they are both JSObjects and not undetectable,
|
||
|
// and their pointers are different.
|
||
|
Label not_both_objects, return_unequal;
|
||
|
// At most one is a smi, so we can test for smi by adding the two.
|
||
|
// A smi plus a heap object has the low bit set, a heap object plus
|
||
|
// a heap object has the low bit clear.
|
||
|
STATIC_ASSERT(kSmiTag == 0);
|
||
|
STATIC_ASSERT(kSmiTagMask == 1);
|
||
|
__ lea(rcx, Operand(rax, rdx, times_1, 0));
|
||
|
__ testb(rcx, Immediate(kSmiTagMask));
|
||
|
__ j(not_zero, ¬_both_objects);
|
||
|
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
|
||
|
__ j(below, ¬_both_objects);
|
||
|
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
|
||
|
__ j(below, ¬_both_objects);
|
||
|
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
|
||
|
Immediate(1 << Map::kIsUndetectable));
|
||
|
__ j(zero, &return_unequal);
|
||
|
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
|
||
|
Immediate(1 << Map::kIsUndetectable));
|
||
|
__ j(zero, &return_unequal);
|
||
|
// The objects are both undetectable, so they both compare as the value
|
||
|
// undefined, and are equal.
|
||
|
__ Set(rax, EQUAL);
|
||
|
__ bind(&return_unequal);
|
||
|
// Return non-equal by returning the non-zero object pointer in eax,
|
||
|
// or return equal if we fell through to here.
|
||
|
__ ret(0);
|
||
|
__ bind(¬_both_objects);
|
||
|
}
|
||
|
|
||
|
// Push arguments below the return address to prepare jump to builtin.
|
||
|
__ pop(rcx);
|
||
|
__ push(rdx);
|
||
|
__ push(rax);
|
||
|
|
||
|
// Figure out which native to call and setup the arguments.
|
||
|
Builtins::JavaScript builtin;
|
||
|
if (cc_ == equal) {
|
||
|
builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
||
|
} else {
|
||
|
builtin = Builtins::COMPARE;
|
||
|
__ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
|
||
|
}
|
||
|
|
||
|
// Restore return address on the stack.
|
||
|
__ push(rcx);
|
||
|
|
||
|
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
||
|
// tagged as a small integer.
|
||
|
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
|
||
|
Label* label,
|
||
|
Register object,
|
||
|
Register scratch) {
|
||
|
__ JumpIfSmi(object, label);
|
||
|
__ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
|
||
|
__ movzxbq(scratch,
|
||
|
FieldOperand(scratch, Map::kInstanceTypeOffset));
|
||
|
// Ensure that no non-strings have the symbol bit set.
|
||
|
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
||
|
STATIC_ASSERT(kSymbolTag != 0);
|
||
|
__ testb(scratch, Immediate(kIsSymbolMask));
|
||
|
__ j(zero, label);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StackCheckStub::Generate(MacroAssembler* masm) {
|
||
|
// Because builtins always remove the receiver from the stack, we
|
||
|
// have to fake one to avoid underflowing the stack. The receiver
|
||
|
// must be inserted below the return address on the stack so we
|
||
|
// temporarily store that in a register.
|
||
|
__ pop(rax);
|
||
|
__ Push(Smi::FromInt(0));
|
||
|
__ push(rax);
|
||
|
|
||
|
// Do tail-call to runtime routine.
|
||
|
__ TailCallRuntime(Runtime::kStackGuard, 1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CallFunctionStub::Generate(MacroAssembler* masm) {
|
||
|
Label slow;
|
||
|
|
||
|
// If the receiver might be a value (string, number or boolean) check for this
|
||
|
// and box it if it is.
|
||
|
if (ReceiverMightBeValue()) {
|
||
|
// Get the receiver from the stack.
|
||
|
// +1 ~ return address
|
||
|
Label receiver_is_value, receiver_is_js_object;
|
||
|
__ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
|
||
|
|
||
|
// Check if receiver is a smi (which is a number value).
|
||
|
__ JumpIfSmi(rax, &receiver_is_value);
|
||
|
|
||
|
// Check if the receiver is a valid JS object.
|
||
|
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
|
||
|
__ j(above_equal, &receiver_is_js_object);
|
||
|
|
||
|
// Call the runtime to box the value.
|
||
|
__ bind(&receiver_is_value);
|
||
|
__ EnterInternalFrame();
|
||
|
__ push(rax);
|
||
|
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
|
||
|
__ LeaveInternalFrame();
|
||
|
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
|
||
|
|
||
|
__ bind(&receiver_is_js_object);
|
||
|
}
|
||
|
|
||
|
// Get the function to call from the stack.
|
||
|
// +2 ~ receiver, return address
|
||
|
__ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
|
||
|
|
||
|
// Check that the function really is a JavaScript function.
|
||
|
__ JumpIfSmi(rdi, &slow);
|
||
|
// Goto slow case if we do not have a function.
|
||
|
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
|
||
|
__ j(not_equal, &slow);
|
||
|
|
||
|
// Fast-case: Just invoke the function.
|
||
|
ParameterCount actual(argc_);
|
||
|
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
|
||
|
|
||
|
// Slow-case: Non-function called.
|
||
|
__ bind(&slow);
|
||
|
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
||
|
// of the original receiver from the call site).
|
||
|
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
|
||
|
__ Set(rax, argc_);
|
||
|
__ Set(rbx, 0);
|
||
|
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
|
||
|
Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
|
||
|
__ Jump(adaptor, RelocInfo::CODE_TARGET);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
||
|
// Check that stack should contain next handler, frame pointer, state and
|
||
|
// return address in that order.
|
||
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
|
||
|
StackHandlerConstants::kStateOffset);
|
||
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
|
||
|
StackHandlerConstants::kPCOffset);
|
||
|
|
||
|
ExternalReference handler_address(Top::k_handler_address);
|
||
|
__ movq(kScratchRegister, handler_address);
|
||
|
__ movq(rsp, Operand(kScratchRegister, 0));
|
||
|
// get next in chain
|
||
|
__ pop(rcx);
|
||
|
__ movq(Operand(kScratchRegister, 0), rcx);
|
||
|
__ pop(rbp); // pop frame pointer
|
||
|
__ pop(rdx); // remove state
|
||
|
|
||
|
// Before returning we restore the context from the frame pointer if not NULL.
|
||
|
// The frame pointer is NULL in the exception handler of a JS entry frame.
|
||
|
__ xor_(rsi, rsi); // tentatively set context pointer to NULL
|
||
|
Label skip;
|
||
|
__ cmpq(rbp, Immediate(0));
|
||
|
__ j(equal, &skip);
|
||
|
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
|
||
|
__ bind(&skip);
|
||
|
__ ret(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void ApiGetterEntryStub::Generate(MacroAssembler* masm) {
|
||
|
Label empty_result;
|
||
|
Label prologue;
|
||
|
Label promote_scheduled_exception;
|
||
|
__ EnterApiExitFrame(kStackSpace, 0);
|
||
|
ASSERT_EQ(kArgc, 4);
|
||
|
#ifdef _WIN64
|
||
|
// All the parameters should be set up by a caller.
|
||
|
#else
|
||
|
// Set 1st parameter register with property name.
|
||
|
__ movq(rsi, rdx);
|
||
|
// Second parameter register rdi should be set with pointer to AccessorInfo
|
||
|
// by a caller.
|
||
|
#endif
|
||
|
// Call the api function!
|
||
|
__ movq(rax,
|
||
|
reinterpret_cast<int64_t>(fun()->address()),
|
||
|
RelocInfo::RUNTIME_ENTRY);
|
||
|
__ call(rax);
|
||
|
// Check if the function scheduled an exception.
|
||
|
ExternalReference scheduled_exception_address =
|
||
|
ExternalReference::scheduled_exception_address();
|
||
|
__ movq(rsi, scheduled_exception_address);
|
||
|
__ Cmp(Operand(rsi, 0), Factory::the_hole_value());
|
||
|
__ j(not_equal, &promote_scheduled_exception);
|
||
|
#ifdef _WIN64
|
||
|
// rax keeps a pointer to v8::Handle, unpack it.
|
||
|
__ movq(rax, Operand(rax, 0));
|
||
|
#endif
|
||
|
// Check if the result handle holds 0.
|
||
|
__ testq(rax, rax);
|
||
|
__ j(zero, &empty_result);
|
||
|
// It was non-zero. Dereference to get the result value.
|
||
|
__ movq(rax, Operand(rax, 0));
|
||
|
__ bind(&prologue);
|
||
|
__ LeaveExitFrame();
|
||
|
__ ret(0);
|
||
|
__ bind(&promote_scheduled_exception);
|
||
|
__ TailCallRuntime(Runtime::kPromoteScheduledException, 0, 1);
|
||
|
__ bind(&empty_result);
|
||
|
// It was zero; the result is undefined.
