#include "node.h" #include "node_buffer.h" #include "node_crypto.h" #include "node_crypto_bio.h" #include "node_crypto_groups.h" #include "tls_wrap.h" // TLSWrap #include "async-wrap.h" #include "async-wrap-inl.h" #include "env.h" #include "env-inl.h" #include "string_bytes.h" #include "util.h" #include "util-inl.h" #include "v8.h" // CNNIC Hash WhiteList is taken from // https://hg.mozilla.org/mozilla-central/raw-file/98820360ab66/security/ // certverifier/CNNICHashWhitelist.inc #include "CNNICHashWhitelist.inc" // StartCom and WoSign root CA list is taken from // https://hg.mozilla.org/mozilla-central/file/tip/security/certverifier/ // StartComAndWoSignData.inc #include "StartComAndWoSignData.inc" #include #include // INT_MAX #include #include #include #define THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(val, prefix) \ do { \ if (!Buffer::HasInstance(val) && !val->IsString()) { \ return env->ThrowTypeError(prefix " must be a string or a buffer"); \ } \ } while (0) #define THROW_AND_RETURN_IF_NOT_BUFFER(val, prefix) \ do { \ if (!Buffer::HasInstance(val)) { \ return env->ThrowTypeError(prefix " must be a buffer"); \ } \ } while (0) #define THROW_AND_RETURN_IF_NOT_STRING(val, prefix) \ do { \ if (!val->IsString()) { \ return env->ThrowTypeError(prefix " must be a string"); \ } \ } while (0) static const char PUBLIC_KEY_PFX[] = "-----BEGIN PUBLIC KEY-----"; static const int PUBLIC_KEY_PFX_LEN = sizeof(PUBLIC_KEY_PFX) - 1; static const char PUBRSA_KEY_PFX[] = "-----BEGIN RSA PUBLIC KEY-----"; static const int PUBRSA_KEY_PFX_LEN = sizeof(PUBRSA_KEY_PFX) - 1; static const char CERTIFICATE_PFX[] = "-----BEGIN CERTIFICATE-----"; static const int CERTIFICATE_PFX_LEN = sizeof(CERTIFICATE_PFX) - 1; static const int X509_NAME_FLAGS = ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_UTF8_CONVERT | XN_FLAG_SEP_MULTILINE | XN_FLAG_FN_SN; namespace node { namespace crypto { using v8::AccessorSignature; using v8::Array; using v8::Boolean; using v8::Context; using v8::DEFAULT; using v8::DontDelete; using v8::EscapableHandleScope; using v8::Exception; using v8::External; using v8::False; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::HandleScope; using v8::Integer; using v8::Isolate; using v8::Local; using v8::Null; using v8::Object; using v8::Persistent; using v8::PropertyAttribute; using v8::PropertyCallbackInfo; using v8::ReadOnly; using v8::String; using v8::Value; // Subject DER of CNNIC ROOT CA and CNNIC EV ROOT CA are taken from // https://hg.mozilla.org/mozilla-central/file/98820360ab66/security/ // certverifier/NSSCertDBTrustDomain.cpp#l672 // C = CN, O = CNNIC, CN = CNNIC ROOT static const uint8_t CNNIC_ROOT_CA_SUBJECT_DATA[] = "\x30\x32\x31\x0B\x30\x09\x06\x03\x55\x04\x06\x13\x02\x43\x4E\x31\x0E\x30" "\x0C\x06\x03\x55\x04\x0A\x13\x05\x43\x4E\x4E\x49\x43\x31\x13\x30\x11\x06" "\x03\x55\x04\x03\x13\x0A\x43\x4E\x4E\x49\x43\x20\x52\x4F\x4F\x54"; static const uint8_t* cnnic_p = CNNIC_ROOT_CA_SUBJECT_DATA; static X509_NAME* cnnic_name = d2i_X509_NAME(nullptr, &cnnic_p, sizeof(CNNIC_ROOT_CA_SUBJECT_DATA)-1); // C = CN, O = China Internet Network Information Center, CN = China // Internet Network Information Center EV Certificates Root static const uint8_t CNNIC_EV_ROOT_CA_SUBJECT_DATA[] = "\x30\x81\x8A\x31\x0B\x30\x09\x06\x03\x55\x04\x06\x13\x02\x43\x4E\x31\x32" "\x30\x30\x06\x03\x55\x04\x0A\x0C\x29\x43\x68\x69\x6E\x61\x20\x49\x6E\x74" "\x65\x72\x6E\x65\x74\x20\x4E\x65\x74\x77\x6F\x72\x6B\x20\x49\x6E\x66\x6F" "\x72\x6D\x61\x74\x69\x6F\x6E\x20\x43\x65\x6E\x74\x65\x72\x31\x47\x30\x45" "\x06\x03\x55\x04\x03\x0C\x3E\x43\x68\x69\x6E\x61\x20\x49\x6E\x74\x65\x72" "\x6E\x65\x74\x20\x4E\x65\x74\x77\x6F\x72\x6B\x20\x49\x6E\x66\x6F\x72\x6D" "\x61\x74\x69\x6F\x6E\x20\x43\x65\x6E\x74\x65\x72\x20\x45\x56\x20\x43\x65" "\x72\x74\x69\x66\x69\x63\x61\x74\x65\x73\x20\x52\x6F\x6F\x74"; static const uint8_t* cnnic_ev_p = CNNIC_EV_ROOT_CA_SUBJECT_DATA; static X509_NAME *cnnic_ev_name = d2i_X509_NAME(nullptr, &cnnic_ev_p, sizeof(CNNIC_EV_ROOT_CA_SUBJECT_DATA)-1); static Mutex* mutexes; const char* const root_certs[] = { #include "node_root_certs.h" // NOLINT(build/include_order) }; std::string extra_root_certs_file; // NOLINT(runtime/string) X509_STORE* root_cert_store; std::vector root_certs_vector; // Just to generate static methods template class SSLWrap; template void SSLWrap::AddMethods(Environment* env, Local t); template void SSLWrap::InitNPN(SecureContext* sc); template void SSLWrap::SetSNIContext(SecureContext* sc); template int SSLWrap::SetCACerts(SecureContext* sc); template SSL_SESSION* SSLWrap::GetSessionCallback( SSL* s, unsigned char* key, int len, int* copy); template int SSLWrap::NewSessionCallback(SSL* s, SSL_SESSION* sess); template void SSLWrap::OnClientHello( void* arg, const ClientHelloParser::ClientHello& hello); #ifndef OPENSSL_NO_NEXTPROTONEG template int SSLWrap::AdvertiseNextProtoCallback( SSL* s, const unsigned char** data, unsigned int* len, void* arg); template int SSLWrap::SelectNextProtoCallback( SSL* s, unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg); #endif #ifdef NODE__HAVE_TLSEXT_STATUS_CB template int SSLWrap::TLSExtStatusCallback(SSL* s, void* arg); #endif template void SSLWrap::DestroySSL(); template int SSLWrap::SSLCertCallback(SSL* s, void* arg); template void SSLWrap::WaitForCertCb(CertCb cb, void* arg); #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation template int SSLWrap::SelectALPNCallback( SSL* s, const unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg); #endif // TLSEXT_TYPE_application_layer_protocol_negotiation static void crypto_threadid_cb(CRYPTO_THREADID* tid) { static_assert(sizeof(uv_thread_t) <= sizeof(void*), "uv_thread_t does not fit in a pointer"); CRYPTO_THREADID_set_pointer(tid, reinterpret_cast(uv_thread_self())); } static void crypto_lock_init(void) { mutexes = new Mutex[CRYPTO_num_locks()]; } static void crypto_lock_cb(int mode, int n, const char* file, int line) { CHECK(!(mode & CRYPTO_LOCK) ^ !(mode & CRYPTO_UNLOCK)); CHECK(!(mode & CRYPTO_READ) ^ !(mode & CRYPTO_WRITE)); auto mutex = &mutexes[n]; if (mode & CRYPTO_LOCK) mutex->Lock(); else mutex->Unlock(); } static int CryptoPemCallback(char *buf, int size, int rwflag, void *u) { if (u) { size_t buflen = static_cast(size); size_t len = strlen(static_cast(u)); len = len > buflen ? buflen : len; memcpy(buf, u, len); return len; } return 0; } void ThrowCryptoError(Environment* env, unsigned long err, // NOLINT(runtime/int) const char* default_message = nullptr) { HandleScope scope(env->isolate()); if (err != 0 || default_message == nullptr) { char errmsg[128] = { 0 }; ERR_error_string_n(err, errmsg, sizeof(errmsg)); env->ThrowError(errmsg); } else { env->ThrowError(default_message); } } // Ensure that OpenSSL has enough entropy (at least 256 bits) for its PRNG. // The entropy pool starts out empty and needs to fill up before the PRNG // can be used securely. Once the pool is filled, it never dries up again; // its contents is stirred and reused when necessary. // // OpenSSL normally fills the pool automatically but not when someone starts // generating random numbers before the pool is full: in that case OpenSSL // keeps lowering the entropy estimate to thwart attackers trying to guess // the initial state of the PRNG. // // When that happens, we will have to wait until enough entropy is available. // That should normally never take longer than a few milliseconds. // // OpenSSL draws from /dev/random and /dev/urandom. While /dev/random may // block pending "true" randomness, /dev/urandom is a CSPRNG that doesn't // block under normal circumstances. // // The only time when /dev/urandom may conceivably block is right after boot, // when the whole system is still low on entropy. That's not something we can // do anything about. inline void CheckEntropy() { for (;;) { int status = RAND_status(); CHECK_GE(status, 0); // Cannot fail. if (status != 0) break; // Give up, RAND_poll() not supported. if (RAND_poll() == 0) break; } } bool EntropySource(unsigned char* buffer, size_t length) { // Ensure that OpenSSL's PRNG is properly seeded. CheckEntropy(); // RAND_bytes() can return 0 to indicate that the entropy data is not truly // random. That's okay, it's still better than V8's stock source of entropy, // which is /dev/urandom on UNIX platforms and the current time on Windows. return RAND_bytes(buffer, length) != -1; } void SecureContext::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(SecureContext::New); t->InstanceTemplate()->SetInternalFieldCount(1); t->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext")); env->SetProtoMethod(t, "init", SecureContext::Init); env->SetProtoMethod(t, "setKey", SecureContext::SetKey); env->SetProtoMethod(t, "setCert", SecureContext::SetCert); env->SetProtoMethod(t, "addCACert", SecureContext::AddCACert); env->SetProtoMethod(t, "addCRL", SecureContext::AddCRL); env->SetProtoMethod(t, "addRootCerts", SecureContext::AddRootCerts); env->SetProtoMethod(t, "setCiphers", SecureContext::SetCiphers); env->SetProtoMethod(t, "setECDHCurve", SecureContext::SetECDHCurve); env->SetProtoMethod(t, "setDHParam", SecureContext::SetDHParam); env->SetProtoMethod(t, "setOptions", SecureContext::SetOptions); env->SetProtoMethod(t, "setSessionIdContext", SecureContext::SetSessionIdContext); env->SetProtoMethod(t, "setSessionTimeout", SecureContext::SetSessionTimeout); env->SetProtoMethod(t, "close", SecureContext::Close); env->SetProtoMethod(t, "loadPKCS12", SecureContext::LoadPKCS12); env->SetProtoMethod(t, "getTicketKeys", SecureContext::GetTicketKeys); env->SetProtoMethod(t, "setTicketKeys", SecureContext::SetTicketKeys); env->SetProtoMethod(t, "setFreeListLength", SecureContext::SetFreeListLength); env->SetProtoMethod(t, "enableTicketKeyCallback", SecureContext::EnableTicketKeyCallback); env->SetProtoMethod(t, "getCertificate", SecureContext::GetCertificate); env->SetProtoMethod(t, "getIssuer", SecureContext::GetCertificate); t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyReturnIndex"), Integer::NewFromUnsigned(env->isolate(), kTicketKeyReturnIndex)); t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyHMACIndex"), Integer::NewFromUnsigned(env->isolate(), kTicketKeyHMACIndex)); t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyAESIndex"), Integer::NewFromUnsigned(env->isolate(), kTicketKeyAESIndex)); t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyNameIndex"), Integer::NewFromUnsigned(env->isolate(), kTicketKeyNameIndex)); t->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "kTicketKeyIVIndex"), Integer::NewFromUnsigned(env->isolate(), kTicketKeyIVIndex)); t->PrototypeTemplate()->SetAccessor( FIXED_ONE_BYTE_STRING(env->isolate(), "_external"), CtxGetter, nullptr, env->as_external(), DEFAULT, static_cast(ReadOnly | DontDelete), AccessorSignature::New(env->isolate(), t)); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "SecureContext"), t->GetFunction()); env->set_secure_context_constructor_template(t); } void SecureContext::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new SecureContext(env, args.This()); } void SecureContext::Init(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); const SSL_METHOD* method = SSLv23_method(); if (args.Length() == 1 && args[0]->IsString()) { const node::Utf8Value sslmethod(env->isolate(), args[0]); // Note that SSLv2 and SSLv3 are disallowed but SSLv2_method and friends // are still accepted. They are OpenSSL's way of saying that all known // protocols are supported unless explicitly disabled (which we do below // for SSLv2 and SSLv3.) if (strcmp(*sslmethod, "SSLv2_method") == 0) { return env->ThrowError("SSLv2 methods disabled"); } else if (strcmp(*sslmethod, "SSLv2_server_method") == 0) { return env->ThrowError("SSLv2 methods disabled"); } else if (strcmp(*sslmethod, "SSLv2_client_method") == 0) { return env->ThrowError("SSLv2 methods disabled"); } else if (strcmp(*sslmethod, "SSLv3_method") == 0) { return env->ThrowError("SSLv3 methods disabled"); } else if (strcmp(*sslmethod, "SSLv3_server_method") == 0) { return env->ThrowError("SSLv3 methods disabled"); } else if (strcmp(*sslmethod, "SSLv3_client_method") == 0) { return env->ThrowError("SSLv3 methods disabled"); } else if (strcmp(*sslmethod, "SSLv23_method") == 0) { method = SSLv23_method(); } else if (strcmp(*sslmethod, "SSLv23_server_method") == 0) { method = SSLv23_server_method(); } else if (strcmp(*sslmethod, "SSLv23_client_method") == 0) { method = SSLv23_client_method(); } else if (strcmp(*sslmethod, "TLSv1_method") == 0) { method = TLSv1_method(); } else if (strcmp(*sslmethod, "TLSv1_server_method") == 0) { method = TLSv1_server_method(); } else if (strcmp(*sslmethod, "TLSv1_client_method") == 0) { method = TLSv1_client_method(); } else if (strcmp(*sslmethod, "TLSv1_1_method") == 0) { method = TLSv1_1_method(); } else if (strcmp(*sslmethod, "TLSv1_1_server_method") == 0) { method = TLSv1_1_server_method(); } else if (strcmp(*sslmethod, "TLSv1_1_client_method") == 0) { method = TLSv1_1_client_method(); } else if (strcmp(*sslmethod, "TLSv1_2_method") == 0) { method = TLSv1_2_method(); } else if (strcmp(*sslmethod, "TLSv1_2_server_method") == 0) { method = TLSv1_2_server_method(); } else if (strcmp(*sslmethod, "TLSv1_2_client_method") == 0) { method = TLSv1_2_client_method(); } else { return env->ThrowError("Unknown method"); } } sc->ctx_ = SSL_CTX_new(method); SSL_CTX_set_app_data(sc->ctx_, sc); // Disable SSLv2 in the case when method == SSLv23_method() and the // cipher list contains SSLv2 ciphers (not the default, should be rare.) // The bundled OpenSSL doesn't have SSLv2 support but the system OpenSSL may. // SSLv3 is disabled because it's susceptible to downgrade attacks (POODLE.) SSL_CTX_set_options(sc->ctx_, SSL_OP_NO_SSLv2); SSL_CTX_set_options(sc->ctx_, SSL_OP_NO_SSLv3); // SSL session cache configuration SSL_CTX_set_session_cache_mode(sc->ctx_, SSL_SESS_CACHE_SERVER | SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_NO_AUTO_CLEAR); SSL_CTX_sess_set_get_cb(sc->ctx_, SSLWrap::GetSessionCallback); SSL_CTX_sess_set_new_cb(sc->ctx_, SSLWrap::NewSessionCallback); } // Takes a string or buffer and loads it into a BIO. // Caller responsible for BIO_free_all-ing the returned object. static BIO* LoadBIO(Environment* env, Local v) { HandleScope scope(env->isolate()); if (v->IsString()) { const node::Utf8Value s(env->isolate(), v); return NodeBIO::NewFixed(*s, s.length()); } if (Buffer::HasInstance(v)) { return NodeBIO::NewFixed(Buffer::Data(v), Buffer::Length(v)); } return nullptr; } void SecureContext::SetKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); unsigned int len = args.Length(); if (len < 1) { return env->ThrowError("Private key argument is mandatory"); } if (len > 2) { return env->ThrowError("Only private key and pass phrase are expected"); } if (len == 2) { if (args[1]->IsUndefined() || args[1]->IsNull()) len = 1; else THROW_AND_RETURN_IF_NOT_STRING(args[1], "Pass phrase"); } BIO *bio = LoadBIO(env, args[0]); if (!bio) return; node::Utf8Value passphrase(env->isolate(), args[1]); EVP_PKEY* key = PEM_read_bio_PrivateKey(bio, nullptr, CryptoPemCallback, len == 1 ? nullptr : *passphrase); if (!key) { BIO_free_all(bio); unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (!err) { return env->ThrowError("PEM_read_bio_PrivateKey"); } return ThrowCryptoError(env, err); } int rv = SSL_CTX_use_PrivateKey(sc->ctx_, key); EVP_PKEY_free(key); BIO_free_all(bio); if (!rv) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (!err) return env->ThrowError("SSL_CTX_use_PrivateKey"); return ThrowCryptoError(env, err); } } int SSL_CTX_get_issuer(SSL_CTX* ctx, X509* cert, X509** issuer) { int ret; X509_STORE* store = SSL_CTX_get_cert_store(ctx); X509_STORE_CTX store_ctx; ret = X509_STORE_CTX_init(&store_ctx, store, nullptr, nullptr); if (!ret) goto end; ret = X509_STORE_CTX_get1_issuer(issuer, &store_ctx, cert); X509_STORE_CTX_cleanup(&store_ctx); end: return ret; } int SSL_CTX_use_certificate_chain(SSL_CTX* ctx, X509* x, STACK_OF(X509)* extra_certs, X509** cert, X509** issuer) { CHECK_EQ(*issuer, nullptr); CHECK_EQ(*cert, nullptr); int ret = SSL_CTX_use_certificate(ctx, x); if (ret) { // If we could set up our certificate, now proceed to // the CA certificates. int r; SSL_CTX_clear_extra_chain_certs(ctx); for (int i = 0; i < sk_X509_num(extra_certs); i++) { X509* ca = sk_X509_value(extra_certs, i); // NOTE: Increments reference count on `ca` r = SSL_CTX_add1_chain_cert(ctx, ca); if (!r) { ret = 0; *issuer = nullptr; goto end; } // Note that we must not free r if it was successfully // added to the chain (while we must free the main // certificate, since its reference count is increased // by SSL_CTX_use_certificate). // Find issuer if (*issuer != nullptr || X509_check_issued(ca, x) != X509_V_OK) continue; *issuer = ca; } } // Try getting issuer from a cert store if (ret) { if (*issuer == nullptr) { ret = SSL_CTX_get_issuer(ctx, x, issuer); ret = ret < 0 ? 0 : 1; // NOTE: get_cert_store doesn't increment reference count, // no need to free `store` } else { // Increment issuer reference count *issuer = X509_dup(*issuer); if (*issuer == nullptr) { ret = 0; goto end; } } } end: if (ret && x != nullptr) { *cert = X509_dup(x); if (*cert == nullptr) ret = 0; } return ret; } // Read a file that contains our certificate in "PEM" format, // possibly followed by a sequence of CA certificates that should be // sent to the peer in the Certificate message. // // Taken from OpenSSL - edited for style. int SSL_CTX_use_certificate_chain(SSL_CTX* ctx, BIO* in, X509** cert, X509** issuer) { X509* x = nullptr; // Just to ensure that `ERR_peek_last_error` below will return only errors // that we are interested in ERR_clear_error(); x = PEM_read_bio_X509_AUX(in, nullptr, CryptoPemCallback, nullptr); if (x == nullptr) { SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE, ERR_R_PEM_LIB); return 0; } X509* extra = nullptr; int ret = 0; unsigned long err = 0; // NOLINT(runtime/int) // Read extra certs STACK_OF(X509)* extra_certs = sk_X509_new_null(); if (extra_certs == nullptr) { SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE, ERR_R_MALLOC_FAILURE); goto done; } while ((extra = PEM_read_bio_X509(in, nullptr, CryptoPemCallback, nullptr))) { if (sk_X509_push(extra_certs, extra)) continue; // Failure, free all certs goto done; } extra = nullptr; // When the while loop ends, it's usually just EOF. err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { ERR_clear_error(); } else { // some real error goto done; } ret = SSL_CTX_use_certificate_chain(ctx, x, extra_certs, cert, issuer); if (!ret) goto done; done: if (extra_certs != nullptr) sk_X509_pop_free(extra_certs, X509_free); if (extra != nullptr) X509_free(extra); if (x != nullptr) X509_free(x); return ret; } void SecureContext::SetCert(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1) { return env->ThrowTypeError("Certificate argument is mandatory"); } BIO* bio = LoadBIO(env, args[0]); if (!bio) return; // Free previous certs if (sc->issuer_ != nullptr) { X509_free(sc->issuer_); sc->issuer_ = nullptr; } if (sc->cert_ != nullptr) { X509_free(sc->cert_); sc->cert_ = nullptr; } int rv = SSL_CTX_use_certificate_chain(sc->ctx_, bio, &sc->cert_, &sc->issuer_); BIO_free_all(bio); if (!rv) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (!err) { return env->ThrowError("SSL_CTX_use_certificate_chain"); } return ThrowCryptoError(env, err); } } #if OPENSSL_VERSION_NUMBER < 0x10100000L && !defined(OPENSSL_IS_BORINGSSL) // This section contains OpenSSL 1.1.0 functions reimplemented for OpenSSL // 1.0.2 so that the following code can be written without lots of #if lines. static int X509_STORE_up_ref(X509_STORE* store) { CRYPTO_add(&store->references, 1, CRYPTO_LOCK_X509_STORE); return 1; } static int X509_up_ref(X509* cert) { CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509); return 1; } #endif // OPENSSL_VERSION_NUMBER < 0x10100000L && !OPENSSL_IS_BORINGSSL static X509_STORE* NewRootCertStore() { if (root_certs_vector.empty()) { for (size_t i = 0; i < arraysize(root_certs); i++) { BIO* bp = NodeBIO::NewFixed(root_certs[i], strlen(root_certs[i])); X509 *x509 = PEM_read_bio_X509(bp, nullptr, CryptoPemCallback, nullptr); BIO_free(bp); // Parse errors from the built-in roots are fatal. CHECK_NE(x509, nullptr); root_certs_vector.push_back(x509); } } X509_STORE* store = X509_STORE_new(); if (ssl_openssl_cert_store) { X509_STORE_set_default_paths(store); } else { for (X509 *cert : root_certs_vector) { X509_up_ref(cert); X509_STORE_add_cert(store, cert); } } return store; } void SecureContext::AddCACert(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. if (args.Length() != 1) { return env->ThrowTypeError("CA certificate argument is mandatory"); } BIO* bio = LoadBIO(env, args[0]); if (!bio) { return; } X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_); while (X509* x509 = PEM_read_bio_X509(bio, nullptr, CryptoPemCallback, nullptr)) { if (cert_store == root_cert_store) { cert_store = NewRootCertStore(); SSL_CTX_set_cert_store(sc->ctx_, cert_store); } X509_STORE_add_cert(cert_store, x509); SSL_CTX_add_client_CA(sc->ctx_, x509); X509_free(x509); } BIO_free_all(bio); } void SecureContext::AddCRL(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1) { return env->ThrowTypeError("CRL argument is mandatory"); } ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. BIO *bio = LoadBIO(env, args[0]); if (!bio) return; X509_CRL* crl = PEM_read_bio_X509_CRL(bio, nullptr, CryptoPemCallback, nullptr); if (crl == nullptr) { BIO_free_all(bio); return env->ThrowError("Failed to parse CRL"); } X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_); if (cert_store == root_cert_store) { cert_store = NewRootCertStore(); SSL_CTX_set_cert_store(sc->ctx_, cert_store); } X509_STORE_add_crl(cert_store, crl); X509_STORE_set_flags(cert_store, X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL); BIO_free_all(bio); X509_CRL_free(crl); } void UseExtraCaCerts(const std::string& file) { extra_root_certs_file = file; } static unsigned long AddCertsFromFile( // NOLINT(runtime/int) X509_STORE* store, const char* file) { ERR_clear_error(); MarkPopErrorOnReturn mark_pop_error_on_return; BIO* bio = BIO_new_file(file, "r"); if (!bio) { return ERR_get_error(); } while (X509* x509 = PEM_read_bio_X509(bio, nullptr, CryptoPemCallback, nullptr)) { X509_STORE_add_cert(store, x509); X509_free(x509); } BIO_free_all(bio); unsigned long err = ERR_peek_error(); // NOLINT(runtime/int) // Ignore error if its EOF/no start line found. if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { return 0; } return err; } void SecureContext::AddRootCerts(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. if (!root_cert_store) { root_cert_store = NewRootCertStore(); if (!extra_root_certs_file.empty()) { unsigned long err = AddCertsFromFile( // NOLINT(runtime/int) root_cert_store, extra_root_certs_file.c_str()); if (err) { ProcessEmitWarning(sc->env(), "Ignoring extra certs from `%s`, load failed: %s\n", extra_root_certs_file.c_str(), ERR_error_string(err, nullptr)); } } } // Increment reference count so global store is not deleted along with CTX. X509_STORE_up_ref(root_cert_store); SSL_CTX_set_cert_store(sc->ctx_, root_cert_store); } void SecureContext::SetCiphers(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. if (args.Length() != 1) { return env->ThrowTypeError("Ciphers argument is mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Ciphers"); const node::Utf8Value ciphers(args.GetIsolate(), args[0]); SSL_CTX_set_cipher_list(sc->ctx_, *ciphers); } void SecureContext::SetECDHCurve(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); if (args.Length() != 1) return env->ThrowTypeError("ECDH curve name argument is mandatory"); THROW_AND_RETURN_IF_NOT_STRING(args[0], "ECDH curve name"); node::Utf8Value curve(env->isolate(), args[0]); int nid = OBJ_sn2nid(*curve); if (nid == NID_undef) return env->ThrowTypeError("First argument should be a valid curve name"); EC_KEY* ecdh = EC_KEY_new_by_curve_name(nid); if (ecdh == nullptr) return env->ThrowTypeError("First argument should be a valid curve name"); SSL_CTX_set_options(sc->ctx_, SSL_OP_SINGLE_ECDH_USE); SSL_CTX_set_tmp_ecdh(sc->ctx_, ecdh); EC_KEY_free(ecdh); } void SecureContext::SetDHParam(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.This()); Environment* env = sc->env(); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. // Auto DH is not supported in openssl 1.0.1, so dhparam needs // to be specified explicitly if (args.Length() != 1) return env->ThrowTypeError("DH argument is mandatory"); // Invalid dhparam is silently discarded and DHE is no longer used. BIO* bio = LoadBIO(env, args[0]); if (!bio) return; DH* dh = PEM_read_bio_DHparams(bio, nullptr, nullptr, nullptr); BIO_free_all(bio); if (dh == nullptr) return; const int size = BN_num_bits(dh->p); if (size < 1024) { return env->ThrowError("DH parameter is less than 1024 bits"); } else if (size < 2048) { args.GetReturnValue().Set(FIXED_ONE_BYTE_STRING( env->isolate(), "DH parameter is less than 2048 bits")); } SSL_CTX_set_options(sc->ctx_, SSL_OP_SINGLE_DH_USE); int r = SSL_CTX_set_tmp_dh(sc->ctx_, dh); DH_free(dh); if (!r) return env->ThrowTypeError("Error setting temp DH parameter"); } void SecureContext::SetOptions(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1 || !args[0]->IntegerValue()) { return sc->env()->ThrowTypeError("Options must be an integer value"); } SSL_CTX_set_options( sc->ctx_, static_cast(args[0]->IntegerValue())); // NOLINT(runtime/int) } void SecureContext::SetSessionIdContext( const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); Environment* env = sc->env(); if (args.Length() != 1) { return env->ThrowTypeError("Session ID context argument is mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Session ID context"); const node::Utf8Value sessionIdContext(args.GetIsolate(), args[0]); const unsigned char* sid_ctx = reinterpret_cast(*sessionIdContext); unsigned int sid_ctx_len = sessionIdContext.length(); int r = SSL_CTX_set_session_id_context(sc->ctx_, sid_ctx, sid_ctx_len); if (r == 1) return; BIO* bio; BUF_MEM* mem; Local message; bio = BIO_new(BIO_s_mem()); if (bio == nullptr) { message = FIXED_ONE_BYTE_STRING(args.GetIsolate(), "SSL_CTX_set_session_id_context error"); } else { ERR_print_errors(bio); BIO_get_mem_ptr(bio, &mem); message = OneByteString(args.GetIsolate(), mem->data, mem->length); BIO_free_all(bio); } args.GetIsolate()->ThrowException(Exception::TypeError(message)); } void SecureContext::SetSessionTimeout(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); if (args.Length() != 1 || !args[0]->IsInt32()) { return sc->env()->ThrowTypeError( "Session timeout must be a 32-bit integer"); } int32_t sessionTimeout = args[0]->Int32Value(); SSL_CTX_set_timeout(sc->ctx_, sessionTimeout); } void SecureContext::Close(const FunctionCallbackInfo& args) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); sc->FreeCTXMem(); } // Takes .pfx or .p12 and password in string or buffer format void SecureContext::LoadPKCS12(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); BIO* in = nullptr; PKCS12* p12 = nullptr; EVP_PKEY* pkey = nullptr; X509* cert = nullptr; STACK_OF(X509)* extra_certs = nullptr; char* pass = nullptr; bool ret = false; SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args.Holder()); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. if (args.Length() < 1) { return env->ThrowTypeError("PFX certificate argument is mandatory"); } in = LoadBIO(env, args[0]); if (in == nullptr) { return env->ThrowError("Unable to load BIO"); } if (args.Length() >= 2) { THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Pass phrase"); size_t passlen = Buffer::Length(args[1]); pass = new char[passlen + 1]; memcpy(pass, Buffer::Data(args[1]), passlen); pass[passlen] = '\0'; } // Free previous certs if (sc->issuer_ != nullptr) { X509_free(sc->issuer_); sc->issuer_ = nullptr; } if (sc->cert_ != nullptr) { X509_free(sc->cert_); sc->cert_ = nullptr; } X509_STORE* cert_store = SSL_CTX_get_cert_store(sc->ctx_); if (d2i_PKCS12_bio(in, &p12) && PKCS12_parse(p12, pass, &pkey, &cert, &extra_certs) && SSL_CTX_use_certificate_chain(sc->ctx_, cert, extra_certs, &sc->cert_, &sc->issuer_) && SSL_CTX_use_PrivateKey(sc->ctx_, pkey)) { // Add CA certs too for (int i = 0; i < sk_X509_num(extra_certs); i++) { X509* ca = sk_X509_value(extra_certs, i); if (cert_store == root_cert_store) { cert_store = NewRootCertStore(); SSL_CTX_set_cert_store(sc->ctx_, cert_store); } X509_STORE_add_cert(cert_store, ca); SSL_CTX_add_client_CA(sc->ctx_, ca); } ret = true; } if (pkey != nullptr) EVP_PKEY_free(pkey); if (cert != nullptr) X509_free(cert); if (extra_certs != nullptr) sk_X509_pop_free(extra_certs, X509_free); PKCS12_free(p12); BIO_free_all(in); delete[] pass; if (!ret) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) const char* str = ERR_reason_error_string(err); return env->ThrowError(str); } } void SecureContext::GetTicketKeys(const FunctionCallbackInfo& args) { #if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys) SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); Local buff = Buffer::New(wrap->env(), 48).ToLocalChecked(); if (SSL_CTX_get_tlsext_ticket_keys(wrap->ctx_, Buffer::Data(buff), Buffer::Length(buff)) != 1) { return wrap->env()->ThrowError("Failed to fetch tls ticket keys"); } args.GetReturnValue().Set(buff); #endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys) } void SecureContext::SetTicketKeys(const FunctionCallbackInfo& args) { #if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys) SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); Environment* env = wrap->env(); if (args.Length() < 1) { return env->ThrowTypeError("Ticket keys argument is mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Ticket keys"); if (Buffer::Length(args[0]) != 48) { return env->ThrowTypeError("Ticket keys length must be 48 bytes"); } if (SSL_CTX_set_tlsext_ticket_keys(wrap->ctx_, Buffer::Data(args[0]), Buffer::Length(args[0])) != 1) { return env->ThrowError("Failed to fetch tls ticket