In `Timer.now` always update the loop time by calling uv_update_time.
Previously we were trying to cache the loop time to prevent extra
syscalls. While a noble goal, it can cause timers to fire early in
certain circumstances. Especially seen in cpu bound work loads or work
loads with synchronous file operations.
Previously, calling `vm.createContext(o)` repeatedly on the same `o`
would cause new C++ `ContextifyContext`s to be created and stored on
`o`, while the previous resident went off into leaked-memory limbo.
Now, repeatedly trying to contextify a sandbox will do nothing after
the first time.
To detect this, an independently-useful `vm.isContext(sandbox)` export
was added.
This was a remnant of the original Contextify code, wherein
ContextifyContext was a user-exposed object. In vm, it is not, so all
of the ObjectWrap and function-template stuff for the ContextifyContext
constructor is now unnecessary.
There's no need to create a new Buffer instance if we're just going to
immediately call toString() at the end anyway. Better to create a
string up front, and setEncoding() on the streams, and do a string
concatenation instead.
Since the encoding is no longer relevant once it is decoded to a Buffer,
it is confusing and incorrect to pass the encoding as 'utf8' or whatever
in those cases.
Closes#6119
Length arguments passed to SlowBuffer were coerced to Int32, not Uint32,
so passing a negative number would throw the following:
node: ../src/smalloc.cc:244: void node::smalloc::Alloc(): Assertion `length <= kMaxLength' failed.
Aborted (core dumped)
That has been fixed by coercing to Uint32 and comparing the value
against kMaxLength.
Due to a lot of the util.is* checks there was much unnecessary overhead
for the most common use case of Buffer. Which is creating a new Buffer
instance for data from incoming I/O. NativeBuffer is a simple way to
bypass all the unneeded checks and simply hand back a Buffer instance
while setting the length.
On windows process exit codes can be greater than INT32_MAX. This used
to be not much of a problem - greater values would just come out
negative. However since ca9eb71 a negative result value indicates that
uv_spawn() has failed, so this is no longer acceptable.
Instead of doing all the domain handling in core, allow the domain to
set an error handler that'll take care of it all. This way the domain
error handling can be abstracted enough for any user to use it.
All the Buffer#{ascii,hex,etc.}Slice() methods are intentionally strict
to alert if a Buffer instance was attempting to be accessed out of
bounds. Buffer#toString() is the more user friendly way of accessing the
data, and will coerce values to their min/max on overflow.
This is an important part of the repl use-case.
TODO: The arg parsing in vm.runIn*Context() is rather wonky.
It would be good to move more of that into the Script class,
and/or an options object.
As documented in #3042 and in [1], the existing vm implementation has
many problems. All of these are solved by @brianmcd's [contextify][2]
package. This commit uses contextify as a conceptual base and its code
core to overhaul the vm module and fix its many edge cases and caveats.
Functionally, this fixes#3042. In particular:
- A context is now indistinguishable from the object it is based on
(the "sandbox"). A context is simply a sandbox that has been marked
by the vm module, via `vm.createContext`, with special internal
information that allows scripts to be run inside of it.
- Consequently, items added to the context from anywhere are
immediately visible to all code that can access that context, both
inside and outside the virtual machine.
This commit also smooths over the API very slightly:
- Parameter defaults are now uniformly triggered via `undefined`, per
ES6 semantics and previous discussion at [3].
- Several undocumented and problematic features have been removed, e.g.
the conflation of `vm.Script` with `vm` itself, and the fact that
`Script` instances also had all static `vm` methods. The API is now
exactly as documented (although arguably the existence of the
`vm.Script` export is not yet documented, just the `Script` class
itself).
In terms of implementation, this replaces node_script.cc with
node_contextify.cc, which is derived originally from [4] (see [5]) but
has since undergone extensive modifications and iterations to expose
the most useful C++ API and use the coding conventions and utilities of
Node core.
The bindings exposed by `process.binding('contextify')`
(node_contextify.cc) replace those formerly exposed by
`process.binding('evals')` (node_script.cc). They are:
- ContextifyScript(code, [filename]), with methods:
- runInThisContext()
- runInContext(sandbox, [timeout])
- makeContext(sandbox)
From this, the vm.js file builds the entire documented vm module API.
node.js and module.js were modified to use this new native binding, or
the vm module itself where possible. This introduces an extra line or
two into the stack traces of module compilation (and thus into most
stack traces), explaining the changed tests.
The tests were also updated slightly, with all vm-related simple tests
consolidated as test/simple/test-vm-* (some of them were formerly
test/simple/test-script-*). At the same time they switched from
`common.debug` to `console.error` and were updated to use
`assert.throws` instead of rolling their own error-testing methods.
New tests were also added, of course, demonstrating the new
capabilities and fixes.
[1]: http://nodejs.org/docs/v0.10.16/api/vm.html#vm_caveats
[2]: https://github.com/brianmcd/contextify
[3]: https://github.com/joyent/node/issues/5323#issuecomment-20250726
[4]: bf123f3ef9/src/contextify.cc
[5]: https://gist.github.com/domenic/6068120
* uv: Upgrade v0.10.14
* http_parser: Do not accept PUN/GEM methods as PUT/GET (Chris Dickinson)
* tls: fix assertion when ssl is destroyed at read (Fedor Indutny)
* stream: Throw on 'error' if listeners removed (isaacs)
* dgram: fix assertion on bad send() arguments (Ben Noordhuis)
* readline: pause stdin before turning off terminal raw mode (Daniel Chatfield)