# Addons Node.js Addons are dynamically-linked shared objects, written in C or C++, that can be loaded into Node.js using the `require()` function, and used just as if they were an ordinary Node.js module. They are used primarily to provide an interface between JavaScript running in Node.js and C/C++ libraries. At the moment, the method for implementing Addons is rather complicated, involving knowledge of several components and APIs : - V8: the C++ library Node.js currently uses to provide the JavaScript implementation. V8 provides the mechanisms for creating objects, calling functions, etc. V8's API is documented mostly in the `v8.h` header file (`deps/v8/include/v8.h` in the Node.js source tree), which is also available [online][]. - [libuv][]: The C library that implements the Node.js event loop, its worker threads and all of the asynchronous behaviors of the platform. It also serves as a cross-platform abstraction library, giving easy, POSIX-like access across all major operating systems to many common system tasks, such as interacting with the filesystem, sockets, timers and system events. libuv also provides a pthreads-like threading abstraction that may be used to power more sophisticated asynchronous Addons that need to move beyond the standard event loop. Addon authors are encouraged to think about how to avoid blocking the event loop with I/O or other time-intensive tasks by off-loading work via libuv to non-blocking system operations, worker threads or a custom use of libuv's threads. - Internal Node.js libraries. Node.js itself exports a number of C/C++ APIs that Addons can use — the most important of which is the `node::ObjectWrap` class. - Node.js includes a number of other statically linked libraries including OpenSSL. These other libraries are located in the `deps/` directory in the Node.js source tree. Only the V8 and OpenSSL symbols are purposefully re-exported by Node.js and may be used to various extents by Addons. See [Linking to Node.js' own dependencies][] for additional information. All of the following examples are available for [download][] and may be used as a starting-point for your own Addon. ## Hello world This "Hello world" example is a simple Addon, written in C++, that is the equivalent of the following JavaScript code: module.exports.hello = function() { return 'world'; }; First, create the file `hello.cc`: ```cpp // hello.cc #include namespace demo { using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Object; using v8::String; using v8::Value; void Method(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); args.GetReturnValue().Set(String::NewFromUtf8(isolate, "world")); } void init(Local exports) { NODE_SET_METHOD(exports, "hello", Method); } NODE_MODULE(addon, init) } // namespace demo ``` Note that all Node.js Addons must export an initialization function following the pattern: ```cpp void Initialize(Local exports); NODE_MODULE(module_name, Initialize) ``` There is no semi-colon after `NODE_MODULE` as it's not a function (see `node.h`). The `module_name` must match the filename of the final binary (excluding the .node suffix). In the `hello.cc` example, then, the initialization function is `init` and the Addon module name is `addon`. ### Building Once the source code has been written, it must be compiled into the binary `addon.node` file. To do so, create a file called `binding.gyp` in the top-level of the project describing the build configuration of your module using a JSON-like format. This file is used by [node-gyp][] -- a tool written specifically to compile Node.js Addons. ``` { "targets": [ { "target_name": "addon", "sources": [ "hello.cc" ] } ] } ``` *Note: A version of the `node-gyp` utility is bundled and distributed with Node.js as part of `npm`. This version is not made directly available for developers to use and is intended only to support the ability to use the `npm install` command to compile and install Addons. Developers who wish to use `node-gyp` directly can install it using the command `npm install -g node-gyp`. See the `node-gyp` [installation instructions] for more information, including platform-specific requirements.