Browse Source

src: simplify v8 thread pool implementation

This commit drops the semaphore in exchange for a second condition
variable and makes the task ring an array member instead of allocating
it on the heap.  That in turn makes size calculations a little easier
because of the array's fixed size.

PR-URL: https://github.com/node-forward/node/pull/34
Reviewed-By: Fedor Indutny <fedor@indutny.com>
archived-io.js-v0.12
Ben Noordhuis 10 years ago
parent
commit
3543c550c6
  1. 75
      src/node_v8_platform.cc
  2. 15
      src/node_v8_platform.h

75
src/node_v8_platform.cc

@ -95,30 +95,19 @@ void Platform::WorkerBody(void* arg) {
}
TaskQueue::TaskQueue() {
int err;
for (size_t i = 0; i < ARRAY_SIZE(ring_); i += 1)
ring_[i] = nullptr;
read_off_ = 0;
write_off_ = 0;
err = uv_sem_init(&sem_, 0);
CHECK_EQ(err, 0);
err = uv_cond_init(&cond_);
CHECK_EQ(err, 0);
err = uv_mutex_init(&mutex_);
CHECK_EQ(err, 0);
TaskQueue::TaskQueue() : read_off_(0), write_off_(0) {
CHECK_EQ(0, uv_cond_init(&read_cond_));
CHECK_EQ(0, uv_cond_init(&write_cond_));
CHECK_EQ(0, uv_mutex_init(&mutex_));
}
TaskQueue::~TaskQueue() {
uv_mutex_lock(&mutex_);
CHECK_EQ(read_off_, write_off_);
uv_sem_destroy(&sem_);
uv_cond_destroy(&cond_);
uv_mutex_unlock(&mutex_);
uv_cond_destroy(&read_cond_);
uv_cond_destroy(&write_cond_);
uv_mutex_destroy(&mutex_);
}
@ -126,33 +115,53 @@ TaskQueue::~TaskQueue() {
void TaskQueue::Push(Task* task) {
uv_mutex_lock(&mutex_);
// Wait for empty cell
while (ring_[write_off_] != nullptr)
uv_cond_wait(&cond_, &mutex_);
while (can_write() == false)
uv_cond_wait(&write_cond_, &mutex_); // Wait until there is a free slot.
ring_[write_off_] = task;
write_off_++;
write_off_ &= kRingMask;
write_off_ = next(write_off_);
uv_cond_signal(&read_cond_);
uv_mutex_unlock(&mutex_);
uv_sem_post(&sem_);
}
Task* TaskQueue::Shift() {
uv_sem_wait(&sem_);
uv_mutex_lock(&mutex_);
Task* task = ring_[read_off_];
ring_[read_off_] = nullptr;
uv_cond_signal(&cond_);
read_off_++;
read_off_ &= kRingMask;
while (can_read() == false)
uv_cond_wait(&read_cond_, &mutex_);
Task* task = ring_[read_off_];
if (can_write() == false)
uv_cond_signal(&write_cond_); // Signal waiters that we freed up a slot.
read_off_ = next(read_off_);
uv_mutex_unlock(&mutex_);
return task;
}
unsigned int TaskQueue::next(unsigned int n) {
return (n + 1) % ARRAY_SIZE(TaskQueue::ring_);
}
bool TaskQueue::can_read() const {
return read_off_ != write_off_;
}
// The read pointer chases the write pointer in the circular queue.
// This method checks that the write pointer hasn't advanced so much
// that it has gone full circle and caught up with the read pointer.
//
// can_write() returns false when there is an empty slot but the read pointer
// points to the first element and the write pointer to the last element.
// That should be rare enough that it is not worth the extra bookkeeping
// to work around that. It's not harmful either, just mildly inefficient.
bool TaskQueue::can_write() const {
return next(write_off_) != read_off_;
}
} // namespace node

15
src/node_v8_platform.h

@ -36,18 +36,15 @@ class TaskQueue {
v8::Task* Shift();
private:
static const unsigned int kRingSize = 1024;
static const unsigned int kRingMask = kRingSize - 1;
static_assert(kRingSize == (kRingSize & ~kRingMask),
"kRingSize is not a power of two");
uv_sem_t sem_;
uv_cond_t cond_;
static unsigned int next(unsigned int n);
bool can_read() const;
bool can_write() const;
uv_cond_t read_cond_;
uv_cond_t write_cond_;
uv_mutex_t mutex_;
unsigned int read_off_;
unsigned int write_off_;
v8::Task* ring_[kRingSize];
v8::Task* ring_[1024];
};
class Platform : public v8::Platform {

Loading…
Cancel
Save