keys"); } args.GetReturnValue().Set(true); #endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys) } void SecureContext::SetFreeListLength(const FunctionCallbackInfo& args) { #if OPENSSL_VERSION_NUMBER < 0x10100000L && !defined(OPENSSL_IS_BORINGSSL) // |freelist_max_len| was removed in OpenSSL 1.1.0. In that version OpenSSL // mallocs and frees buffers directly, without the use of a freelist. SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); wrap->ctx_->freelist_max_len = args[0]->Int32Value(); #endif } void SecureContext::EnableTicketKeyCallback( const FunctionCallbackInfo& args) { SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); SSL_CTX_set_tlsext_ticket_key_cb(wrap->ctx_, TicketKeyCallback); } int SecureContext::TicketKeyCallback(SSL* ssl, unsigned char* name, unsigned char* iv, EVP_CIPHER_CTX* ectx, HMAC_CTX* hctx, int enc) { static const int kTicketPartSize = 16; SecureContext* sc = static_cast( SSL_CTX_get_app_data(SSL_get_SSL_CTX(ssl))); Environment* env = sc->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local argv[] = { Buffer::Copy(env, reinterpret_cast(name), kTicketPartSize).ToLocalChecked(), Buffer::Copy(env, reinterpret_cast(iv), kTicketPartSize).ToLocalChecked(), Boolean::New(env->isolate(), enc != 0) }; Local ret = node::MakeCallback(env, sc->object(), env->ticketkeycallback_string(), arraysize(argv), argv); Local arr = ret.As(); int r = arr->Get(kTicketKeyReturnIndex)->Int32Value(); if (r < 0) return r; Local hmac = arr->Get(kTicketKeyHMACIndex); Local aes = arr->Get(kTicketKeyAESIndex); if (Buffer::Length(aes) != kTicketPartSize) return -1; if (enc) { Local name_val = arr->Get(kTicketKeyNameIndex); Local iv_val = arr->Get(kTicketKeyIVIndex); if (Buffer::Length(name_val) != kTicketPartSize || Buffer::Length(iv_val) != kTicketPartSize) { return -1; } memcpy(name, Buffer::Data(name_val), kTicketPartSize); memcpy(iv, Buffer::Data(iv_val), kTicketPartSize); } HMAC_Init_ex(hctx, Buffer::Data(hmac), Buffer::Length(hmac), EVP_sha256(), nullptr); const unsigned char* aes_key = reinterpret_cast(Buffer::Data(aes)); if (enc) { EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, aes_key, iv); } else { EVP_DecryptInit_ex(ectx, EVP_aes_128_cbc(), nullptr, aes_key, iv); } return r; } void SecureContext::CtxGetter(Local property, const PropertyCallbackInfo& info) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, info.This()); Local ext = External::New(info.GetIsolate(), sc->ctx_); info.GetReturnValue().Set(ext); } template void SecureContext::GetCertificate(const FunctionCallbackInfo& args) { SecureContext* wrap; ASSIGN_OR_RETURN_UNWRAP(&wrap, args.Holder()); Environment* env = wrap->env(); X509* cert; if (primary) cert = wrap->cert_; else cert = wrap->issuer_; if (cert == nullptr) return args.GetReturnValue().Set(Null(env->isolate())); int size = i2d_X509(cert, nullptr); Local buff = Buffer::New(env, size).ToLocalChecked(); unsigned char* serialized = reinterpret_cast( Buffer::Data(buff)); i2d_X509(cert, &serialized); args.GetReturnValue().Set(buff); } template void SSLWrap::AddMethods(Environment* env, Local t) { HandleScope scope(env->isolate()); env->SetProtoMethod(t, "getPeerCertificate", GetPeerCertificate); env->SetProtoMethod(t, "getSession", GetSession); env->SetProtoMethod(t, "setSession", SetSession); env->SetProtoMethod(t, "loadSession", LoadSession); env->SetProtoMethod(t, "isSessionReused", IsSessionReused); env->SetProtoMethod(t, "isInitFinished", IsInitFinished); env->SetProtoMethod(t, "verifyError", VerifyError); env->SetProtoMethod(t, "getCurrentCipher", GetCurrentCipher); env->SetProtoMethod(t, "endParser", EndParser); env->SetProtoMethod(t, "certCbDone", CertCbDone); env->SetProtoMethod(t, "renegotiate", Renegotiate); env->SetProtoMethod(t, "shutdownSSL", Shutdown); env->SetProtoMethod(t, "getTLSTicket", GetTLSTicket); env->SetProtoMethod(t, "newSessionDone", NewSessionDone); env->SetProtoMethod(t, "setOCSPResponse", SetOCSPResponse); env->SetProtoMethod(t, "requestOCSP", RequestOCSP); env->SetProtoMethod(t, "getEphemeralKeyInfo", GetEphemeralKeyInfo); env->SetProtoMethod(t, "getProtocol", GetProtocol); #ifdef SSL_set_max_send_fragment env->SetProtoMethod(t, "setMaxSendFragment", SetMaxSendFragment); #endif // SSL_set_max_send_fragment #ifndef OPENSSL_NO_NEXTPROTONEG env->SetProtoMethod(t, "getNegotiatedProtocol", GetNegotiatedProto); #endif // OPENSSL_NO_NEXTPROTONEG #ifndef OPENSSL_NO_NEXTPROTONEG env->SetProtoMethod(t, "setNPNProtocols", SetNPNProtocols); #endif env->SetProtoMethod(t, "getALPNNegotiatedProtocol", GetALPNNegotiatedProto); env->SetProtoMethod(t, "setALPNProtocols", SetALPNProtocols); t->PrototypeTemplate()->SetAccessor( FIXED_ONE_BYTE_STRING(env->isolate(), "_external"), SSLGetter, nullptr, env->as_external(), DEFAULT, static_cast(ReadOnly | DontDelete), AccessorSignature::New(env->isolate(), t)); } template void SSLWrap::InitNPN(SecureContext* sc) { #ifndef OPENSSL_NO_NEXTPROTONEG // Server should advertise NPN protocols SSL_CTX_set_next_protos_advertised_cb(sc->ctx_, AdvertiseNextProtoCallback, nullptr); // Client should select protocol from list of advertised // If server supports NPN SSL_CTX_set_next_proto_select_cb(sc->ctx_, SelectNextProtoCallback, nullptr); #endif // OPENSSL_NO_NEXTPROTONEG #ifdef NODE__HAVE_TLSEXT_STATUS_CB // OCSP stapling SSL_CTX_set_tlsext_status_cb(sc->ctx_, TLSExtStatusCallback); SSL_CTX_set_tlsext_status_arg(sc->ctx_, nullptr); #endif // NODE__HAVE_TLSEXT_STATUS_CB } template SSL_SESSION* SSLWrap::GetSessionCallback(SSL* s, unsigned char* key, int len, int* copy) { Base* w = static_cast(SSL_get_app_data(s)); *copy = 0; SSL_SESSION* sess = w->next_sess_; w->next_sess_ = nullptr; return sess; } template int SSLWrap::NewSessionCallback(SSL* s, SSL_SESSION* sess) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->ssl_env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); if (!w->session_callbacks_) return 0; // Check if session is small enough to be stored int size = i2d_SSL_SESSION(sess, nullptr); if (size > SecureContext::kMaxSessionSize) return 0; // Serialize session Local buff = Buffer::New(env, size).ToLocalChecked(); unsigned char* serialized = reinterpret_cast( Buffer::Data(buff)); memset(serialized, 0, size); i2d_SSL_SESSION(sess, &serialized); Local session = Buffer::Copy( env, reinterpret_cast(sess->session_id), sess->session_id_length).ToLocalChecked(); Local argv[] = { session, buff }; w->new_session_wait_ = true; w->MakeCallback(env->onnewsession_string(), arraysize(argv), argv); return 0; } template void SSLWrap::OnClientHello(void* arg, const ClientHelloParser::ClientHello& hello) { Base* w = static_cast(arg); Environment* env = w->ssl_env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local hello_obj = Object::New(env->isolate()); Local buff = Buffer::Copy( env, reinterpret_cast(hello.session_id()), hello.session_size()).ToLocalChecked(); hello_obj->Set(env->session_id_string(), buff); if (hello.servername() == nullptr) { hello_obj->Set(env->servername_string(), String::Empty(env->isolate())); } else { Local servername = OneByteString(env->isolate(), hello.servername(), hello.servername_size()); hello_obj->Set(env->servername_string(), servername); } hello_obj->Set(env->tls_ticket_string(), Boolean::New(env->isolate(), hello.has_ticket())); hello_obj->Set(env->ocsp_request_string(), Boolean::New(env->isolate(), hello.ocsp_request())); Local argv[] = { hello_obj }; w->MakeCallback(env->onclienthello_string(), arraysize(argv), argv); } static bool