* Once the `binding.gyp` file has been created, use `node-gyp configure` to generate the appropriate project build files for the current platform. This will generate either a `Makefile` (on Unix platforms) or a `vcxproj` file (on Windows) in the `build/` directory. Next, invoke the `node-gyp build` command to generate the compiled `addon.node` file. This will be put into the `build/Release/` directory. When using `npm install` to install a Node.js Addon, npm uses its own bundled version of `node-gyp` to perform this same set of actions, generating a compiled version of the Addon for the user's platform on demand. Once built, the binary Addon can be used from within Node.js by pointing `require()` to the built `addon.node` module: ```js // hello.js const addon = require('./build/Release/addon'); console.log(addon.hello()); // 'world' ``` Please see the examples below for further information or for an example in production. Because the exact path to the compiled Addon binary can vary depending on how it is compiled (i.e. sometimes it may be in `./build/Debug/`), Addons can use the [bindings][] package to load the compiled module. Note that while the `bindings` package implementation is more sophisticated in how it locates Addon modules, it is essentially using a try-catch pattern similar to: ```js try { return require('./build/Release/addon.node'); } catch (err) { return require('./build/Debug/addon.node'); } ``` ### Linking to Node.js' own dependencies Node.js uses a number of statically linked libraries such as V8, libuv and OpenSSL. All Addons are required to link to V8 and may link to any of the other dependencies as well. Typically, this is as simple as including the appropriate `#include <...>` statements (e.g. `#include `) and `node-gyp` will locate the appropriate headers automatically. However, there are a few caveats to be aware of: * When `node-gyp` runs, it will detect the specific release version of Node.js and download either the full source tarball or just the headers. If the full source is downloaded, Addons will have complete access to the full set of Node.js dependencies. However, if only the Node.js headers are downloaded, then only the symbols exported by Node.js will be available. * `node-gyp` can be run using the `--nodedir` flag pointing at a local Node.js source image. Using this option, the Addon will have access to the full set of dependencies. ### Loading Addons using require() The filename extension of the compiled Addon binary is `.node` (as opposed to `.dll` or `.so`). The `require()` function is written to look for files with the `.node` file extension and initialize those as dynamically-linked libraries. When calling `require()`, the `.node` extension can usually be omitted and Node.js will still find and initialize the Addon. One caveat, however, is that Node.js will first attempt to locate and load modules or JavaScript files that happen to share the same base name. For instance, if there is a file `addon.js` in the same directory as the binary `addon.node`, then `require('addon')` will give precedence to the `addon.js` file and load it instead. ## Native Abstractions for Node.js Each of the examples illustrated in this document make direct use of the Node.js and V8 APIs for implementing Addons. It is important to understand that the V8 API can, and has, changed dramatically from one V8 release to the next (and one major Node.js release to the next). With each change, Addons may need to be updated and recompiled in order to continue functioning. The Node.js release schedule is designed to minimize the frequency and impact of such changes but there is little that Node.js can do currently to ensure stability of the V8 APIs. The [Native Abstrations for Node.js][] (or `nan`) provide a set of tools that Addon developers are recommended to use to keep compatibility between past and future releases of V8 and Node.js. See the `nan` [examples][] for an illustration of how it can be used. ## Addon examples Following are some example Addons intended to help developers get started. The examples make use of the V8 APIs. Refer to the online [V8 reference][] for help with the various V8 calls, and V8's [Embedder's Guide][] for an explanation of several concepts used such as handles, scopes, function templates, etc. Each of these examples using the following `binding.gyp` file: ``` { "targets": [ { "target_name": "addon", "sources": [ "addon.cc" ] } ] } ``` In cases where there is more than one `.cc` file, simply add the additional filename to the `sources` array. For example: ``` "sources": ["addon.cc", "myexample.cc"] ``` Once the `binding.gyp` file is ready, the example Addons can be configured and built using `node-gyp`: ``` $ node-gyp