Browse Source

test: check curve algorithm is supported

parallel/test-crypto-dh.js assumes particular curve algorithms
(e.g. Oakley-EC2N-3) are supported, though this may not necessarily be
the case if Node.js was built with a system version of OpenSSL.
v6.x
Karl Cheng 8 years ago
committed by Myles Borins
parent
commit
ac400a7b09
No known key found for this signature in database GPG Key ID: 933B01F40B5CA946
  1. 265
      test/parallel/test-crypto-dh.js

265
test/parallel/test-crypto-dh.js

@ -161,146 +161,157 @@ const bad_dh = crypto.createDiffieHellman(p, 'hex');
assert.strictEqual(bad_dh.verifyError, DH_NOT_SUITABLE_GENERATOR);
// Test ECDH
const ecdh1 = crypto.createECDH('prime256v1');
const ecdh2 = crypto.createECDH('prime256v1');
key1 = ecdh1.generateKeys();
key2 = ecdh2.generateKeys('hex');
secret1 = ecdh1.computeSecret(key2, 'hex', 'base64');
secret2 = ecdh2.computeSecret(key1, 'latin1', 'buffer');
assert.strictEqual(secret1, secret2.toString('base64'));
const availableCurves = new Set(crypto.getCurves());
// Oakley curves do not clean up ERR stack, it was causing unexpected failure
// when accessing other OpenSSL APIs afterwards.
crypto.createECDH('Oakley-EC2N-3');
crypto.createHash('sha256');
// Point formats
assert.strictEqual(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4);
let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0];
assert(firstByte === 2 || firstByte === 3);
firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0];
assert(firstByte === 6 || firstByte === 7);
// format value should be string
assert.throws(() => {
ecdh1.getPublicKey('buffer', 10);
}, /^TypeError: Bad format: 10$/);
if (availableCurves.has('Oakley-EC2N-3')) {
crypto.createECDH('Oakley-EC2N-3');
crypto.createHash('sha256');
}
// Test ECDH
if (availableCurves.has('prime256v1') && availableCurves.has('secp256k1')) {
const ecdh1 = crypto.createECDH('prime256v1');
const ecdh2 = crypto.createECDH('prime256v1');
key1 = ecdh1.generateKeys();
key2 = ecdh2.generateKeys('hex');
secret1 = ecdh1.computeSecret(key2, 'hex', 'base64');
secret2 = ecdh2.computeSecret(key1, 'latin1', 'buffer');
assert.strictEqual(secret1, secret2.toString('base64'));
// Point formats
assert.strictEqual(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4);
let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0];
assert(firstByte === 2 || firstByte === 3);
firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0];
assert(firstByte === 6 || firstByte === 7);
// format value should be string
assert.throws(() => {
ecdh1.getPublicKey('buffer', 10);
}, /^TypeError: Bad format: 10$/);
// ECDH should check that point is on curve
const ecdh3 = crypto.createECDH('secp256k1');
const key3 = ecdh3.generateKeys();
// ECDH should check that point is on curve
const ecdh3 = crypto.createECDH('secp256k1');
const key3 = ecdh3.generateKeys();
assert.throws(() => {
ecdh2.computeSecret(key3, 'latin1', 'buffer');
}, /^Error: Failed to translate Buffer to a EC_POINT$/);
assert.throws(() => {
ecdh2.computeSecret(key3, 'latin1', 'buffer');
}, /^Error: Failed to translate Buffer to a EC_POINT$/);
// ECDH should allow .setPrivateKey()/.setPublicKey()
const ecdh4 = crypto.createECDH('prime256v1');
// ECDH should allow .setPrivateKey()/.setPublicKey()
const ecdh4 = crypto.createECDH('prime256v1');
ecdh4.setPrivateKey(ecdh1.getPrivateKey());
ecdh4.setPublicKey(ecdh1.getPublicKey());
ecdh4.setPrivateKey(ecdh1.getPrivateKey());
ecdh4.setPublicKey(ecdh1.getPublicKey());
assert.throws(() => {
ecdh4.setPublicKey(ecdh3.getPublicKey());
}, /^Error: Failed to convert Buffer to EC_POINT$/);
assert.throws(() => {
ecdh4.setPublicKey(ecdh3.getPublicKey());
}, /^Error: Failed to convert Buffer to EC_POINT$/);
// Verify that we can use ECDH without having to use newly generated keys.
const ecdh5 = crypto.createECDH('secp256k1');
// Verify that we can use ECDH without having to use newly generated keys.
const ecdh5 = crypto.createECDH('secp256k1');
// Verify errors are thrown when retrieving keys from an uninitialized object.
assert.throws(() => {
ecdh5.getPublicKey();
}, /^Error: Failed to get ECDH public key$/);
// Verify errors are thrown when retrieving keys from an uninitialized object.
assert.throws(() => {
ecdh5.getPublicKey();
}, /^Error: Failed to get ECDH public key$/);
assert.throws(() => {
ecdh5.getPrivateKey();
}, /^Error: Failed to get ECDH private key$/);
// A valid private key for the secp256k1 curve.
const cafebabeKey = 'cafebabe'.repeat(8);
// Associated compressed and uncompressed public keys (points).
const cafebabePubPtComp =
'03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3';
const cafebabePubPtUnComp =
'04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' +
'2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d';
ecdh5.setPrivateKey(cafebabeKey, 'hex');
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
// Show that the public point (key) is generated while setting the private key.
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
// Compressed and uncompressed public points/keys for other party's private key
// 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF
const peerPubPtComp =
'02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae';
const peerPubPtUnComp =
'04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' +
'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e';
const sharedSecret =
'1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970';
assert.strictEqual(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'),
sharedSecret);
assert.strictEqual(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'),
sharedSecret);
// Verify that we still have the same key pair as before the computation.
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