|
||
|
__ Move(rax, Factory::undefined_value());
|
||
|
__ jmp(&prologue);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CEntryStub::GenerateCore(MacroAssembler* masm,
|
||
|
Label* throw_normal_exception,
|
||
|
Label* throw_termination_exception,
|
||
|
Label* throw_out_of_memory_exception,
|
||
|
bool do_gc,
|
||
|
bool always_allocate_scope,
|
||
|
int /* alignment_skew */) {
|
||
|
// rax: result parameter for PerformGC, if any.
|
||
|
// rbx: pointer to C function (C callee-saved).
|
||
|
// rbp: frame pointer (restored after C call).
|
||
|
// rsp: stack pointer (restored after C call).
|
||
|
// r14: number of arguments including receiver (C callee-saved).
|
||
|
// r12: pointer to the first argument (C callee-saved).
|
||
|
// This pointer is reused in LeaveExitFrame(), so it is stored in a
|
||
|
// callee-saved register.
|
||
|
|
||
|
// Simple results returned in rax (both AMD64 and Win64 calling conventions).
|
||
|
// Complex results must be written to address passed as first argument.
|
||
|
// AMD64 calling convention: a struct of two pointers in rax+rdx
|
||
|
|
||
|
// Check stack alignment.
|
||
|
if (FLAG_debug_code) {
|
||
|
__ CheckStackAlignment();
|
||
|
}
|
||
|
|
||
|
if (do_gc) {
|
||
|
// Pass failure code returned from last attempt as first argument to
|
||
|
// PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
|
||
|
// stack is known to be aligned. This function takes one argument which is
|
||
|
// passed in register.
|
||
|
#ifdef _WIN64
|
||
|
__ movq(rcx, rax);
|
||
|
#else // _WIN64
|
||
|
__ movq(rdi, rax);
|
||
|
#endif
|
||
|
__ movq(kScratchRegister,
|
||
|
FUNCTION_ADDR(Runtime::PerformGC),
|
||
|
RelocInfo::RUNTIME_ENTRY);
|
||
|
__ call(kScratchRegister);
|
||
|
}
|
||
|
|
||
|
ExternalReference scope_depth =
|
||
|
ExternalReference::heap_always_allocate_scope_depth();
|
||
|
if (always_allocate_scope) {
|
||
|
__ movq(kScratchRegister, scope_depth);
|
||
|
__ incl(Operand(kScratchRegister, 0));
|
||
|
}
|
||
|
|
||
|
// Call C function.
|
||
|
#ifdef _WIN64
|
||
|
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
|
||
|
// Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
|
||
|
__ movq(Operand(rsp, 4 * kPointerSize), r14); // argc.
|
||
|
__ movq(Operand(rsp, 5 * kPointerSize), r12); // argv.
|
||
|
if (result_size_ < 2) {
|
||
|
// Pass a pointer to the Arguments object as the first argument.
|
||
|
// Return result in single register (rax).
|
||
|
__ lea(rcx, Operand(rsp, 4 * kPointerSize));
|
||
|
} else {
|
||
|
ASSERT_EQ(2, result_size_);
|
||
|
// Pass a pointer to the result location as the first argument.
|
||
|
__ lea(rcx, Operand(rsp, 6 * kPointerSize));
|
||
|
// Pass a pointer to the Arguments object as the second argument.
|
||
|
__ lea(rdx, Operand(rsp, 4 * kPointerSize));
|
||
|
}
|
||
|
|
||
|
#else // _WIN64
|
||
|
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
|
||
|
__ movq(rdi, r14); // argc.
|
||
|
__ movq(rsi, r12); // argv.
|
||
|
#endif
|
||
|
__ call(rbx);
|
||
|
// Result is in rax - do not destroy this register!
|
||
|
|
||
|
if (always_allocate_scope) {
|
||
|
__ movq(kScratchRegister, scope_depth);
|
||
|
__ decl(Operand(kScratchRegister, 0));
|
||
|
}
|
||
|
|
||
|
// Check for failure result.
|
||
|
Label failure_returned;
|
||
|
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
||
|
#ifdef _WIN64
|
||
|
// If return value is on the stack, pop it to registers.
|
||
|
if (result_size_ > 1) {
|
||
|
ASSERT_EQ(2, result_size_);
|
||
|
// Read result values stored on stack. Result is stored
|
||
|
// above the four argument mirror slots and the two
|
||
|
// Arguments object slots.
|
||
|
__ movq(rax, Operand(rsp, 6 * kPointerSize));
|
||
|
__ movq(rdx, Operand(rsp, 7 * kPointerSize));
|
||
|
}
|
||
|
#endif
|
||
|
__ lea(rcx, Operand(rax, 1));
|
||
|
// Lower 2 bits of rcx are 0 iff rax has failure tag.
|
||
|
__ testl(rcx, Immediate(kFailureTagMask));
|
||
|
__ j(zero, &failure_returned);
|
||
|
|
||
|
// Exit the JavaScript to C++ exit frame.
|
||
|
__ LeaveExitFrame(result_size_);
|
||
|
__ ret(0);
|
||
|
|
||
|
// Handling of failure.
|
||
|
__ bind(&failure_returned);
|
||
|
|
||
|
Label retry;
|
||
|
// If the returned exception is RETRY_AFTER_GC continue at retry label
|
||
|
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
||
|
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
|
||
|
__ j(zero, &retry);
|
||
|
|
||
|
// Special handling of out of memory exceptions.
|
||
|
__ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
|
||
|
__ cmpq(rax, kScratchRegister);
|
||
|
__ j(equal, throw_out_of_memory_exception);
|
||
|
|
||
|
// Retrieve the pending exception and clear the variable.
|
||
|
ExternalReference pending_exception_address(Top::k_pending_exception_address);
|
||
|
__ movq(kScratchRegister, pending_exception_address);
|
||
|
__ movq(rax, Operand(kScratchRegister, 0));
|
||
|
__ movq(rdx, ExternalReference::the_hole_value_location());
|
||
|
__ movq(rdx, Operand(rdx, 0));
|
||
|
__ movq(Operand(kScratchRegister, 0), rdx);
|
||
|
|
||
|
// Special handling of termination exceptions which are uncatchable
|
||
|
// by javascript code.
|
||
|
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
|
||
|
__ j(equal, throw_termination_exception);
|
||
|
|
||
|
// Handle normal exception.
|
||
|
__ jmp(throw_normal_exception);
|
||
|
|
||
|
// Retry.
|
||
|
__ bind(&retry);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
||
|
UncatchableExceptionType type) {
|
||
|
// Fetch top stack handler.
|
||
|
ExternalReference handler_address(Top::k_handler_address);
|
||
|
__ movq(kScratchRegister, handler_address);
|
||
|
__ movq(rsp, Operand(kScratchRegister, 0));
|
||
|
|
||
|
// Unwind the handlers until the ENTRY handler is found.
|
||
|
Label loop, done;
|
||
|
__ bind(&loop);
|
||
|
// Load the type of the current stack handler.
|
||
|
const int kStateOffset = StackHandlerConstants::kStateOffset;
|
||
|
__ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
|
||
|
__ j(equal, &done);
|
||
|
// Fetch the next handler in the list.
|
||
|
const int kNextOffset = StackHandlerConstants::kNextOffset;
|
||
|
__ movq(rsp, Operand(rsp, kNextOffset));
|
||
|
__ jmp(&loop);
|
||
|
__ bind(&done);
|
||
|
|
||
|
// Set the top handler address to next handler past the current ENTRY handler.
|
||
|
__ movq(kScratchRegister, handler_address);
|
||
|
__ pop(Operand(kScratchRegister, 0));
|
||
|
|
||
|
if (type == OUT_OF_MEMORY) {
|
||
|
// Set external caught exception to false.
|
||
|
ExternalReference external_caught(Top::k_external_caught_exception_address);
|
||
|
__ movq(rax, Immediate(false));
|
||
|
__ store_rax(external_caught);
|
||
|
|
||
|
// Set pending exception and rax to out of memory exception.
|
||
|
ExternalReference pending_exception(Top::k_pending_exception_address);
|
||
|
__ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
|
||
|
__ store_rax(pending_exception);
|
||
|
}
|
||
|
|
||
|
// Clear the context pointer.
|
||
|
__ xor_(rsi, rsi);
|
||
|
|
||
|
// Restore registers from handler.
