|
|
|
// Copyright 2014 the V8 project authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file.
|
|
|
|
|
|
|
|
assertTrue(isNaN(Math.log1p(NaN)));
|
|
|
|
assertTrue(isNaN(Math.log1p(function() {})));
|
|
|
|
assertTrue(isNaN(Math.log1p({ toString: function() { return NaN; } })));
|
|
|
|
assertTrue(isNaN(Math.log1p({ valueOf: function() { return "abc"; } })));
|
|
|
|
assertEquals(Infinity, 1/Math.log1p(0));
|
|
|
|
assertEquals(-Infinity, 1/Math.log1p(-0));
|
|
|
|
assertEquals(Infinity, Math.log1p(Infinity));
|
|
|
|
assertEquals(-Infinity, Math.log1p(-1));
|
|
|
|
assertTrue(isNaN(Math.log1p(-2)));
|
|
|
|
assertTrue(isNaN(Math.log1p(-Infinity)));
|
|
|
|
|
|
|
|
for (var x = 1E300; x > 1E16; x *= 0.8) {
|
|
|
|
var expected = Math.log(x + 1);
|
|
|
|
assertEqualsDelta(expected, Math.log1p(x), expected * 1E-16);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Values close to 0:
|
|
|
|
// Use Taylor expansion at 1 for log(x) as test expectation:
|
|
|
|
// log1p(x) == log(x + 1) == 0 + x / 1 - x^2 / 2 + x^3 / 3 - ...
|
|
|
|
function log1p(x) {
|
|
|
|
var terms = [];
|
|
|
|
var prod = x;
|
|
|
|
for (var i = 1; i <= 20; i++) {
|
|
|
|
terms.push(prod / i);
|
|
|
|
prod *= -x;
|
|
|
|
}
|
|
|
|
var sum = 0;
|
|
|
|
while (terms.length > 0) sum += terms.pop();
|
|
|
|
return sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (var x = 1E-1; x > 1E-300; x *= 0.8) {
|
|
|
|
var expected = log1p(x);
|
|
|
|
assertEqualsDelta(expected, Math.log1p(x), expected * 1E-16);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Issue 3481.
|
|
|
|
assertEquals(6.9756137364252422e-03,
|
|
|
|
Math.log1p(8070450532247929/Math.pow(2,60)));
|
|
|
|
|
|
|
|
// Tests related to the fdlibm implementation.
|
|
|
|
// Test largest double value.
|
|
|
|
assertEquals(709.782712893384, Math.log1p(1.7976931348623157e308));
|
|
|
|
// Test small values.
|
|
|
|
assertEquals(Math.pow(2, -55), Math.log1p(Math.pow(2, -55)));
|
|
|
|
assertEquals(9.313225741817976e-10, Math.log1p(Math.pow(2, -30)));
|
|
|
|
// Cover various code paths.
|
|
|
|
// -.2929 < x < .41422, k = 0
|
|
|
|
assertEquals(-0.2876820724517809, Math.log1p(-0.25));
|
|
|
|
assertEquals(0.22314355131420976, Math.log1p(0.25));
|
|
|
|
// 0.41422 < x < 9.007e15
|
|
|
|
assertEquals(2.3978952727983707, Math.log1p(10));
|
|
|
|
// x > 9.007e15
|
|
|
|
assertEquals(36.841361487904734, Math.log1p(10e15));
|
|
|
|
// Normalize u.
|
|
|
|
assertEquals(37.08337388996168, Math.log1p(12738099905822720));
|
|
|
|
// Normalize u/2.
|
|
|
|
assertEquals(37.08336444902049, Math.log1p(12737979646738432));
|
|
|
|
// |f| = 0, k != 0
|
|
|
|
assertEquals(1.3862943611198906, Math.log1p(3));
|
|
|
|
// |f| != 0, k != 0
|
|
|
|
assertEquals(1.3862945995384413, Math.log1p(3 + Math.pow(2,-20)));
|
|
|
|
// final if-clause: k = 0
|
|
|
|
assertEquals(0.5596157879354227, Math.log1p(0.75));
|
|
|
|
// final if-clause: k != 0
|
|
|
|
assertEquals(0.8109302162163288, Math.log1p(1.25));
|