configure build ``` ### Function arguments Addons will typically expose objects and functions that can be accessed from JavaScript running within Node.js. When functions are invoked from JavaScript, the input arguments and return value must be mapped to and from the C/C++ code. The following example illustrates how to read function arguments passed from JavaScript and how to return a result: ```cpp // addon.cc #include namespace demo { using v8::Exception; using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Number; using v8::Object; using v8::String; using v8::Value; // This is the implementation of the "add" method // Input arguments are passed using the // const FunctionCallbackInfo& args struct void Add(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); // Check the number of arguments passed. if (args.Length() < 2) { // Throw an Error that is passed back to JavaScript isolate->ThrowException(Exception::TypeError( String::NewFromUtf8(isolate, "Wrong number of arguments"))); return; } // Check the argument types if (!args[0]->IsNumber() || !args[1]->IsNumber()) { isolate->ThrowException(Exception::TypeError( String::NewFromUtf8(isolate, "Wrong arguments"))); return; } // Perform the operation double value = args[0]->NumberValue() + args[1]->NumberValue(); Local num = Number::New(isolate, value); // Set the return value (using the passed in // FunctionCallbackInfo&) args.GetReturnValue().Set(num); } void Init(Local exports) { NODE_SET_METHOD(exports, "add", Add); } NODE_MODULE(addon, Init) } // namespace demo ``` Once compiled, the example Addon can be required and used from within Node.js: ```js // test.js const addon = require('./build/Release/addon'); console.log('This should be eight:', addon.add(3,5)); ``` ### Callbacks It is common practice within Addons to pass JavaScript functions to a C++ function and execute them from there. The following example illustrates how to invoke such callbacks: ```cpp // addon.cc #include namespace demo { using v8::Function; using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Null; using v8::Object; using v8::String; using v8::Value; void RunCallback(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); Local cb = Local::Cast(args[0]); const unsigned argc = 1; Local argv[argc] = { String::NewFromUtf8(isolate, "hello world") }; cb->Call(Null(isolate), argc, argv); } void Init(Local exports, Local module) { NODE_SET_METHOD(module, "exports", RunCallback); } NODE_MODULE(addon, Init) } // namespace demo ``` Note that this example uses a two-argument form of `Init()` that receives the full `module` object as the second argument. This allows the Addon to completely overwrite `exports` with a single function instead of adding the function as a property of `exports`. To test it, run the following JavaScript: ```cpp // test.js const addon = require('./build/Release/addon'); addon(function(msg){ console.log(msg); // 'hello world' }); ``` Note that, in this example, the callback function is invoked synchronously. ### Object factory Addons can create and return new objects from within a C++ function as illustrated in the following example. An object is created and returned with a property `msg` that echoes the string passed to `createObject()`: ```cpp // addon.cc #include namespace demo { using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Object; using v8::String; using v8::Value; void CreateObject(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); Local obj = Object::New(isolate); obj->Set(String::NewFromUtf8(isolate, "msg"), args[0]->ToString()); args.GetReturnValue().Set(obj); } void Init(Local exports, Local module) { NODE_SET_METHOD(module, "exports", CreateObject); } NODE_MODULE(addon, Init) } // namespace demo ``` To test it in JavaScript: ```js // test.js const addon = require('./build/Release/addon'); var obj1 = addon('hello'); var obj2 = addon('world'); console.log(obj1.msg+' '+obj2.msg); // 'hello world' ``` ### Function factory Another common scenario is creating JavaScript functions that wrap C++ functions and returning those back to JavaScript: ```cpp // addon.cc #include namespace demo { using v8::Function; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::Isolate; using v8::Local; using v8::Object; using v8::String; using v8::Value; void MyFunction(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); args.GetReturnValue().Set(String::NewFromUtf8(isolate, "hello world")); } void