|
||
|
STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
|
||
|
StackHandlerConstants::kFPOffset);
|
||
|
__ pop(rbp); // FP
|
||
|
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
|
||
|
StackHandlerConstants::kStateOffset);
|
||
|
__ pop(rdx); // State
|
||
|
|
||
|
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
|
||
|
StackHandlerConstants::kPCOffset);
|
||
|
__ ret(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void CEntryStub::Generate(MacroAssembler* masm) {
|
||
|
// rax: number of arguments including receiver
|
||
|
// rbx: pointer to C function (C callee-saved)
|
||
|
// rbp: frame pointer of calling JS frame (restored after C call)
|
||
|
// rsp: stack pointer (restored after C call)
|
||
|
// rsi: current context (restored)
|
||
|
|
||
|
// NOTE: Invocations of builtins may return failure objects
|
||
|
// instead of a proper result. The builtin entry handles
|
||
|
// this by performing a garbage collection and retrying the
|
||
|
// builtin once.
|
||
|
|
||
|
// Enter the exit frame that transitions from JavaScript to C++.
|
||
|
__ EnterExitFrame(result_size_);
|
||
|
|
||
|
// rax: Holds the context at this point, but should not be used.
|
||
|
// On entry to code generated by GenerateCore, it must hold
|
||
|
// a failure result if the collect_garbage argument to GenerateCore
|
||
|
// is true. This failure result can be the result of code
|
||
|
// generated by a previous call to GenerateCore. The value
|
||
|
// of rax is then passed to Runtime::PerformGC.
|
||
|
// rbx: pointer to builtin function (C callee-saved).
|
||
|
// rbp: frame pointer of exit frame (restored after C call).
|
||
|
// rsp: stack pointer (restored after C call).
|
||
|
// r14: number of arguments including receiver (C callee-saved).
|
||
|
// r12: argv pointer (C callee-saved).
|
||
|
|
||
|
Label throw_normal_exception;
|
||
|
Label throw_termination_exception;
|
||
|
Label throw_out_of_memory_exception;
|
||
|
|
||
|
// Call into the runtime system.
|
||
|
GenerateCore(masm,
|
||
|
&throw_normal_exception,
|
||
|
&throw_termination_exception,
|
||
|
&throw_out_of_memory_exception,
|
||
|
false,
|
||
|
false);
|
||
|
|
||
|
// Do space-specific GC and retry runtime call.
|
||
|
GenerateCore(masm,
|
||
|
&throw_normal_exception,
|
||
|
&throw_termination_exception,
|
||
|
&throw_out_of_memory_exception,
|
||
|
true,
|
||
|
false);
|
||
|
|
||
|
// Do full GC and retry runtime call one final time.
|
||
|
Failure* failure = Failure::InternalError();
|
||
|
__ movq(rax, failure, RelocInfo::NONE);
|
||
|
GenerateCore(masm,
|
||
|
&throw_normal_exception,
|
||
|
&throw_termination_exception,
|
||
|
&throw_out_of_memory_exception,
|
||
|
true,
|
||
|
true);
|
||
|
|
||
|
__ bind(&throw_out_of_memory_exception);
|
||
|
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
|
||
|
|
||
|
__ bind(&throw_termination_exception);
|
||
|
GenerateThrowUncatchable(masm, TERMINATION);
|
||
|
|
||
|
__ bind(&throw_normal_exception);
|
||
|
GenerateThrowTOS(masm);
|
||
|
}
|
||
|
|
||
|
|
||
|
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
||
|
Label invoke, exit;
|
||
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
||
|
Label not_outermost_js, not_outermost_js_2;
|
||
|
#endif
|
||
|
|
||
|
// Setup frame.
|
||
|
__ push(rbp);
|
||
|
__ movq(rbp, rsp);
|
||
|
|
||
|
// Push the stack frame type marker twice.
|
||
|
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
||
|
// Scratch register is neither callee-save, nor an argument register on any
|
||
|
// platform. It's free to use at this point.
|
||
|
// Cannot use smi-register for loading yet.
|
||
|
__ movq(kScratchRegister,
|
||
|
reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
|
||
|
RelocInfo::NONE);
|
||
|
__ push(kScratchRegister); // context slot
|
||
|
__ push(kScratchRegister); // function slot
|
||
|
// Save callee-saved registers (X64/Win64 calling conventions).
|
||
|
__ push(r12);
|
||
|
__ push(r13);
|
||
|
__ push(r14);
|
||
|
__ push(r15);
|
||
|
#ifdef _WIN64
|
||
|
__ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
|
||
|
__ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
|
||
|
#endif
|
||
|
__ push(rbx);
|
||
|
// TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
|
||
|
// callee save as well.
|
||
|
|
||
|
// Save copies of the top frame descriptor on the stack.
|
||
|
ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
|
||
|
__ load_rax(c_entry_fp);
|
||
|
__ push(rax);
|
||
|
|
||
|
// Set up the roots and smi constant registers.
|
||
|
// Needs to be done before any further smi loads.
|
||
|
ExternalReference roots_address = ExternalReference::roots_address();
|
||
|
__ movq(kRootRegister, roots_address);
|
||
|
__ InitializeSmiConstantRegister();
|
||
|
|
||
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
||
|
// If this is the outermost JS call, set js_entry_sp value.
|
||
|
ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
|
||
|
__ load_rax(js_entry_sp);
|
||
|
__ testq(rax, rax);
|
||
|
__ j(not_zero, ¬_outermost_js);
|
||
|
__ movq(rax, rbp);
|
||
|
__ store_rax(js_entry_sp);
|
||
|
__ bind(¬_outermost_js);
|
||
|
#endif
|
||
|
|
||
|
// Call a faked try-block that does the invoke.
|
||
|
__ call(&invoke);
|
||
|
|
||
|
// Caught exception: Store result (exception) in the pending
|
||
|
// exception field in the JSEnv and return a failure sentinel.
|
||
|
ExternalReference pending_exception(Top::k_pending_exception_address);
|
||
|
__ store_rax(pending_exception);
|
||
|
__ movq(rax, Failure::Exception(), RelocInfo::NONE);
|
||
|
__ jmp(&exit);
|
||
|
|
||
|
// Invoke: Link this frame into the handler chain.
|
||
|
__ bind(&invoke);
|
||
|
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
|
||
|
|
||
|
// Clear any pending exceptions.
|
||
|
__ load_rax(ExternalReference::the_hole_value_location());
|
||
|
__ store_rax(pending_exception);
|
||
|
|
||
|
// Fake a receiver (NULL).
|
||
|
__ push(Immediate(0)); // receiver
|
||
|
|
||
|
// Invoke the function by calling through JS entry trampoline
|
||
|
// builtin and pop the faked function when we return. We load the address
|
||
|
// from an external reference instead of inlining the call target address
|
||
|
// directly in the code, because the builtin stubs may not have been
|
||
|
// generated yet at the time this code is generated.
|
||
|
if (is_construct) {
|
||
|
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
|
||
|
__ load_rax(construct_entry);
|
||
|
} else {
|
||
|
ExternalReference entry(Builtins::JSEntryTrampoline);
|
||
|
__ load_rax(entry);
|
||
|
}
|
||
|
__ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
|
||
|
__ call(kScratchRegister);
|
||
|
|
||
|
// Unlink this frame from the handler chain.
|
||
|
__ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
|
||
|
__ pop(Operand(kScratchRegister, 0));
|
||
|
// Pop next_sp.
|
||
|
__ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
|
||
|
|
||
|
#ifdef ENABLE_LOGGING_AND_PROFILING
|
||
|
// If current EBP value is the same as js_entry_sp value, it means that
|
||
|
// the current function is the outermost.
|
||
|
__ movq(kScratchRegister, js_entry_sp);
|
||
|
__ cmpq(rbp, Operand(kScratchRegister, 0));
|
||
|
__ j(not_equal, ¬_outermost_js_2);
|
||
|
__ movq(Operand(kScratchRegister, 0), Immediate(0));
|
||
|
__ bind(¬_outermost_js_2);
|
||
|
#endif
|
||
|
|
||
|
// Restore the top frame descriptor from the stack.
|
||
|
__ bind(&exit);
|
||
|
__ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
|
||
|
__ pop(Operand(kScratchRegister, 0));
|
||
|
|
||
|
// Restore callee-saved registers (X64 conventions).
|
||
|
__ pop(rbx);
|
||
|
#ifdef _WIN64
|
||
|
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
|
||
|
__ pop(rsi);
|
||
|
__ pop(rdi);
|
||
|
#endif
|
||
|
__ pop(r15);
|
||
|
__ pop(r14);
|
||
|
__ pop(r13);
|
||
|
__ pop(r12);
|
||
|
__ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
|
||
|
|
||
|
// Restore frame pointer and return.
|
||
|
__ pop(rbp);
|
||
|
__ ret(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void InstanceofStub::Generate(MacroAssembler* masm) {
|
||
|
// Implements "value instanceof function" operator.
|
||
|
// Expected input state:
|
||
|
// rsp[0] : return address
|
||
|
// rsp[1] : function pointer
|
||
|
// rsp[2] : value
|
||
|
// Returns a bitwise zero to indicate that the value
|
||
|
// is and instance of the function and anything else to
|
||
|
// indicate that the value is not an instance.
