You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

349 lines
12 KiB

// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "code-stubs.h"
#include "codegen.h"
#include "debug.h"
#include "deoptimizer.h"
#include "disasm.h"
#include "disassembler.h"
#include "macro-assembler.h"
#include "serialize.h"
#include "string-stream.h"
namespace v8 {
namespace internal {
#ifdef ENABLE_DISASSEMBLER
void Disassembler::Dump(FILE* f, byte* begin, byte* end) {
for (byte* pc = begin; pc < end; pc++) {
if (f == NULL) {
PrintF("%" V8PRIxPTR " %4" V8PRIdPTR " %02x\n",
reinterpret_cast<intptr_t>(pc),
pc - begin,
*pc);
} else {
fprintf(f, "%" V8PRIxPTR " %4" V8PRIdPTR " %02x\n",
reinterpret_cast<uintptr_t>(pc), pc - begin, *pc);
}
}
}
class V8NameConverter: public disasm::NameConverter {
public:
explicit V8NameConverter(Code* code) : code_(code) {}
virtual const char* NameOfAddress(byte* pc) const;
virtual const char* NameInCode(byte* addr) const;
Code* code() const { return code_; }
private:
Code* code_;
EmbeddedVector<char, 128> v8_buffer_;
};
const char* V8NameConverter::NameOfAddress(byte* pc) const {
const char* name = Isolate::Current()->builtins()->Lookup(pc);
if (name != NULL) {
OS::SNPrintF(v8_buffer_, "%s (%p)", name, pc);
return v8_buffer_.start();
}
if (code_ != NULL) {
int offs = static_cast<int>(pc - code_->instruction_start());
// print as code offset, if it seems reasonable
if (0 <= offs && offs < code_->instruction_size()) {
OS::SNPrintF(v8_buffer_, "%d (%p)", offs, pc);
return v8_buffer_.start();
}
}
return disasm::NameConverter::NameOfAddress(pc);
}
const char* V8NameConverter::NameInCode(byte* addr) const {
// The V8NameConverter is used for well known code, so we can "safely"
// dereference pointers in generated code.
return (code_ != NULL) ? reinterpret_cast<const char*>(addr) : "";
}
static void DumpBuffer(FILE* f, StringBuilder* out) {
if (f == NULL) {
PrintF("%s\n", out->Finalize());
} else {
fprintf(f, "%s\n", out->Finalize());
}
out->Reset();
}
static const int kOutBufferSize = 2048 + String::kMaxShortPrintLength;
static const int kRelocInfoPosition = 57;
static int DecodeIt(FILE* f,
const V8NameConverter& converter,
byte* begin,
byte* end) {
NoHandleAllocation ha;
AssertNoAllocation no_alloc;
ExternalReferenceEncoder ref_encoder;
Heap* heap = HEAP;
v8::internal::EmbeddedVector<char, 128> decode_buffer;
v8::internal::EmbeddedVector<char, kOutBufferSize> out_buffer;
StringBuilder out(out_buffer.start(), out_buffer.length());
byte* pc = begin;
disasm::Disassembler d(converter);
RelocIterator* it = NULL;
if (converter.code() != NULL) {
it = new RelocIterator(converter.code());
} else {
// No relocation information when printing code stubs.
}
int constants = -1; // no constants being decoded at the start
while (pc < end) {
// First decode instruction so that we know its length.
byte* prev_pc = pc;
if (constants > 0) {
OS::SNPrintF(decode_buffer,
"%08x constant",
*reinterpret_cast<int32_t*>(pc));
constants--;
pc += 4;
} else {
int num_const = d.ConstantPoolSizeAt(pc);
if (num_const >= 0) {
OS::SNPrintF(decode_buffer,
"%08x constant pool begin",
*reinterpret_cast<int32_t*>(pc));
constants = num_const;
pc += 4;
} else if (it != NULL && !it->done() && it->rinfo()->pc() == pc &&
it->rinfo()->rmode() == RelocInfo::INTERNAL_REFERENCE) {
// raw pointer embedded in code stream, e.g., jump table
byte* ptr = *reinterpret_cast<byte**>(pc);
OS::SNPrintF(decode_buffer,
"%08" V8PRIxPTR " jump table entry %4" V8PRIdPTR,
ptr,
ptr - begin);
pc += 4;
} else {
decode_buffer[0] = '\0';
pc += d.InstructionDecode(decode_buffer, pc);
}
}
// Collect RelocInfo for this instruction (prev_pc .. pc-1)
List<const char*> comments(4);
List<byte*> pcs(1);
List<RelocInfo::Mode> rmodes(1);
List<intptr_t> datas(1);
if (it != NULL) {
while (!it->done() && it->rinfo()->pc() < pc) {
if (RelocInfo::IsComment(it->rinfo()->rmode())) {
// For comments just collect the text.
comments.Add(reinterpret_cast<const char*>(it->rinfo()->data()));
} else {
// For other reloc info collect all data.
pcs.Add(it->rinfo()->pc());
rmodes.Add(it->rinfo()->rmode());
datas.Add(it->rinfo()->data());
}
it->next();
}
}
// Comments.
for (int i = 0; i < comments.length(); i++) {
out.AddFormatted(" %s", comments[i]);
DumpBuffer(f, &out);
}
// Instruction address and instruction offset.
out.AddFormatted("%p %4d ", prev_pc, prev_pc - begin);
// Instruction.
out.AddFormatted("%s", decode_buffer.start());
// Print all the reloc info for this instruction which are not comments.
for (int i = 0; i < pcs.length(); i++) {
// Put together the reloc info
RelocInfo relocinfo(pcs[i], rmodes[i], datas[i]);
// Indent the printing of the reloc info.
if (i == 0) {
// The first reloc info is printed after the disassembled instruction.
out.AddPadding(' ', kRelocInfoPosition - out.position());
} else {
// Additional reloc infos are printed on separate lines.