CreateFunction(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); Local tpl = FunctionTemplate::New(isolate, MyFunction); Local fn = tpl->GetFunction(); // omit this to make it anonymous fn->SetName(String::NewFromUtf8(isolate, "theFunction")); args.GetReturnValue().Set(fn); } void Init(Local exports, Local module) { NODE_SET_METHOD(module, "exports", CreateFunction); } NODE_MODULE(addon, Init) } // namespace demo ``` To test: ```js // test.js const addon = require('./build/Release/addon'); var fn = addon(); console.log(fn()); // 'hello world' ``` ### Wrapping C++ objects It is also possible to wrap C++ objects/classes in a way that allows new instances to be created using the JavaScript `new` operator: ```cpp // addon.cc #include #include "myobject.h" namespace demo { using v8::Local; using v8::Object; void InitAll(Local exports) { MyObject::Init(exports); } NODE_MODULE(addon, InitAll) } // namespace demo ``` Then, in `myobject.h`, the wrapper class inherits from `node::ObjectWrap`: ```cpp // myobject.h #ifndef MYOBJECT_H #define MYOBJECT_H #include #include namespace demo { class MyObject : public node::ObjectWrap { public: static void Init(v8::Local exports); private: explicit MyObject(double value = 0); ~MyObject(); static void New(const v8::FunctionCallbackInfo& args); static void PlusOne(const v8::FunctionCallbackInfo& args); static v8::Persistent constructor; double value_; }; } // namespace demo #endif ``` In `myobject.cc`, implement the various methods that are to be exposed. Below, the method `plusOne()` is exposed by adding it to the constructor's prototype: ```cpp // myobject.cc #include "myobject.h" namespace demo { using v8::Function; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::Isolate; using v8::Local; using v8::Number; using v8::Object; using v8::Persistent; using v8::String; using v8::Value; Persistent MyObject::constructor; MyObject::MyObject(double value) : value_(value) { } MyObject::~MyObject() { } void MyObject::Init(Local exports) { Isolate* isolate = exports->GetIsolate(); // Prepare constructor template Local tpl = FunctionTemplate::New(isolate, New); tpl->SetClassName(String::NewFromUtf8(isolate, "MyObject")); tpl->InstanceTemplate()->SetInternalFieldCount(1); // Prototype NODE_SET_PROTOTYPE_METHOD(tpl, "plusOne", PlusOne); constructor.Reset(isolate, tpl->GetFunction()); exports->Set(String::NewFromUtf8(isolate, "MyObject"), tpl->GetFunction()); } void MyObject::New(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); if (args.IsConstructCall()) { // Invoked as constructor: `new MyObject(...)` double value = args[0]->IsUndefined() ? 0 : args[0]->NumberValue(); MyObject* obj = new MyObject(value); obj->Wrap(args.This()); args.GetReturnValue().Set(args.This()); } else { // Invoked as plain function `MyObject(...)`, turn into construct call. const int argc = 1; Local argv[argc] = { args[0] }; Local cons = Local::New(isolate, constructor); args.GetReturnValue().Set(cons->NewInstance(argc, argv)); } } void MyObject::PlusOne(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); MyObject* obj = ObjectWrap::Unwrap(args.Holder()); obj->value_ += 1; args.GetReturnValue().Set(Number::New(isolate, obj->value_)); } } // namespace demo ``` To build this example, the `myobject.cc` file must be added to the `binding.gyp`: ``` { "targets": [ { "target_name": "addon", "sources": [ "addon.cc", "myobject.cc" ] } ] } ``` Test it with: ```js // test.js const addon = require('./build/Release/addon'); var obj = new addon.MyObject(10); console.log( obj.plusOne() ); // 11 console.log( obj.plusOne() ); // 12 console.log( obj.plusOne() ); // 13 ``` ### Factory of wrapped objects Alternatively, it is possible to use a factory pattern to avoid explicitly creating object instances using the JavaScript `new` operator: ```js var obj = addon.createObject(); // instead of: // var obj = new addon.Object(); ``` First, the `createObject()` method is implemented in `addon.cc`: ```cpp // addon.cc #include #include "myobject.h" namespace demo { using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Object; using v8::String; using v8::Value; void CreateObject(const FunctionCallbackInfo& args) { MyObject::NewInstance(args); } void InitAll(Local exports, Local module) { MyObject::Init(exports->GetIsolate()); NODE_SET_METHOD(module, "exports", CreateObject); } NODE_MODULE(addon, InitAll) } // namespace demo ``` In `myobject.h`, the static method `NewInstance()` is added to handle