|
||
|
|
||
|
// Get the object - go slow case if it's a smi.
|
||
|
Label slow;
|
||
|
__ movq(rax, Operand(rsp, 2 * kPointerSize));
|
||
|
__ JumpIfSmi(rax, &slow);
|
||
|
|
||
|
// Check that the left hand is a JS object. Leave its map in rax.
|
||
|
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
|
||
|
__ j(below, &slow);
|
||
|
__ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
|
||
|
__ j(above, &slow);
|
||
|
|
||
|
// Get the prototype of the function.
|
||
|
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
|
||
|
// rdx is function, rax is map.
|
||
|
|
||
|
// Look up the function and the map in the instanceof cache.
|
||
|
Label miss;
|
||
|
__ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
|
||
|
__ j(not_equal, &miss);
|
||
|
__ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
|
||
|
__ j(not_equal, &miss);
|
||
|
__ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
__ bind(&miss);
|
||
|
__ TryGetFunctionPrototype(rdx, rbx, &slow);
|
||
|
|
||
|
// Check that the function prototype is a JS object.
|
||
|
__ JumpIfSmi(rbx, &slow);
|
||
|
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
|
||
|
__ j(below, &slow);
|
||
|
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
|
||
|
__ j(above, &slow);
|
||
|
|
||
|
// Register mapping:
|
||
|
// rax is object map.
|
||
|
// rdx is function.
|
||
|
// rbx is function prototype.
|
||
|
__ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
|
||
|
__ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
|
||
|
|
||
|
__ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
|
||
|
|
||
|
// Loop through the prototype chain looking for the function prototype.
|
||
|
Label loop, is_instance, is_not_instance;
|
||
|
__ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
|
||
|
__ bind(&loop);
|
||
|
__ cmpq(rcx, rbx);
|
||
|
__ j(equal, &is_instance);
|
||
|
__ cmpq(rcx, kScratchRegister);
|
||
|
// The code at is_not_instance assumes that kScratchRegister contains a
|
||
|
// non-zero GCable value (the null object in this case).
|
||
|
__ j(equal, &is_not_instance);
|
||
|
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
|
||
|
__ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
|
||
|
__ jmp(&loop);
|
||
|
|
||
|
__ bind(&is_instance);
|
||
|
__ xorl(rax, rax);
|
||
|
// Store bitwise zero in the cache. This is a Smi in GC terms.
|
||
|
STATIC_ASSERT(kSmiTag == 0);
|
||
|
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
__ bind(&is_not_instance);
|
||
|
// We have to store a non-zero value in the cache.
|
||
|
__ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
// Slow-case: Go through the JavaScript implementation.
|
||
|
__ bind(&slow);
|
||
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
|
||
|
}
|
||
|
|
||
|
|
||
|
int CompareStub::MinorKey() {
|
||
|
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
|
||
|
// stubs the never NaN NaN condition is only taken into account if the
|
||
|
// condition is equals.
|
||
|
ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
|
||
|
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
|
||
|
return ConditionField::encode(static_cast<unsigned>(cc_))
|
||
|
| RegisterField::encode(false) // lhs_ and rhs_ are not used
|
||
|
| StrictField::encode(strict_)
|
||
|
| NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
|
||
|
| IncludeNumberCompareField::encode(include_number_compare_);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Unfortunately you have to run without snapshots to see most of these
|
||
|
// names in the profile since most compare stubs end up in the snapshot.
|
||
|
const char* CompareStub::GetName() {
|
||
|
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
|
||
|
|
||
|
if (name_ != NULL) return name_;
|
||
|
const int kMaxNameLength = 100;
|
||
|
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
|
||
|
if (name_ == NULL) return "OOM";
|
||
|
|
||
|
const char* cc_name;
|
||
|
switch (cc_) {
|
||
|
case less: cc_name = "LT"; break;
|
||
|
case greater: cc_name = "GT"; break;
|
||
|
case less_equal: cc_name = "LE"; break;
|
||
|
case greater_equal: cc_name = "GE"; break;
|
||
|
case equal: cc_name = "EQ"; break;
|
||
|
case not_equal: cc_name = "NE"; break;
|
||
|
default: cc_name = "UnknownCondition"; break;
|
||
|
}
|
||
|
|
||
|
const char* strict_name = "";
|
||
|
if (strict_ && (cc_ == equal || cc_ == not_equal)) {
|
||
|
strict_name = "_STRICT";
|
||
|
}
|
||
|
|
||
|
const char* never_nan_nan_name = "";
|
||
|
if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
|
||
|
never_nan_nan_name = "_NO_NAN";
|
||
|
}
|
||
|
|
||
|
const char* include_number_compare_name = "";
|
||
|
if (!include_number_compare_) {
|
||
|
include_number_compare_name = "_NO_NUMBER";
|
||
|
}
|
||
|
|
||
|
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
|
||
|
"CompareStub_%s%s%s%s",
|
||
|
cc_name,
|
||
|
strict_name,
|
||
|
never_nan_nan_name,
|
||
|
include_number_compare_name);
|
||
|
return name_;
|
||
|
}
|
||
|
|
||
|
|
||
|
// -------------------------------------------------------------------------
|
||
|
// StringCharCodeAtGenerator
|
||
|
|
||
|
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||
|
Label flat_string;
|
||
|
Label ascii_string;
|
||
|
Label got_char_code;
|
||
|
|
||
|
// If the receiver is a smi trigger the non-string case.
|
||
|
__ JumpIfSmi(object_, receiver_not_string_);
|
||
|
|
||
|
// Fetch the instance type of the receiver into result register.
|
||
|
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
||
|
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
||
|
// If the receiver is not a string trigger the non-string case.
|
||
|
__ testb(result_, Immediate(kIsNotStringMask));
|
||
|
__ j(not_zero, receiver_not_string_);
|
||
|
|
||
|
// If the index is non-smi trigger the non-smi case.
|
||
|
__ JumpIfNotSmi(index_, &index_not_smi_);
|
||
|
|
||
|
// Put smi-tagged index into scratch register.
|
||
|
__ movq(scratch_, index_);
|
||
|
__ bind(&got_smi_index_);
|
||
|
|
||
|
// Check for index out of range.
|
||
|
__ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset));
|
||
|
__ j(above_equal, index_out_of_range_);
|
||
|
|
||
|
// We need special handling for non-flat strings.
|
||
|
STATIC_ASSERT(kSeqStringTag == 0);
|
||
|
__ testb(result_, Immediate(kStringRepresentationMask));
|
||
|
__ j(zero, &flat_string);
|
||
|
|
||
|
// Handle non-flat strings.
|
||
|
__ testb(result_, Immediate(kIsConsStringMask));
|
||
|
__ j(zero, &call_runtime_);
|
||
|
|
||
|
// ConsString.
|
||
|
// Check whether the right hand side is the empty string (i.e. if
|
||
|
// this is really a flat string in a cons string). If that is not
|
||
|
// the case we would rather go to the runtime system now to flatten
|
||
|
// the string.
|
||
|
__ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset),
|
||
|
Heap::kEmptyStringRootIndex);
|
||
|
__ j(not_equal, &call_runtime_);
|
||
|
// Get the first of the two strings and load its instance type.
|
||
|
__ movq(object_, FieldOperand(object_, ConsString::kFirstOffset));
|
||
|
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
||
|
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
||
|
// If the first cons component is also non-flat, then go to runtime.
|
||
|
STATIC_ASSERT(kSeqStringTag == 0);
|
||
|
__ testb(result_, Immediate(kStringRepresentationMask));
|
||
|
__ j(not_zero, &call_runtime_);
|
||
|
|
||
|
// Check for 1-byte or 2-byte string.
|
||
|
__ bind(&flat_string);
|
||
|
STATIC_ASSERT(kAsciiStringTag != 0);
|
||
|
__ testb(result_, Immediate(kStringEncodingMask));
|
||
|
__ j(not_zero, &ascii_string);
|
||
|
|
||
|
// 2-byte string.
|
||
|
// Load the 2-byte character code into the result register.
|
||
|
__ SmiToInteger32(scratch_, scratch_);
|
||
|
__ movzxwl(result_, FieldOperand(object_,
|
||
|
scratch_, times_2,
|
||
|
SeqTwoByteString::kHeaderSize));
|
||
|
__ jmp(&got_char_code);
|
||
|
|
||
|
// ASCII string.
|
||
|
// Load the byte into the result register.
|
||
|
__ bind(&ascii_string);
|
||
|
__ SmiToInteger32(scratch_, scratch_);
|
||
|
__ movzxbl(result_, FieldOperand(object_,
|
||
|
scratch_, times_1,
|
||
|
SeqAsciiString::kHeaderSize));
|
||
|
__ bind(&got_char_code);
|
||
|
__ Integer32ToSmi(result_, result_);
|
||
|
__ bind(&exit_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringCharCodeAtGenerator::GenerateSlow(
|
||
|
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
||
|
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
|
||
|
|
||
|
// Index is not a smi.