// Verify setting and getting compressed and non-compressed serializations.
ecdh5.setPublicKey(cafebabePubPtComp, 'hex');
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);
ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex');
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp);
// Show why allowing the public key to be set on this type does not make sense.
ecdh5.setPublicKey(peerPubPtComp, 'hex');
assert.strictEqual(ecdh5.getPublicKey('hex'), peerPubPtUnComp);
assert.throws(() => {
// Error because the public key does not match the private key anymore.
ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex');
}, /^Error: Invalid key pair$/);
// Set to a valid key to show that later attempts to set an invalid key are
// rejected.
ecdh5.setPrivateKey(cafebabeKey, 'hex');
[ // Some invalid private keys for the secp256k1 curve.
'0000000000000000000000000000000000000000000000000000000000000000',
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141',
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF',
].forEach((element) => {
assert.throws(() => {
ecdh5.setPrivateKey(element, 'hex');
}, /^Error: Private key is not valid for specified curve.$/);
// Verify object state did not change.
ecdh5.getPrivateKey();
}, /^Error: Failed to get ECDH private key$/);
// A valid private key for the secp256k1 curve.
const cafebabeKey = 'cafebabe'.repeat(8);
// Associated compressed and uncompressed public keys (points).
const cafebabePubPtComp =
'03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3';
const cafebabePubPtUnComp =
'04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' +
'2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d';
ecdh5.setPrivateKey(cafebabeKey, 'hex');
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
});
// Use of invalid keys was not cleaning up ERR stack, and was causing
// unexpected failure in subsequent signing operations.
const ecdh6 = crypto.createECDH('prime256v1');
const invalidKey = Buffer.alloc(65);
invalidKey.fill('\0');
ecdh6.generateKeys();
assert.throws(() => {
ecdh6.computeSecret(invalidKey);
}, /^Error: Failed to translate Buffer to a EC_POINT$/);
// Check that signing operations are not impacted by the above error.
const ecPrivateKey =
'-----BEGIN EC PRIVATE KEY-----\n' +
'MHcCAQEEIF+jnWY1D5kbVYDNvxxo/Y+ku2uJPDwS0r/VuPZQrjjVoAoGCCqGSM49\n' +
'AwEHoUQDQgAEurOxfSxmqIRYzJVagdZfMMSjRNNhB8i3mXyIMq704m2m52FdfKZ2\n' +
'pQhByd5eyj3lgZ7m7jbchtdgyOF8Io/1ng==\n' +
'-----END EC PRIVATE KEY-----';
assert.doesNotThrow(() => {
crypto.createSign('SHA256').sign(ecPrivateKey);
});
// Show that the public point (key) is generated while setting the
// private key.
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
// Compressed and uncompressed public points/keys for other party's
// private key.
// 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF
const peerPubPtComp =
'02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae';
const peerPubPtUnComp =
'04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' +
'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e';
const sharedSecret =
'1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970';
assert.strictEqual(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'),
sharedSecret);
assert.strictEqual(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'),
sharedSecret);
// Verify that we still have the same key pair as before the computation.
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
// Verify setting and getting compressed and non-compressed serializations.
ecdh5.setPublicKey(cafebabePubPtComp, 'hex');
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'),
cafebabePubPtComp);
ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex');
assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp);
assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'),
cafebabePubPtComp);
// Show why allowing the public key to be set on this type
// does not make sense.
ecdh5.setPublicKey(peerPubPtComp, 'hex');
assert.strictEqual(ecdh5.getPublicKey('hex'), peerPubPtUnComp);
assert.throws(() => {
// Error because the public key does not match the private key anymore.
ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex');
}, /^Error: Invalid key pair$/);
// Set to a valid key to show that later attempts to set an invalid key are
// rejected.
ecdh5.setPrivateKey(cafebabeKey, 'hex');
[ // Some invalid private keys for the secp256k1 curve.
'0000000000000000000000000000000000000000000000000000000000000000',
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141',
'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF',
].forEach((element) => {
assert.throws(() => {
ecdh5.setPrivateKey(element, 'hex');
}, /^Error: Private key is not valid for specified curve.$/);
// Verify object state did not change.
assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey);
});
// Use of invalid keys was not cleaning up ERR stack, and was causing
// unexpected failure in subsequent signing operations.
const ecdh6 = crypto.createECDH('prime256v1');
const invalidKey = Buffer.alloc(65);
invalidKey.fill('\0');
ecdh6.generateKeys();
assert.throws(() => {
ecdh6.computeSecret(invalidKey);
}, /^Error: Failed to translate Buffer to a EC_POINT$/);
// Check that signing operations are not impacted by the above error.
const ecPrivateKey =
'-----BEGIN EC PRIVATE KEY-----\n' +
'MHcCAQEEIF+jnWY1D5kbVYDNvxxo/Y+ku2uJPDwS0r/VuPZQrjjVoAoGCCqGSM49\n' +
'AwEHoUQDQgAEurOxfSxmqIRYzJVagdZfMMSjRNNhB8i3mXyIMq704m2m52FdfKZ2\n' +
'pQhByd5eyj3lgZ7m7jbchtdgyOF8Io/1ng==\n' +
'-----END EC PRIVATE KEY-----';
assert.doesNotThrow(() => {
crypto.createSign('SHA256').sign(ecPrivateKey);
});
}
// invalid test: curve argument is undefined
assert.throws(() => {

Loading…
Cancel
Save