instantiating the object. This method takes the place of using `new` in JavaScript: ```cpp // myobject.h #ifndef MYOBJECT_H #define MYOBJECT_H #include #include namespace demo { class MyObject : public node::ObjectWrap { public: static void Init(v8::Isolate* isolate); static void NewInstance(const v8::FunctionCallbackInfo& args); private: explicit MyObject(double value = 0); ~MyObject(); static void New(const v8::FunctionCallbackInfo& args); static void PlusOne(const v8::FunctionCallbackInfo& args); static v8::Persistent constructor; double value_; }; } // namespace demo #endif ``` The implementation in `myobject.cc` is similar to the previous example: ```cpp // myobject.cc #include #include "myobject.h" namespace demo { using v8::Function; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::Isolate; using v8::Local; using v8::Number; using v8::Object; using v8::Persistent; using v8::String; using v8::Value; Persistent MyObject::constructor; MyObject::MyObject(double value) : value_(value) { } MyObject::~MyObject() { } void MyObject::Init(Isolate* isolate) { // Prepare constructor template Local tpl = FunctionTemplate::New(isolate, New); tpl->SetClassName(String::NewFromUtf8(isolate, "MyObject")); tpl->InstanceTemplate()->SetInternalFieldCount(1); // Prototype NODE_SET_PROTOTYPE_METHOD(tpl, "plusOne", PlusOne); constructor.Reset(isolate, tpl->GetFunction()); } void MyObject::New(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); if (args.IsConstructCall()) { // Invoked as constructor: `new MyObject(...)` double value = args[0]->IsUndefined() ? 0 : args[0]->NumberValue(); MyObject* obj = new MyObject(value); obj->Wrap(args.This()); args.GetReturnValue().Set(args.This()); } else { // Invoked as plain function `MyObject(...)`, turn into construct call. const int argc = 1; Local argv[argc] = { args[0] }; Local cons = Local::New(isolate, constructor); args.GetReturnValue().Set(cons->NewInstance(argc, argv)); } } void MyObject::NewInstance(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); const unsigned argc = 1; Local argv[argc] = { args[0] }; Local cons = Local::New(isolate, constructor); Local instance = cons->NewInstance(argc, argv); args.GetReturnValue().Set(instance); } void MyObject::PlusOne(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); MyObject* obj = ObjectWrap::Unwrap(args.Holder()); obj->value_ += 1; args.GetReturnValue().Set(Number::New(isolate, obj->value_)); } } // namespace demo ``` Once again, to build this example, the `myobject.cc` file must be added to the `binding.gyp`: ``` { "targets": [ { "target_name": "addon", "sources": [ "addon.cc", "myobject.cc" ] } ] } ``` Test it with: ```js // test.js const createObject = require('./build/Release/addon'); var obj = createObject(10); console.log( obj.plusOne() ); // 11 console.log( obj.plusOne() ); // 12 console.log( obj.plusOne() ); // 13 var obj2 = createObject(20); console.log( obj2.plusOne() ); // 21 console.log( obj2.plusOne() ); // 22 console.log( obj2.plusOne() ); // 23 ``` ### Passing wrapped objects around In addition to wrapping and returning C++ objects, it is possible to pass wrapped objects around by unwrapping them with the Node.js helper function `node::ObjectWrap::Unwrap`. The following examples shows a function `add()` that can take two `MyObject` objects as input arguments: ```cpp // addon.cc #include #include #include "myobject.h" namespace demo { using v8::FunctionCallbackInfo; using v8::Isolate; using v8::Local; using v8::Number; using v8::Object; using v8::String; using v8::Value; void CreateObject(const FunctionCallbackInfo& args) { MyObject::NewInstance(args); } void Add(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); MyObject* obj1 = node::ObjectWrap::Unwrap( args[0]->ToObject()); MyObject* obj2 = node::ObjectWrap::Unwrap( args[1]->ToObject()); double sum = obj1->value() + obj2->value(); args.GetReturnValue().Set(Number::New(isolate, sum)); } void InitAll(Local exports) { MyObject::Init(exports->GetIsolate()); NODE_SET_METHOD(exports, "createObject", CreateObject); NODE_SET_METHOD(exports, "add", Add); } NODE_MODULE(addon, InitAll) } // namespace demo ``` In `myobject.h`, a new public method is added to allow access to private values after unwrapping the object. ```cpp // myobject.h #ifndef MYOBJECT_H #define MYOBJECT_H #include #include namespace demo { class MyObject : public node::ObjectWrap { public: static void Init(v8::Isolate* isolate); static void NewInstance(const