|
||
|
__ bind(&index_not_smi_);
|
||
|
// If index is a heap number, try converting it to an integer.
|
||
|
__ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
|
||
|
call_helper.BeforeCall(masm);
|
||
|
__ push(object_);
|
||
|
__ push(index_);
|
||
|
__ push(index_); // Consumed by runtime conversion function.
|
||
|
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
||
|
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
||
|
} else {
|
||
|
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
||
|
// NumberToSmi discards numbers that are not exact integers.
|
||
|
__ CallRuntime(Runtime::kNumberToSmi, 1);
|
||
|
}
|
||
|
if (!scratch_.is(rax)) {
|
||
|
// Save the conversion result before the pop instructions below
|
||
|
// have a chance to overwrite it.
|
||
|
__ movq(scratch_, rax);
|
||
|
}
|
||
|
__ pop(index_);
|
||
|
__ pop(object_);
|
||
|
// Reload the instance type.
|
||
|
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
|
||
|
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
|
||
|
call_helper.AfterCall(masm);
|
||
|
// If index is still not a smi, it must be out of range.
|
||
|
__ JumpIfNotSmi(scratch_, index_out_of_range_);
|
||
|
// Otherwise, return to the fast path.
|
||
|
__ jmp(&got_smi_index_);
|
||
|
|
||
|
// Call runtime. We get here when the receiver is a string and the
|
||
|
// index is a number, but the code of getting the actual character
|
||
|
// is too complex (e.g., when the string needs to be flattened).
|
||
|
__ bind(&call_runtime_);
|
||
|
call_helper.BeforeCall(masm);
|
||
|
__ push(object_);
|
||
|
__ push(index_);
|
||
|
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
|
||
|
if (!result_.is(rax)) {
|
||
|
__ movq(result_, rax);
|
||
|
}
|
||
|
call_helper.AfterCall(masm);
|
||
|
__ jmp(&exit_);
|
||
|
|
||
|
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
|
||
|
}
|
||
|
|
||
|
|
||
|
// -------------------------------------------------------------------------
|
||
|
// StringCharFromCodeGenerator
|
||
|
|
||
|
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
||
|
// Fast case of Heap::LookupSingleCharacterStringFromCode.
|
||
|
__ JumpIfNotSmi(code_, &slow_case_);
|
||
|
__ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
|
||
|
__ j(above, &slow_case_);
|
||
|
|
||
|
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
||
|
SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
|
||
|
__ movq(result_, FieldOperand(result_, index.reg, index.scale,
|
||
|
FixedArray::kHeaderSize));
|
||
|
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
|
||
|
__ j(equal, &slow_case_);
|
||
|
__ bind(&exit_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringCharFromCodeGenerator::GenerateSlow(
|
||
|
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
||
|
__ Abort("Unexpected fallthrough to CharFromCode slow case");
|
||
|
|
||
|
__ bind(&slow_case_);
|
||
|
call_helper.BeforeCall(masm);
|
||
|
__ push(code_);
|
||
|
__ CallRuntime(Runtime::kCharFromCode, 1);
|
||
|
if (!result_.is(rax)) {
|
||
|
__ movq(result_, rax);
|
||
|
}
|
||
|
call_helper.AfterCall(masm);
|
||
|
__ jmp(&exit_);
|
||
|
|
||
|
__ Abort("Unexpected fallthrough from CharFromCode slow case");
|
||
|
}
|
||
|
|
||
|
|
||
|
// -------------------------------------------------------------------------
|
||
|
// StringCharAtGenerator
|
||
|
|
||
|
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
|
||
|
char_code_at_generator_.GenerateFast(masm);
|
||
|
char_from_code_generator_.GenerateFast(masm);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringCharAtGenerator::GenerateSlow(
|
||
|
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
|
||
|
char_code_at_generator_.GenerateSlow(masm, call_helper);
|
||
|
char_from_code_generator_.GenerateSlow(masm, call_helper);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringAddStub::Generate(MacroAssembler* masm) {
|
||
|
Label string_add_runtime;
|
||
|
|
||
|
// Load the two arguments.
|
||
|
__ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument.
|
||
|
__ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument.
|
||
|
|
||
|
// Make sure that both arguments are strings if not known in advance.
|
||
|
if (string_check_) {
|
||
|
Condition is_smi;
|
||
|
is_smi = masm->CheckSmi(rax);
|
||
|
__ j(is_smi, &string_add_runtime);
|
||
|
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
|
||
|
__ j(above_equal, &string_add_runtime);
|
||
|
|
||
|
// First argument is a a string, test second.
|
||
|
is_smi = masm->CheckSmi(rdx);
|
||
|
__ j(is_smi, &string_add_runtime);
|
||
|
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
|
||
|
__ j(above_equal, &string_add_runtime);
|
||
|
}
|
||
|
|
||
|
// Both arguments are strings.
|
||
|
// rax: first string
|
||
|
// rdx: second string
|
||
|
// Check if either of the strings are empty. In that case return the other.
|
||
|
Label second_not_zero_length, both_not_zero_length;
|
||
|
__ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
|
||
|
__ SmiTest(rcx);
|
||
|
__ j(not_zero, &second_not_zero_length);
|
||
|
// Second string is empty, result is first string which is already in rax.
|
||
|
__ IncrementCounter(&Counters::string_add_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
__ bind(&second_not_zero_length);
|
||
|
__ movq(rbx, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ SmiTest(rbx);
|
||
|
__ j(not_zero, &both_not_zero_length);
|
||
|
// First string is empty, result is second string which is in rdx.
|
||
|
__ movq(rax, rdx);
|
||
|
__ IncrementCounter(&Counters::string_add_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
// Both strings are non-empty.
|
||
|
// rax: first string
|
||
|
// rbx: length of first string
|
||
|
// rcx: length of second string
|
||
|
// rdx: second string
|
||
|
// r8: map of first string if string check was performed above
|
||
|
// r9: map of second string if string check was performed above
|
||
|
Label string_add_flat_result, longer_than_two;
|
||
|
__ bind(&both_not_zero_length);
|
||
|
|
||
|
// If arguments where known to be strings, maps are not loaded to r8 and r9
|
||
|
// by the code above.
|
||
|
if (!string_check_) {
|
||
|
__ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
|
||
|
}
|
||
|
// Get the instance types of the two strings as they will be needed soon.
|
||
|
__ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
|
||
|
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
|
||
|
|
||
|
// Look at the length of the result of adding the two strings.
|
||
|
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
|
||
|
__ SmiAdd(rbx, rbx, rcx, NULL);
|
||
|
// Use the runtime system when adding two one character strings, as it
|
||
|
// contains optimizations for this specific case using the symbol table.
|
||
|
__ SmiCompare(rbx, Smi::FromInt(2));
|
||
|
__ j(not_equal, &longer_than_two);
|
||
|
|
||
|
// Check that both strings are non-external ascii strings.
|
||
|
__ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
|
||
|
&string_add_runtime);
|
||
|
|
||
|
// Get the two characters forming the sub string.
|
||
|
__ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
|
||
|
__ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
|
||
|
|
||
|
// Try to lookup two character string in symbol table. If it is not found
|
||
|
// just allocate a new one.
|
||
|
Label make_two_character_string, make_flat_ascii_string;
|
||
|
StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
||
|
masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string);
|
||
|
__ IncrementCounter(&Counters::string_add_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
__ bind(&make_two_character_string);
|
||
|
__ Set(rbx, 2);
|
||
|
__ jmp(&make_flat_ascii_string);
|
||
|
|
||
|
__ bind(&longer_than_two);
|
||
|
// Check if resulting string will be flat.
|
||
|
__ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
|
||
|
__ j(below, &string_add_flat_result);
|
||
|
// Handle exceptionally long strings in the runtime system.
|
||
|
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
|
||
|
__ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
|
||
|
__ j(above, &string_add_runtime);
|
||
|
|
||
|
// If result is not supposed to be flat, allocate a cons string object. If
|
||
|
// both strings are ascii the result is an ascii cons string.
|
||
|
// rax: first string
|
||
|
// rbx: length of resulting flat string
|
||
|
// rdx: second string
|
||
|
// r8: instance type of first string
|
||
|
// r9: instance type of second string
|
||
|
Label non_ascii, allocated, ascii_data;
|
||
|
__ movl(rcx, r8);
|
||
|
__ and_(rcx, r9);
|
||
|
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||
|
__ testl(rcx, Immediate(kAsciiStringTag));
|
||
|
__ j(zero, &non_ascii);
|
||
|
__ bind(&ascii_data);
|
||
|
// Allocate an acsii cons string.
|
||
|
__ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
|
||
|
__ bind(&allocated);
|
||
|
// Fill the fields of the cons string.