DumpBuffer(f, &out);
out.AddPadding(' ', kRelocInfoPosition);
}
RelocInfo::Mode rmode = relocinfo.rmode();
if (RelocInfo::IsPosition(rmode)) {
if (RelocInfo::IsStatementPosition(rmode)) {
out.AddFormatted(" ;; debug: statement %d", relocinfo.data());
} else {
out.AddFormatted(" ;; debug: position %d", relocinfo.data());
}
} else if (rmode == RelocInfo::EMBEDDED_OBJECT) {
HeapStringAllocator allocator;
StringStream accumulator(&allocator);
relocinfo.target_object()->ShortPrint(&accumulator);
SmartArrayPointer<const char> obj_name = accumulator.ToCString();
out.AddFormatted(" ;; object: %s", *obj_name);
} else if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
const char* reference_name =
ref_encoder.NameOfAddress(*relocinfo.target_reference_address());
out.AddFormatted(" ;; external reference (%s)", reference_name);
} else if (RelocInfo::IsCodeTarget(rmode)) {
out.AddFormatted(" ;; code:");
if (rmode == RelocInfo::CONSTRUCT_CALL) {
out.AddFormatted(" constructor,");
}
Code* code = Code::GetCodeFromTargetAddress(relocinfo.target_address());
Code::Kind kind = code->kind();
if (code->is_inline_cache_stub()) {
if (rmode == RelocInfo::CODE_TARGET_CONTEXT) {
out.AddFormatted(" contextual,");
}
InlineCacheState ic_state = code->ic_state();
out.AddFormatted(" %s, %s", Code::Kind2String(kind),
Code::ICState2String(ic_state));
if (ic_state == MONOMORPHIC) {
PropertyType type = code->type();
out.AddFormatted(", %s", Code::PropertyType2String(type));
}
if (kind == Code::CALL_IC || kind == Code::KEYED_CALL_IC) {
out.AddFormatted(", argc = %d", code->arguments_count());
}
} else if (kind == Code::STUB) {
// Reverse lookup required as the minor key cannot be retrieved
// from the code object.
Object* obj = heap->code_stubs()->SlowReverseLookup(code);
if (obj != heap->undefined_value()) {
ASSERT(obj->IsSmi());
// Get the STUB key and extract major and minor key.
uint32_t key = Smi::cast(obj)->value();
uint32_t minor_key = CodeStub::MinorKeyFromKey(key);
CodeStub::Major major_key = CodeStub::GetMajorKey(code);
ASSERT(major_key == CodeStub::MajorKeyFromKey(key));
out.AddFormatted(" %s, %s, ",
Code::Kind2String(kind),
CodeStub::MajorName(major_key, false));
switch (major_key) {
case CodeStub::CallFunction: {
int argc =
CallFunctionStub::ExtractArgcFromMinorKey(minor_key);
out.AddFormatted("argc = %d", argc);
break;
}
default:
out.AddFormatted("minor: %d", minor_key);
}
}
} else {
out.AddFormatted(" %s", Code::Kind2String(kind));
}
if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
out.AddFormatted(" (id = %d)", static_cast<int>(relocinfo.data()));
}
} else if (rmode == RelocInfo::RUNTIME_ENTRY &&
Isolate::Current()->deoptimizer_data() != NULL) {
// A runtime entry reloinfo might be a deoptimization bailout.
Address addr = relocinfo.target_address();
int id = Deoptimizer::GetDeoptimizationId(addr, Deoptimizer::EAGER);
if (id == Deoptimizer::kNotDeoptimizationEntry) {
out.AddFormatted(" ;; %s", RelocInfo::RelocModeName(rmode));
} else {
out.AddFormatted(" ;; deoptimization bailout %d", id);
}
} else {
out.AddFormatted(" ;; %s", RelocInfo::RelocModeName(rmode));
}
}
DumpBuffer(f, &out);
}
// Emit comments following the last instruction (if any).
if (it != NULL) {
for ( ; !it->done(); it->next()) {
if (RelocInfo::IsComment(it->rinfo()->rmode())) {
out.AddFormatted(" %s",
reinterpret_cast<const char*>(it->rinfo()->data()));
DumpBuffer(f, &out);
}
}
}
delete it;
return static_cast<int>(pc - begin);
}
int Disassembler::Decode(FILE* f, byte* begin, byte* end) {
V8NameConverter defaultConverter(NULL);
return DecodeIt(f, defaultConverter, begin, end);
}
// Called by Code::CodePrint.
void Disassembler::Decode(FILE* f, Code* code) {
int decode_size = (code->kind() == Code::OPTIMIZED_FUNCTION)
? static_cast<int>(code->safepoint_table_offset())
: code->instruction_size();
// If there might be a stack check table, stop before reaching it.
if (code->kind() == Code::FUNCTION) {
decode_size =
Min(decode_size, static_cast<int>(code->stack_check_table_offset()));
}
byte* begin = code->instruction_start();
byte* end = begin + decode_size;
V8NameConverter v8NameConverter(code);
DecodeIt(f, v8NameConverter, begin, end);
}
#else // ENABLE_DISASSEMBLER
void Disassembler::Dump(FILE* f, byte* begin, byte* end) {}
int Disassembler::Decode(FILE* f, byte* begin, byte* end) { return 0; }
void Disassembler::Decode(FILE* f, Code* code) {}
#endif // ENABLE_DISASSEMBLER
} } // namespace v8::internal