v8::FunctionCallbackInfo& args); inline double value() const { return value_; } private: explicit MyObject(double value = 0); ~MyObject(); static void New(const v8::FunctionCallbackInfo& args); static v8::Persistent constructor; double value_; }; } // namespace demo #endif ``` The implementation of `myobject.cc` is similar to before: ```cpp // myobject.cc #include #include "myobject.h" namespace demo { using v8::Function; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::Isolate; using v8::Local; using v8::Object; using v8::Persistent; using v8::String; using v8::Value; Persistent MyObject::constructor; MyObject::MyObject(double value) : value_(value) { } MyObject::~MyObject() { } void MyObject::Init(Isolate* isolate) { // Prepare constructor template Local tpl = FunctionTemplate::New(isolate, New); tpl->SetClassName(String::NewFromUtf8(isolate, "MyObject")); tpl->InstanceTemplate()->SetInternalFieldCount(1); constructor.Reset(isolate, tpl->GetFunction()); } void MyObject::New(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); if (args.IsConstructCall()) { // Invoked as constructor: `new MyObject(...)` double value = args[0]->IsUndefined() ? 0 : args[0]->NumberValue(); MyObject* obj = new MyObject(value); obj->Wrap(args.This()); args.GetReturnValue().Set(args.This()); } else { // Invoked as plain function `MyObject(...)`, turn into construct call. const int argc = 1; Local argv[argc] = { args[0] }; Local cons = Local::New(isolate, constructor); args.GetReturnValue().Set(cons->NewInstance(argc, argv)); } } void MyObject::NewInstance(const FunctionCallbackInfo& args) { Isolate* isolate = args.GetIsolate(); const unsigned argc = 1; Local argv[argc] = { args[0] }; Local cons = Local::New(isolate, constructor); Local instance = cons->NewInstance(argc, argv); args.GetReturnValue().Set(instance); } } // namespace demo ``` Test it with: ```js // test.js const addon = require('./build/Release/addon'); var obj1 = addon.createObject(10); var obj2 = addon.createObject(20); var result = addon.add(obj1, obj2); console.log(result); // 30 ``` ### AtExit hooks An "AtExit" hook is a function that is invoked after the Node.js event loop has ended by before the JavaScript VM is terminated and Node.js shuts down. "AtExit" hooks are registered using the `node::AtExit` API. #### void AtExit(callback, args) * `callback`: `void (*)(void*)` - A pointer to the function to call at exit. * `args`: `void*` - A pointer to pass to the callback at exit. Registers exit hooks that run after the event loop has ended but before the VM is killed. AtExit takes two parameters: a pointer to a callback function to run at exit, and a pointer to untyped context data to be passed to that callback. Callbacks are run in last-in first-out order. The following `addon.cc` implements AtExit: ```cpp // addon.cc #undef NDEBUG #include #include #include namespace demo { using node::AtExit; using v8::HandleScope; using v8::Isolate; using v8::Local; using v8::Object; static char cookie[] = "yum yum"; static int at_exit_cb1_called = 0; static int at_exit_cb2_called = 0; static void at_exit_cb1(void* arg) { Isolate* isolate = static_cast(arg); HandleScope scope(isolate); Local obj = Object::New(isolate); assert(!obj.IsEmpty()); // assert VM is still alive assert(obj->IsObject()); at_exit_cb1_called++; } static void at_exit_cb2(void* arg) { assert(arg == static_cast(cookie)); at_exit_cb2_called++; } static void sanity_check(void*) { assert(at_exit_cb1_called == 1); assert(at_exit_cb2_called == 2); } void init(Local exports) { AtExit(sanity_check); AtExit(at_exit_cb2, cookie); AtExit(at_exit_cb2, cookie); AtExit(at_exit_cb1, exports->GetIsolate()); } NODE_MODULE(addon, init); } // namespace demo ``` Test in JavaScript by running: ```js // test.js const addon = require('./build/Release/addon'); ``` [online]: https://v8docs.nodesource.com/ [libuv]: https://github.com/libuv/libuv [download]: https://github.com/nodejs/node-addon-examples [node-gyp]: https://github.com/nodejs/node-gyp [V8 reference]: https://v8docs.nodesource.com/ [Embedder's Guide]: https://developers.google.com/v8/embed [Native Abstrations for Node.js]: https://github.com/nodejs/nan [examples]: https://github.com/nodejs/nan/tree/master/examples/ [bindings]: https://github.com/TooTallNate/node-bindings [Linking to Node.js' own dependencies]: #linking-to-nodejs-own-dependencies [installation instructions]: https://github.com/nodejs/node-gyp#installation