|
||
|
__ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
|
||
|
__ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
|
||
|
Immediate(String::kEmptyHashField));
|
||
|
__ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
|
||
|
__ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
|
||
|
__ movq(rax, rcx);
|
||
|
__ IncrementCounter(&Counters::string_add_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
__ bind(&non_ascii);
|
||
|
// At least one of the strings is two-byte. Check whether it happens
|
||
|
// to contain only ascii characters.
|
||
|
// rcx: first instance type AND second instance type.
|
||
|
// r8: first instance type.
|
||
|
// r9: second instance type.
|
||
|
__ testb(rcx, Immediate(kAsciiDataHintMask));
|
||
|
__ j(not_zero, &ascii_data);
|
||
|
__ xor_(r8, r9);
|
||
|
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
||
|
__ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
|
||
|
__ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
|
||
|
__ j(equal, &ascii_data);
|
||
|
// Allocate a two byte cons string.
|
||
|
__ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
|
||
|
__ jmp(&allocated);
|
||
|
|
||
|
// Handle creating a flat result. First check that both strings are not
|
||
|
// external strings.
|
||
|
// rax: first string
|
||
|
// rbx: length of resulting flat string as smi
|
||
|
// rdx: second string
|
||
|
// r8: instance type of first string
|
||
|
// r9: instance type of first string
|
||
|
__ bind(&string_add_flat_result);
|
||
|
__ SmiToInteger32(rbx, rbx);
|
||
|
__ movl(rcx, r8);
|
||
|
__ and_(rcx, Immediate(kStringRepresentationMask));
|
||
|
__ cmpl(rcx, Immediate(kExternalStringTag));
|
||
|
__ j(equal, &string_add_runtime);
|
||
|
__ movl(rcx, r9);
|
||
|
__ and_(rcx, Immediate(kStringRepresentationMask));
|
||
|
__ cmpl(rcx, Immediate(kExternalStringTag));
|
||
|
__ j(equal, &string_add_runtime);
|
||
|
// Now check if both strings are ascii strings.
|
||
|
// rax: first string
|
||
|
// rbx: length of resulting flat string
|
||
|
// rdx: second string
|
||
|
// r8: instance type of first string
|
||
|
// r9: instance type of second string
|
||
|
Label non_ascii_string_add_flat_result;
|
||
|
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
|
||
|
__ testl(r8, Immediate(kAsciiStringTag));
|
||
|
__ j(zero, &non_ascii_string_add_flat_result);
|
||
|
__ testl(r9, Immediate(kAsciiStringTag));
|
||
|
__ j(zero, &string_add_runtime);
|
||
|
|
||
|
__ bind(&make_flat_ascii_string);
|
||
|
// Both strings are ascii strings. As they are short they are both flat.
|
||
|
__ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
|
||
|
// rcx: result string
|
||
|
__ movq(rbx, rcx);
|
||
|
// Locate first character of result.
|
||
|
__ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
||
|
// Locate first character of first argument
|
||
|
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
||
|
// rax: first char of first argument
|
||
|
// rbx: result string
|
||
|
// rcx: first character of result
|
||
|
// rdx: second string
|
||
|
// rdi: length of first argument
|
||
|
StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true);
|
||
|
// Locate first character of second argument.
|
||
|
__ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
|
||
|
__ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
||
|
// rbx: result string
|
||
|
// rcx: next character of result
|
||
|
// rdx: first char of second argument
|
||
|
// rdi: length of second argument
|
||
|
StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
|
||
|
__ movq(rax, rbx);
|
||
|
__ IncrementCounter(&Counters::string_add_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
// Handle creating a flat two byte result.
|
||
|
// rax: first string - known to be two byte
|
||
|
// rbx: length of resulting flat string
|
||
|
// rdx: second string
|
||
|
// r8: instance type of first string
|
||
|
// r9: instance type of first string
|
||
|
__ bind(&non_ascii_string_add_flat_result);
|
||
|
__ and_(r9, Immediate(kAsciiStringTag));
|
||
|
__ j(not_zero, &string_add_runtime);
|
||
|
// Both strings are two byte strings. As they are short they are both
|
||
|
// flat.
|
||
|
__ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
|
||
|
// rcx: result string
|
||
|
__ movq(rbx, rcx);
|
||
|
// Locate first character of result.
|
||
|
__ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
||
|
// Locate first character of first argument.
|
||
|
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
|
||
|
__ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
||
|
// rax: first char of first argument
|
||
|
// rbx: result string
|
||
|
// rcx: first character of result
|
||
|
// rdx: second argument
|
||
|
// rdi: length of first argument
|
||
|
StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false);
|
||
|
// Locate first character of second argument.
|
||
|
__ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
|
||
|
__ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
||
|
// rbx: result string
|
||
|
// rcx: next character of result
|
||
|
// rdx: first char of second argument
|
||
|
// rdi: length of second argument
|
||
|
StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
|
||
|
__ movq(rax, rbx);
|
||
|
__ IncrementCounter(&Counters::string_add_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
// Just jump to runtime to add the two strings.
|
||
|
__ bind(&string_add_runtime);
|
||
|
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
|
||
|
Register dest,
|
||
|
Register src,
|
||
|
Register count,
|
||
|
bool ascii) {
|
||
|
Label loop;
|
||
|
__ bind(&loop);
|
||
|
// This loop just copies one character at a time, as it is only used for very
|
||
|
// short strings.
|
||
|
if (ascii) {
|
||
|
__ movb(kScratchRegister, Operand(src, 0));
|
||
|
__ movb(Operand(dest, 0), kScratchRegister);
|
||
|
__ incq(src);
|
||
|
__ incq(dest);
|
||
|
} else {
|
||
|
__ movzxwl(kScratchRegister, Operand(src, 0));
|
||
|
__ movw(Operand(dest, 0), kScratchRegister);
|
||
|
__ addq(src, Immediate(2));
|
||
|
__ addq(dest, Immediate(2));
|
||
|
}
|
||
|
__ decl(count);
|
||
|
__ j(not_zero, &loop);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
|
||
|
Register dest,
|
||
|
Register src,
|
||
|
Register count,
|
||
|
bool ascii) {
|
||
|
// Copy characters using rep movs of doublewords. Align destination on 4 byte
|
||
|
// boundary before starting rep movs. Copy remaining characters after running
|
||
|
// rep movs.
|
||
|
// Count is positive int32, dest and src are character pointers.
|
||
|
ASSERT(dest.is(rdi)); // rep movs destination
|
||
|
ASSERT(src.is(rsi)); // rep movs source
|
||
|
ASSERT(count.is(rcx)); // rep movs count
|
||
|
|
||
|
// Nothing to do for zero characters.
|
||
|
Label done;
|
||
|
__ testl(count, count);
|
||
|
__ j(zero, &done);
|
||
|
|
||
|
// Make count the number of bytes to copy.
|
||
|
if (!ascii) {
|
||
|
STATIC_ASSERT(2 == sizeof(uc16));
|
||
|
__ addl(count, count);
|
||
|
}
|
||
|
|
||
|
// Don't enter the rep movs if there are less than 4 bytes to copy.
|
||
|
Label last_bytes;
|
||
|
__ testl(count, Immediate(~7));
|
||
|
__ j(zero, &last_bytes);
|
||
|
|
||
|
// Copy from edi to esi using rep movs instruction.
|
||
|
__ movl(kScratchRegister, count);
|
||
|
__ shr(count, Immediate(3)); // Number of doublewords to copy.
|
||
|
__ repmovsq();
|
||
|
|
||
|
// Find number of bytes left.
|
||
|
__ movl(count, kScratchRegister);
|
||
|
__ and_(count, Immediate(7));
|
||
|
|
||
|
// Check if there are more bytes to copy.
|
||
|
__ bind(&last_bytes);
|
||
|
__ testl(count, count);
|
||
|
__ j(zero, &done);
|
||
|
|
||
|
// Copy remaining characters.
|
||
|
Label loop;
|
||
|
__ bind(&loop);
|
||
|
__ movb(kScratchRegister, Operand(src, 0));
|
||
|
__ movb(Operand(dest, 0), kScratchRegister);
|
||
|
__ incq(src);
|
||
|
__ incq(dest);
|
||
|
__ decl(count);
|
||
|
__ j(not_zero, &loop);
|
||
|
|
||
|
__ bind(&done);
|
||
|
}
|
||
|
|
||
|
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
||
|
Register c1,
|
||
|
Register c2,
|
||
|
Register scratch1,
|
||
|
Register scratch2,
|
||
|
Register scratch3,
|
||
|
Register scratch4,
|
||
|
Label* not_found) {
|
||
|
// Register scratch3 is the general scratch register in this function.
|
||
|
Register scratch = scratch3;
|
||
|
|
||
|
// Make sure that both characters are not digits as such strings has a
|
||
|
// different hash algorithm. Don't try to look for these in the symbol table.
|
||
|
Label not_array_index;
|
||
|
__ leal(scratch, Operand(c1, -'0'));
|
||
|
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
|
||
|
__ j(above, ¬_array_index);
|
||
|
__ leal(scratch, Operand(c2, -'0'));
|
||
|
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
|
||
|
__ j(below_equal, not_found);
|
||
|
|
||
|
__ bind(¬_array_index);
|
||
|
// Calculate the two character string hash.
|
||
|
Register hash = scratch1;
|
||
|
GenerateHashInit(masm, hash, c1, scratch);
|
||
|
GenerateHashAddCharacter(masm, hash, c2, scratch);
|
||
|
GenerateHashGetHash(masm, hash, scratch);
|
||
|
|
||
|
// Collect the two characters in a register.
|
||
|
Register chars = c1;
|
||
|
__ shl(c2, Immediate(kBitsPerByte));
|
||
|
__ orl(chars, c2);
|
||
|
|
||
|
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
||
|
// hash: hash of two character string.
|
||
|
|
||
|
// Load the symbol table.
|
||
|
Register symbol_table = c2;
|
||
|
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
|
||
|
|
||
|
// Calculate capacity mask from the symbol table capacity.
|
||
|
Register mask = scratch2;
|
||
|
__ SmiToInteger32(mask,
|
||
|
FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
|
||
|
__ decl(mask);
|
||
|
|
||
|
Register undefined = scratch4;
|
||
|
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
|
||
|
|
||
|
// Registers
|
||
|
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
||
|
// hash: hash of two character string (32-bit int)
|
||
|
// symbol_table: symbol table
|
||
|
// mask: capacity mask (32-bit int)
|
||
|
// undefined: undefined value
|
||
|
// scratch: -
|
||
|
|
||
|
// Perform a number of probes in the symbol table.
|
||
|
static const int kProbes = 4;
|
||
|
Label found_in_symbol_table;
|
||
|
Label next_probe[kProbes];
|
||
|
for (int i = 0; i < kProbes; i++) {
|
||
|
// Calculate entry in symbol table.
|
||
|
__ movl(scratch, hash);
|
||
|
if (i > 0) {
|
||
|
__ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
|
||
|
}
|
||
|
__ andl(scratch, mask);
|
||
|
|
||
|
// Load the entry from the symble table.
|
||
|
Register candidate = scratch; // Scratch register contains candidate.
|
||
|
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
||
|
__ movq(candidate,
|
||
|
FieldOperand(symbol_table,
|
||
|
scratch,
|
||
|
times_pointer_size,
|
||
|
SymbolTable::kElementsStartOffset));
|
||
|
|
||
|
// If entry is undefined no string with this hash can be found.
|
||
|
__ cmpq(candidate, undefined);
|
||
|
__ j(equal, not_found);
|
||
|
|
||
|
// If length is not 2 the string is not a candidate.
|
||
|
__ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
|
||
|
Smi::FromInt(2));
|
||
|
__ j(not_equal, &next_probe[i]);
|
||
|
|
||
|
// We use kScratchRegister as a temporary register in assumption that
|
||
|
// JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
|
||
|
Register temp = kScratchRegister;
|
||
|
|
||
|
// Check that the candidate is a non-external ascii string.
|
||
|
__ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset));
|
||
|
__ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
|
||
|
__ JumpIfInstanceTypeIsNotSequentialAscii(
|
||
|
temp, temp, &next_probe[i]);
|
||
|
|
||
|
// Check if the two characters match.
|
||
|
__ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
|
||
|
__ andl(temp, Immediate(0x0000ffff));
|
||
|
__ cmpl(chars, temp);
|
||
|
__ j(equal, &found_in_symbol_table);
|
||
|
__ bind(&next_probe[i]);
|
||
|
}
|
||
|
|
||
|
// No matching 2 character string found by probing.
|
||
|
__ jmp(not_found);
|
||
|
|
||
|
// Scratch register contains result when we fall through to here.
|
||
|
Register result = scratch;
|
||
|
__ bind(&found_in_symbol_table);
|
||
|
if (!result.is(rax)) {
|
||
|
__ movq(rax, result);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
||
|
Register hash,
|
||
|
Register character,
|
||
|
Register scratch) {
|
||
|
// hash = character + (character << 10);
|
||
|
__ movl(hash, character);
|
||
|
__ shll(hash, Immediate(10));
|
||
|
__ addl(hash, character);
|
||
|
// hash ^= hash >> 6;
|
||
|
__ movl(scratch, hash);
|
||
|
__ sarl(scratch, Immediate(6));
|
||
|
__ xorl(hash, scratch);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
||
|
Register hash,
|
||
|
Register character,
|
||
|
Register scratch) {
|
||
|
// hash += character;
|
||
|
__ addl(hash, character);
|
||
|
// hash += hash << 10;
|
||
|
__ movl(scratch, hash);
|
||
|
__ shll(scratch, Immediate(10));
|
||
|
__ addl(hash, scratch);
|
||
|
// hash ^= hash >> 6;
|
||
|
__ movl(scratch, hash);
|
||
|
__ sarl(scratch, Immediate(6));
|
||
|
__ xorl(hash, scratch);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
||
|
Register hash,
|
||
|
Register scratch) {
|
||
|
// hash += hash << 3;
|
||
|
__ leal(hash, Operand(hash, hash, times_8, 0));
|
||
|
// hash ^= hash >> 11;
|
||
|
__ movl(scratch, hash);
|
||
|
__ sarl(scratch, Immediate(11));
|
||
|
__ xorl(hash, scratch);
|
||
|
// hash += hash << 15;
|
||
|
__ movl(scratch, hash);
|
||
|
__ shll(scratch, Immediate(15));
|
||
|
__ addl(hash, scratch);
|
||
|
|
||
|
// if (hash == 0) hash = 27;
|
||
|
Label hash_not_zero;
|
||
|
__ j(not_zero, &hash_not_zero);
|
||
|
__ movl(hash, Immediate(27));
|
||
|
__ bind(&hash_not_zero);
|
||
|
}
|
||
|
|
||
|
void SubStringStub::Generate(MacroAssembler* masm) {
|
||
|
Label runtime;
|
||
|
|
||
|
// Stack frame on entry.
|
||
|
// rsp[0]: return address
|
||
|
// rsp[8]: to
|
||
|
// rsp[16]: from
|
||
|
// rsp[24]: string
|
||
|
|
||
|
const int kToOffset = 1 * kPointerSize;
|
||
|
const int kFromOffset = kToOffset + kPointerSize;
|
||
|
const int kStringOffset = kFromOffset + kPointerSize;
|
||
|
const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
|
||
|
|
||
|
// Make sure first argument is a string.
|
||
|
__ movq(rax, Operand(rsp, kStringOffset));
|
||
|
STATIC_ASSERT(kSmiTag == 0);
|
||
|
__ testl(rax, Immediate(kSmiTagMask));
|
||
|
__ j(zero, &runtime);
|
||
|
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
|
||
|
__ j(NegateCondition(is_string), &runtime);
|
||
|
|
||
|
// rax: string
|
||
|
// rbx: instance type
|
||
|
// Calculate length of sub string using the smi values.
|
||
|
Label result_longer_than_two;
|
||
|
__ movq(rcx, Operand(rsp, kToOffset));
|
||
|
__ movq(rdx, Operand(rsp, kFromOffset));
|
||
|
__ JumpIfNotBothPositiveSmi(rcx, rdx, &runtime);
|
||
|
|
||
|
__ SmiSub(rcx, rcx, rdx, NULL); // Overflow doesn't happen.
|
||
|
__ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
|
||
|
Label return_rax;
|
||
|
__ j(equal, &return_rax);
|
||
|
// Special handling of sub-strings of length 1 and 2. One character strings
|
||
|
// are handled in the runtime system (looked up in the single character
|
||
|
// cache). Two character strings are looked for in the symbol cache.
|
||
|
__ SmiToInteger32(rcx, rcx);
|
||
|
__ cmpl(rcx, Immediate(2));
|
||
|
__ j(greater, &result_longer_than_two);
|
||
|
__ j(less, &runtime);
|
||
|
|
||
|
// Sub string of length 2 requested.
|
||
|
// rax: string
|
||
|
// rbx: instance type
|
||
|
// rcx: sub string length (value is 2)
|
||
|
// rdx: from index (smi)
|
||
|
__ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);
|
||
|
|
||
|
// Get the two characters forming the sub string.
|
||
|
__ SmiToInteger32(rdx, rdx); // From index is no longer smi.
|
||
|
__ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
|
||
|
__ movzxbq(rcx,
|
||
|
FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));
|
||
|
|
||
|
// Try to lookup two character string in symbol table.
|
||
|
Label make_two_character_string;
|
||
|
StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
||
|
masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string);
|
||
|
__ ret(3 * kPointerSize);
|
||
|
|
||
|
__ bind(&make_two_character_string);
|
||
|
// Setup registers for allocating the two character string.
|
||
|
__ movq(rax, Operand(rsp, kStringOffset));
|
||
|
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
|
||
|
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
|
||
|
__ Set(rcx, 2);
|
||
|
|
||
|
__ bind(&result_longer_than_two);
|
||
|
|
||
|
// rax: string
|
||
|
// rbx: instance type
|
||
|
// rcx: result string length
|
||
|
// Check for flat ascii string
|
||
|
Label non_ascii_flat;
|
||
|
__ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat);
|
||
|
|
||
|
// Allocate the result.
|
||
|
__ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);
|
||
|
|
||
|
// rax: result string
|
||
|
// rcx: result string length
|
||
|
__ movq(rdx, rsi); // esi used by following code.
|
||
|
// Locate first character of result.
|
||
|
__ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
|
||
|
// Load string argument and locate character of sub string start.
|
||
|
__ movq(rsi, Operand(rsp, kStringOffset));
|
||
|
__ movq(rbx, Operand(rsp, kFromOffset));
|
||
|
{
|
||
|
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
|
||
|
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
|
||
|
SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
||
|
}
|
||
|
|
||
|
// rax: result string
|
||
|
// rcx: result length
|
||
|
// rdx: original value of rsi
|
||
|
// rdi: first character of result
|
||
|
// rsi: character of sub string start
|
||
|
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
|
||
|
__ movq(rsi, rdx); // Restore rsi.
|
||
|
__ IncrementCounter(&Counters::sub_string_native, 1);
|
||
|
__ ret(kArgumentsSize);
|
||
|
|
||
|
__ bind(&non_ascii_flat);
|
||
|
// rax: string
|
||
|
// rbx: instance type & kStringRepresentationMask | kStringEncodingMask
|
||
|
// rcx: result string length
|
||
|
// Check for sequential two byte string
|
||
|
__ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
|
||
|
__ j(not_equal, &runtime);
|
||
|
|
||
|
// Allocate the result.
|
||
|
__ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);
|
||
|
|
||
|
// rax: result string
|
||
|
// rcx: result string length
|
||
|
__ movq(rdx, rsi); // esi used by following code.
|
||
|
// Locate first character of result.
|
||
|
__ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
|
||
|
// Load string argument and locate character of sub string start.
|
||
|
__ movq(rsi, Operand(rsp, kStringOffset));
|
||
|
__ movq(rbx, Operand(rsp, kFromOffset));
|
||
|
{
|
||
|
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
|
||
|
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
|
||
|
SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
||
|
}
|
||
|
|
||
|
// rax: result string
|
||
|
// rcx: result length
|
||
|
// rdx: original value of rsi
|
||
|
// rdi: first character of result
|
||
|
// rsi: character of sub string start
|
||
|
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
|
||
|
__ movq(rsi, rdx); // Restore esi.
|
||
|
|
||
|
__ bind(&return_rax);
|
||
|
__ IncrementCounter(&Counters::sub_string_native, 1);
|
||
|
__ ret(kArgumentsSize);
|
||
|
|
||
|
// Just jump to runtime to create the sub string.
|
||
|
__ bind(&runtime);
|
||
|
__ TailCallRuntime(Runtime::kSubString, 3, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
||
|
Register left,
|
||
|
Register right,
|
||
|
Register scratch1,
|
||
|
Register scratch2,
|
||
|
Register scratch3,
|
||
|
Register scratch4) {
|
||
|
// Ensure that you can always subtract a string length from a non-negative
|
||
|
// number (e.g. another length).
|
||
|
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
|
||
|
|
||
|
// Find minimum length and length difference.
|
||
|
__ movq(scratch1, FieldOperand(left, String::kLengthOffset));
|
||
|
__ movq(scratch4, scratch1);
|
||
|
__ SmiSub(scratch4,
|
||
|
scratch4,
|
||
|
FieldOperand(right, String::kLengthOffset),
|
||
|
NULL);
|
||
|
// Register scratch4 now holds left.length - right.length.
|
||
|
const Register length_difference = scratch4;
|
||
|
Label left_shorter;
|
||
|
__ j(less, &left_shorter);
|
||
|
// The right string isn't longer that the left one.
|
||
|
// Get the right string's length by subtracting the (non-negative) difference
|
||
|
// from the left string's length.
|
||
|
__ SmiSub(scratch1, scratch1, length_difference, NULL);
|
||
|
__ bind(&left_shorter);
|
||
|
// Register scratch1 now holds Min(left.length, right.length).
|
||
|
const Register min_length = scratch1;
|
||
|
|
||
|
Label compare_lengths;
|
||
|
// If min-length is zero, go directly to comparing lengths.
|
||
|
__ SmiTest(min_length);
|
||
|
__ j(zero, &compare_lengths);
|
||
|
|
||
|
__ SmiToInteger32(min_length, min_length);
|
||
|
|
||
|
// Registers scratch2 and scratch3 are free.
|
||
|
Label result_not_equal;
|
||
|
Label loop;
|
||
|
{
|
||
|
// Check characters 0 .. min_length - 1 in a loop.
|
||
|
// Use scratch3 as loop index, min_length as limit and scratch2
|
||
|
// for computation.
|
||
|
const Register index = scratch3;
|
||
|
__ movl(index, Immediate(0)); // Index into strings.
|
||
|
__ bind(&loop);
|
||
|
// Compare characters.
|
||
|
// TODO(lrn): Could we load more than one character at a time?
|
||
|
__ movb(scratch2, FieldOperand(left,
|
||
|
index,
|
||
|
times_1,
|
||
|
SeqAsciiString::kHeaderSize));
|
||
|
// Increment index and use -1 modifier on next load to give
|
||
|
// the previous load extra time to complete.
|
||
|
__ addl(index, Immediate(1));
|
||
|
__ cmpb(scratch2, FieldOperand(right,
|
||
|
index,
|
||
|
times_1,
|
||
|
SeqAsciiString::kHeaderSize - 1));
|
||
|
__ j(not_equal, &result_not_equal);
|
||
|
__ cmpl(index, min_length);
|
||
|
__ j(not_equal, &loop);
|
||
|
}
|
||
|
// Completed loop without finding different characters.
|
||
|
// Compare lengths (precomputed).
|
||
|
__ bind(&compare_lengths);
|
||
|
__ SmiTest(length_difference);
|
||
|
__ j(not_zero, &result_not_equal);
|
||
|
|
||
|
// Result is EQUAL.
|
||
|
__ Move(rax, Smi::FromInt(EQUAL));
|
||
|
__ ret(0);
|
||
|
|
||
|
Label result_greater;
|
||
|
__ bind(&result_not_equal);
|
||
|
// Unequal comparison of left to right, either character or length.
|
||
|
__ j(greater, &result_greater);
|
||
|
|
||
|
// Result is LESS.
|
||
|
__ Move(rax, Smi::FromInt(LESS));
|
||
|
__ ret(0);
|
||
|
|
||
|
// Result is GREATER.
|
||
|
__ bind(&result_greater);
|
||
|
__ Move(rax, Smi::FromInt(GREATER));
|
||
|
__ ret(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void StringCompareStub::Generate(MacroAssembler* masm) {
|
||
|
Label runtime;
|
||
|
|
||
|
// Stack frame on entry.
|
||
|
// rsp[0]: return address
|
||
|
// rsp[8]: right string
|
||
|
// rsp[16]: left string
|
||
|
|
||
|
__ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
|
||
|
__ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
|
||
|
|
||
|
// Check for identity.
|
||
|
Label not_same;
|
||
|
__ cmpq(rdx, rax);
|
||
|
__ j(not_equal, ¬_same);
|
||
|
__ Move(rax, Smi::FromInt(EQUAL));
|
||
|
__ IncrementCounter(&Counters::string_compare_native, 1);
|
||
|
__ ret(2 * kPointerSize);
|
||
|
|
||
|
__ bind(¬_same);
|
||
|
|
||
|
// Check that both are sequential ASCII strings.
|
||
|
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
|
||
|
|
||
|
// Inline comparison of ascii strings.
|
||
|
__ IncrementCounter(&Counters::string_compare_native, 1);
|
||
|
// Drop arguments from the stack
|
||
|
__ pop(rcx);
|
||
|
__ addq(rsp, Immediate(2 * kPointerSize));
|
||
|
__ push(rcx);
|
||
|
GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
|
||
|
|
||
|
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
|
||
|
// tagged as a small integer.
|
||
|
__ bind(&runtime);
|
||
|
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
||
|
}
|
||
|
|
||
|
#undef __
|
||
|
|
||
|
} } // namespace v8::internal
|
||
|
|
||
|
#endif // V8_TARGET_ARCH_X64
|