SafeX509ExtPrint(BIO* out, X509_EXTENSION* ext) { const X509V3_EXT_METHOD* method = X509V3_EXT_get(ext); if (method != X509V3_EXT_get_nid(NID_subject_alt_name)) return false; const unsigned char* p = ext->value->data; GENERAL_NAMES* names = reinterpret_cast(ASN1_item_d2i( NULL, &p, ext->value->length, ASN1_ITEM_ptr(method->it))); if (names == NULL) return false; for (int i = 0; i < sk_GENERAL_NAME_num(names); i++) { GENERAL_NAME* gen = sk_GENERAL_NAME_value(names, i); if (i != 0) BIO_write(out, ", ", 2); if (gen->type == GEN_DNS) { ASN1_IA5STRING* name = gen->d.dNSName; BIO_write(out, "DNS:", 4); BIO_write(out, name->data, name->length); } else { STACK_OF(CONF_VALUE)* nval = i2v_GENERAL_NAME( const_cast(method), gen, NULL); if (nval == NULL) return false; X509V3_EXT_val_prn(out, nval, 0, 0); sk_CONF_VALUE_pop_free(nval, X509V3_conf_free); } } sk_GENERAL_NAME_pop_free(names, GENERAL_NAME_free); return true; } static Local X509ToObject(Environment* env, X509* cert) { EscapableHandleScope scope(env->isolate()); Local info = Object::New(env->isolate()); BIO* bio = BIO_new(BIO_s_mem()); BUF_MEM* mem; if (X509_NAME_print_ex(bio, X509_get_subject_name(cert), 0, X509_NAME_FLAGS) > 0) { BIO_get_mem_ptr(bio, &mem); info->Set(env->subject_string(), String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); } (void) BIO_reset(bio); X509_NAME* issuer_name = X509_get_issuer_name(cert); if (X509_NAME_print_ex(bio, issuer_name, 0, X509_NAME_FLAGS) > 0) { BIO_get_mem_ptr(bio, &mem); info->Set(env->issuer_string(), String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); } (void) BIO_reset(bio); int nids[] = { NID_subject_alt_name, NID_info_access }; Local keys[] = { env->subjectaltname_string(), env->infoaccess_string() }; CHECK_EQ(arraysize(nids), arraysize(keys)); for (size_t i = 0; i < arraysize(nids); i++) { int index = X509_get_ext_by_NID(cert, nids[i], -1); if (index < 0) continue; X509_EXTENSION* ext; int rv; ext = X509_get_ext(cert, index); CHECK_NE(ext, nullptr); if (!SafeX509ExtPrint(bio, ext)) { rv = X509V3_EXT_print(bio, ext, 0, 0); CHECK_EQ(rv, 1); } BIO_get_mem_ptr(bio, &mem); info->Set(keys[i], String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); (void) BIO_reset(bio); } EVP_PKEY* pkey = X509_get_pubkey(cert); RSA* rsa = nullptr; if (pkey != nullptr) rsa = EVP_PKEY_get1_RSA(pkey); if (rsa != nullptr) { BN_print(bio, rsa->n); BIO_get_mem_ptr(bio, &mem); info->Set(env->modulus_string(), String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); (void) BIO_reset(bio); uint64_t exponent_word = static_cast(BN_get_word(rsa->e)); uint32_t lo = static_cast(exponent_word); uint32_t hi = static_cast(exponent_word >> 32); if (hi == 0) { BIO_printf(bio, "0x%x", lo); } else { BIO_printf(bio, "0x%x%08x", hi, lo); } BIO_get_mem_ptr(bio, &mem); info->Set(env->exponent_string(), String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); (void) BIO_reset(bio); } if (pkey != nullptr) { EVP_PKEY_free(pkey); pkey = nullptr; } if (rsa != nullptr) { RSA_free(rsa); rsa = nullptr; } ASN1_TIME_print(bio, X509_get_notBefore(cert)); BIO_get_mem_ptr(bio, &mem); info->Set(env->valid_from_string(), String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); (void) BIO_reset(bio); ASN1_TIME_print(bio, X509_get_notAfter(cert)); BIO_get_mem_ptr(bio, &mem); info->Set(env->valid_to_string(), String::NewFromUtf8(env->isolate(), mem->data, String::kNormalString, mem->length)); BIO_free_all(bio); unsigned int md_size, i; unsigned char md[EVP_MAX_MD_SIZE]; if (X509_digest(cert, EVP_sha1(), md, &md_size)) { const char hex[] = "0123456789ABCDEF"; char fingerprint[EVP_MAX_MD_SIZE * 3]; // TODO(indutny): Unify it with buffer's code for (i = 0; i < md_size; i++) { fingerprint[3*i] = hex[(md[i] & 0xf0) >> 4]; fingerprint[(3*i)+1] = hex[(md[i] & 0x0f)]; fingerprint[(3*i)+2] = ':'; } if (md_size > 0) { fingerprint[(3*(md_size-1))+2] = '\0'; } else { fingerprint[0] = '\0'; } info->Set(env->fingerprint_string(), OneByteString(env->isolate(), fingerprint)); } STACK_OF(ASN1_OBJECT)* eku = static_cast( X509_get_ext_d2i(cert, NID_ext_key_usage, nullptr, nullptr)); if (eku != nullptr) { Local ext_key_usage = Array::New(env->isolate()); char buf[256]; int j = 0; for (int i = 0; i < sk_ASN1_OBJECT_num(eku); i++) { if (OBJ_obj2txt(buf, sizeof(buf), sk_ASN1_OBJECT_value(eku, i), 1) >= 0) ext_key_usage->Set(j++, OneByteString(env->isolate(), buf)); } sk_ASN1_OBJECT_pop_free(eku, ASN1_OBJECT_free); info->Set(env->ext_key_usage_string(), ext_key_usage); } if (ASN1_INTEGER* serial_number = X509_get_serialNumber(cert)) { if (BIGNUM* bn = ASN1_INTEGER_to_BN(serial_number, nullptr)) { if (char* buf = BN_bn2hex(bn)) { info->Set(env->serial_number_string(), OneByteString(env->isolate(), buf)); OPENSSL_free(buf); } BN_free(bn); } } // Raw DER certificate int size = i2d_X509(cert, nullptr); Local buff = Buffer::New(env, size).ToLocalChecked(); unsigned char* serialized = reinterpret_cast( Buffer::Data(buff)); i2d_X509(cert, &serialized); info->Set(env->raw_string(), buff); return scope.Escape(info); } // TODO(indutny): Split it into multiple smaller functions template void SSLWrap::GetPeerCertificate( const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence unused variable warning. Local result; Local info; // NOTE: This is because of the odd OpenSSL behavior. On client `cert_chain` // contains the `peer_certificate`, but on server it doesn't X509* cert = w->is_server() ? SSL_get_peer_certificate(w->ssl_) : nullptr; STACK_OF(X509)* ssl_certs = SSL_get_peer_cert_chain(w->ssl_); STACK_OF(X509)* peer_certs = nullptr; if (cert == nullptr && ssl_certs == nullptr) goto done; if (cert == nullptr && sk_X509_num(ssl_certs) == 0) goto done; // Short result requested if (args.Length() < 1 || !args[0]->IsTrue()) { result = X509ToObject(env, cert == nullptr ? sk_X509_value(ssl_certs, 0) : cert); goto done; } // Clone `ssl_certs`, because we are going to destruct it peer_certs = sk_X509_new(nullptr); if (cert != nullptr) sk_X509_push(peer_certs, cert); for (int i = 0; i < sk_X509_num(ssl_certs); i++) { cert = X509_dup(sk_X509_value(ssl_certs, i)); if (cert == nullptr) goto done; if (!sk_X509_push(peer_certs, cert)) goto done; } // First and main certificate cert = sk_X509_value(peer_certs, 0); result = X509ToObject(env, cert); info = result; // Put issuer inside the object cert = sk_X509_delete(peer_certs, 0); while (sk_X509_num(peer_certs) > 0) { int i; for (i = 0; i < sk_X509_num(peer_certs); i++) { X509* ca = sk_X509_value(peer_certs, i); if (X509_check_issued(ca, cert) != X509_V_OK) continue; Local ca_info = X509ToObject(env, ca); info->Set(env->issuercert_string(), ca_info); info = ca_info; // NOTE: Intentionally freeing cert that is not used anymore X509_free(cert); // Delete cert and continue aggregating issuers cert = sk_X509_delete(peer_certs, i); break; } // Issuer not found, break out of the loop if (i == sk_X509_num(peer_certs)) break; } // Last certificate should be self-signed while (X509_check_issued(cert, cert) != X509_V_OK) { X509* ca; if (SSL_CTX_get_issuer(SSL_get_SSL_CTX(w->ssl_), cert, &ca) <= 0) break; Local ca_info = X509ToObject(env, ca); info->Set(env->issuercert_string(), ca_info); info = ca_info; // NOTE: Intentionally freeing cert that is not used anymore X509_free(cert); // Delete cert and continue aggregating issuers cert = ca; } // Self-issued certificate if (X509_check_issued(cert, cert) == X509_V_OK) info->Set(env->issuercert_string(), info); CHECK_NE(cert, nullptr); done: if (cert != nullptr) X509_free(cert); if (peer_certs != nullptr) sk_X509_pop_free(peer_certs, X509_free); if (result.IsEmpty()) result = Object::New(env->isolate()); args.GetReturnValue().Set(result); } template void SSLWrap::GetSession(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); SSL_SESSION* sess = SSL_get_session(w->ssl_); if (sess == nullptr) return; int slen = i2d_SSL_SESSION(sess, nullptr); CHECK_GT(slen, 0); char* sbuf = new char[slen]; unsigned char* p = reinterpret_cast(sbuf); i2d_SSL_SESSION(sess, &p); args.GetReturnValue().Set(Encode(env->isolate(), sbuf, slen, BUFFER)); delete[] sbuf; } template void SSLWrap::SetSession(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); if (args.Length() < 1) { return env->ThrowError("Session argument is mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Session"); size_t slen = Buffer::Length(args[0]); char* sbuf = new char[slen]; memcpy(sbuf, Buffer::Data(args[0]), slen); const unsigned char* p = reinterpret_cast(sbuf); SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, slen); delete[] sbuf; if (sess == nullptr) return; int r = SSL_set_session(w->ssl_, sess); SSL_SESSION_free(sess); if (!r) return env->ThrowError("SSL_set_session error"); } template void SSLWrap::LoadSession(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); if (args.Length() >= 1 && Buffer::HasInstance(args[0])) { ssize_t slen = Buffer::Length(args[0]); char* sbuf = Buffer::Data(args[0]); const unsigned char* p = reinterpret_cast(sbuf); SSL_SESSION* sess = d2i_SSL_SESSION(nullptr, &p, slen); // Setup next session and move hello to the BIO buffer if (w->next_sess_ != nullptr) SSL_SESSION_free(w->next_sess_); w->next_sess_ = sess; } } template void SSLWrap::IsSessionReused(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); bool yes = SSL_session_reused(w->ssl_); args.GetReturnValue().Set(yes); } template void SSLWrap::EndParser(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); w->hello_parser_.End(); } template void SSLWrap::Renegotiate(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence unused variable warning. bool yes = SSL_renegotiate(w->ssl_) == 1; args.GetReturnValue().Set(yes); } template void SSLWrap::Shutdown(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); int rv = SSL_shutdown(w->ssl_); args.GetReturnValue().Set(rv); } template void SSLWrap::GetTLSTicket(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); SSL_SESSION* sess = SSL_get_session(w->ssl_); if (sess == nullptr || sess->tlsext_tick == nullptr) return; Local buff = Buffer::Copy( env, reinterpret_cast(sess->tlsext_tick), sess->tlsext_ticklen).ToLocalChecked(); args.GetReturnValue().Set(buff); } template void SSLWrap::NewSessionDone(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); w->new_session_wait_ = false; w->NewSessionDoneCb(); } template void SSLWrap::SetOCSPResponse( const v8::FunctionCallbackInfo& args) { #ifdef NODE__HAVE_TLSEXT_STATUS_CB Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); if (args.Length() < 1) return env->ThrowTypeError("OCSP response argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "OCSP response"); w->ocsp_response_.Reset(args.GetIsolate(), args[0].As()); #endif // NODE__HAVE_TLSEXT_STATUS_CB } template void SSLWrap::RequestOCSP( const v8::FunctionCallbackInfo& args) { #ifdef NODE__HAVE_TLSEXT_STATUS_CB Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); SSL_set_tlsext_status_type(w->ssl_, TLSEXT_STATUSTYPE_ocsp); #endif // NODE__HAVE_TLSEXT_STATUS_CB } template void SSLWrap::GetEphemeralKeyInfo( const v8::FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = Environment::GetCurrent(args); CHECK_NE(w->ssl_, nullptr); // tmp key is available on only client if (w->is_server()) return args.GetReturnValue().SetNull(); Local info = Object::New(env->isolate()); EVP_PKEY* key; if (SSL_get_server_tmp_key(w->ssl_, &key)) { switch (EVP_PKEY_id(key)) { case EVP_PKEY_DH: info->Set(env->type_string(), FIXED_ONE_BYTE_STRING(env->isolate(), "DH")); info->Set(env->size_string(), Integer::New(env->isolate(), EVP_PKEY_bits(key))); break; case EVP_PKEY_EC: { EC_KEY* ec = EVP_PKEY_get1_EC_KEY(key); int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); EC_KEY_free(ec); info->Set(env->type_string(), FIXED_ONE_BYTE_STRING(env->isolate(), "ECDH")); info->Set(env->name_string(), OneByteString(args.GetIsolate(), OBJ_nid2sn(nid))); info->Set(env->size_string(), Integer::New(env->isolate(), EVP_PKEY_bits(key))); } } EVP_PKEY_free(key); } return args.GetReturnValue().Set(info); } #ifdef SSL_set_max_send_fragment template void SSLWrap::SetMaxSendFragment( const v8::FunctionCallbackInfo& args) { CHECK(args.Length() >= 1 && args[0]->IsNumber()); Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); int rv = SSL_set_max_send_fragment(w->ssl_, args[0]->Int32Value()); args.GetReturnValue().Set(rv); } #endif // SSL_set_max_send_fragment template void SSLWrap::IsInitFinished(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); bool yes = SSL_is_init_finished(w->ssl_); args.GetReturnValue().Set(yes); } template void SSLWrap::VerifyError(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); // XXX(bnoordhuis) The UNABLE_TO_GET_ISSUER_CERT error when there is no // peer certificate is questionable but it's compatible with what was // here before. long x509_verify_error = // NOLINT(runtime/int) X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT; if (X509* peer_cert = SSL_get_peer_certificate(w->ssl_)) { X509_free(peer_cert); x509_verify_error = SSL_get_verify_result(w->ssl_); } if (x509_verify_error == X509_V_OK) return args.GetReturnValue().SetNull(); // XXX(bnoordhuis) X509_verify_cert_error_string() is not actually thread-safe // in the presence of invalid error codes. Probably academical but something // to keep in mind if/when node ever grows multi-isolate capabilities. const char* reason = X509_verify_cert_error_string(x509_verify_error); const char* code = reason; #define CASE_X509_ERR(CODE) case X509_V_ERR_##CODE: code = #CODE; break; switch (x509_verify_error) { CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT) CASE_X509_ERR(UNABLE_TO_GET_CRL) CASE_X509_ERR(UNABLE_TO_DECRYPT_CERT_SIGNATURE) CASE_X509_ERR(UNABLE_TO_DECRYPT_CRL_SIGNATURE) CASE_X509_ERR(UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY) CASE_X509_ERR(CERT_SIGNATURE_FAILURE) CASE_X509_ERR(CRL_SIGNATURE_FAILURE) CASE_X509_ERR(CERT_NOT_YET_VALID) CASE_X509_ERR(CERT_HAS_EXPIRED) CASE_X509_ERR(CRL_NOT_YET_VALID) CASE_X509_ERR(CRL_HAS_EXPIRED) CASE_X509_ERR(ERROR_IN_CERT_NOT_BEFORE_FIELD) CASE_X509_ERR(ERROR_IN_CERT_NOT_AFTER_FIELD) CASE_X509_ERR(ERROR_IN_CRL_LAST_UPDATE_FIELD) CASE_X509_ERR(ERROR_IN_CRL_NEXT_UPDATE_FIELD) CASE_X509_ERR(OUT_OF_MEM) CASE_X509_ERR(DEPTH_ZERO_SELF_SIGNED_CERT) CASE_X509_ERR(SELF_SIGNED_CERT_IN_CHAIN) CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT_LOCALLY) CASE_X509_ERR(UNABLE_TO_VERIFY_LEAF_SIGNATURE) CASE_X509_ERR(CERT_CHAIN_TOO_LONG) CASE_X509_ERR(CERT_REVOKED) CASE_X509_ERR(INVALID_CA) CASE_X509_ERR(PATH_LENGTH_EXCEEDED) CASE_X509_ERR(INVALID_PURPOSE) CASE_X509_ERR(CERT_UNTRUSTED) CASE_X509_ERR(CERT_REJECTED) } #undef CASE_X509_ERR Isolate* isolate = args.GetIsolate(); Local reason_string = OneByteString(isolate, reason); Local exception_value = Exception::Error(reason_string); Local exception_object = exception_value->ToObject(isolate); exception_object->Set(FIXED_ONE_BYTE_STRING(isolate, "code"), OneByteString(isolate, code)); args.GetReturnValue().Set(exception_object); } template void SSLWrap::GetCurrentCipher(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->ssl_env(); const SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_); if (c == nullptr) return; Local info = Object::New(env->isolate()); const char* cipher_name = SSL_CIPHER_get_name(c); info->Set(env->name_string(), OneByteString(args.GetIsolate(), cipher_name)); const char* cipher_version = SSL_CIPHER_get_version(c); info->Set(env->version_string(), OneByteString(args.GetIsolate(), cipher_version)); args.GetReturnValue().Set(info); } template void SSLWrap::GetProtocol(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); const char* tls_version = SSL_get_version(w->ssl_); args.GetReturnValue().Set(OneByteString(args.GetIsolate(), tls_version)); } #ifndef OPENSSL_NO_NEXTPROTONEG template int SSLWrap::AdvertiseNextProtoCallback(SSL* s, const unsigned char** data, unsigned int* len, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); auto npn_buffer = w->object()->GetPrivate( env->context(), env->npn_buffer_private_symbol()).ToLocalChecked(); if (npn_buffer->IsUndefined()) { // No initialization - no NPN protocols *data = reinterpret_cast(""); *len = 0; } else { CHECK(Buffer::HasInstance(npn_buffer)); *data = reinterpret_cast(Buffer::Data(npn_buffer)); *len = Buffer::Length(npn_buffer); } return SSL_TLSEXT_ERR_OK; } template int SSLWrap::SelectNextProtoCallback(SSL* s, unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); auto npn_buffer = w->object()->GetPrivate( env->context(), env->npn_buffer_private_symbol()).ToLocalChecked(); if (npn_buffer->IsUndefined()) { // We should at least select one protocol // If server is using NPN *out = reinterpret_cast(const_cast("http/1.1")); *outlen = 8; // set status: unsupported CHECK( w->object()->SetPrivate( env->context(), env->selected_npn_buffer_private_symbol(), False(env->isolate())).FromJust()); return SSL_TLSEXT_ERR_OK; } CHECK(Buffer::HasInstance(npn_buffer)); const unsigned char* npn_protos = reinterpret_cast(Buffer::Data(npn_buffer)); size_t len = Buffer::Length(npn_buffer); int status = SSL_select_next_proto(out, outlen, in, inlen, npn_protos, len); Local result; switch (status) { case OPENSSL_NPN_UNSUPPORTED: result = Null(env->isolate()); break; case OPENSSL_NPN_NEGOTIATED: result = OneByteString(env->isolate(), *out, *outlen); break; case OPENSSL_NPN_NO_OVERLAP: result = False(env->isolate()); break; default: break; } CHECK( w->object()->SetPrivate( env->context(), env->selected_npn_buffer_private_symbol(), result).FromJust()); return SSL_TLSEXT_ERR_OK; } template void SSLWrap::GetNegotiatedProto( const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); if (w->is_client()) { auto selected_npn_buffer = w->object()->GetPrivate( env->context(), env->selected_npn_buffer_private_symbol()).ToLocalChecked(); args.GetReturnValue().Set(selected_npn_buffer); return; } const unsigned char* npn_proto; unsigned int npn_proto_len; SSL_get0_next_proto_negotiated(w->ssl_, &npn_proto, &npn_proto_len); if (!npn_proto) return args.GetReturnValue().Set(false); args.GetReturnValue().Set( OneByteString(args.GetIsolate(), npn_proto, npn_proto_len)); } template void SSLWrap::SetNPNProtocols(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); if (args.Length() < 1) return env->ThrowTypeError("NPN protocols argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "NPN protocols"); CHECK( w->object()->SetPrivate( env->context(), env->npn_buffer_private_symbol(), args[0]).FromJust()); } #endif // OPENSSL_NO_NEXTPROTONEG #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation template int SSLWrap::SelectALPNCallback(SSL* s, const unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local alpn_buffer = w->object()->GetPrivate( env->context(), env->alpn_buffer_private_symbol()).ToLocalChecked(); CHECK(Buffer::HasInstance(alpn_buffer)); const unsigned char* alpn_protos = reinterpret_cast(Buffer::Data(alpn_buffer)); unsigned alpn_protos_len = Buffer::Length(alpn_buffer); int status = SSL_select_next_proto(const_cast(out), outlen, alpn_protos, alpn_protos_len, in, inlen); switch (status) { case OPENSSL_NPN_NO_OVERLAP: // According to 3.2. Protocol Selection of RFC7301, // fatal no_application_protocol alert shall be sent // but current openssl does not support it yet. See // https://rt.openssl.org/Ticket/Display.html?id=3463&user=guest&pass=guest // Instead, we send a warning alert for now. return SSL_TLSEXT_ERR_ALERT_WARNING; case OPENSSL_NPN_NEGOTIATED: return SSL_TLSEXT_ERR_OK; default: return SSL_TLSEXT_ERR_ALERT_FATAL; } } #endif // TLSEXT_TYPE_application_layer_protocol_negotiation template void SSLWrap::GetALPNNegotiatedProto( const FunctionCallbackInfo& args) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); const unsigned char* alpn_proto; unsigned int alpn_proto_len; SSL_get0_alpn_selected(w->ssl_, &alpn_proto, &alpn_proto_len); if (!alpn_proto) return args.GetReturnValue().Set(false); args.GetReturnValue().Set( OneByteString(args.GetIsolate(), alpn_proto, alpn_proto_len)); #endif // TLSEXT_TYPE_application_layer_protocol_negotiation } template void SSLWrap::SetALPNProtocols( const FunctionCallbackInfo& args) { #ifdef TLSEXT_TYPE_application_layer_protocol_negotiation Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); if (args.Length() < 1 || !Buffer::HasInstance(args[0])) return env->ThrowTypeError("Must give a Buffer as first argument"); if (w->is_client()) { const unsigned char* alpn_protos = reinterpret_cast(Buffer::Data(args[0])); unsigned alpn_protos_len = Buffer::Length(args[0]); int r = SSL_set_alpn_protos(w->ssl_, alpn_protos, alpn_protos_len); CHECK_EQ(r, 0); } else { CHECK( w->object()->SetPrivate( env->context(), env->alpn_buffer_private_symbol(), args[0]).FromJust()); // Server should select ALPN protocol from list of advertised by client SSL_CTX_set_alpn_select_cb(SSL_get_SSL_CTX(w->ssl_), SelectALPNCallback, nullptr); } #endif // TLSEXT_TYPE_application_layer_protocol_negotiation } #ifdef NODE__HAVE_TLSEXT_STATUS_CB template int SSLWrap::TLSExtStatusCallback(SSL* s, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->env(); HandleScope handle_scope(env->isolate()); if (w->is_client()) { // Incoming response const unsigned char* resp; int len = SSL_get_tlsext_status_ocsp_resp(s, &resp); Local arg; if (resp == nullptr) { arg = Null(env->isolate()); } else { arg = Buffer::Copy( env, reinterpret_cast(const_cast(resp)), len).ToLocalChecked(); } w->MakeCallback(env->onocspresponse_string(), 1, &arg); // Somehow, client is expecting different return value here return 1; } else { // Outgoing response if (w->ocsp_response_.IsEmpty()) return SSL_TLSEXT_ERR_NOACK; Local obj = PersistentToLocal(env->isolate(), w->ocsp_response_); char* resp = Buffer::Data(obj); size_t len = Buffer::Length(obj); // OpenSSL takes control of the pointer after accepting it char* data = node::Malloc(len); memcpy(data, resp, len); if (!SSL_set_tlsext_status_ocsp_resp(s, data, len)) free(data); w->ocsp_response_.Reset(); return SSL_TLSEXT_ERR_OK; } } #endif // NODE__HAVE_TLSEXT_STATUS_CB template void SSLWrap::WaitForCertCb(CertCb cb, void* arg) { cert_cb_ = cb; cert_cb_arg_ = arg; } template int SSLWrap::SSLCertCallback(SSL* s, void* arg) { Base* w = static_cast(SSL_get_app_data(s)); if (!w->is_server()) return 1; if (!w->is_waiting_cert_cb()) return 1; if (w->cert_cb_running_) return -1; Environment* env = w->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); w->cert_cb_running_ = true; Local info = Object::New(env->isolate()); const char* servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); if (servername == nullptr) { info->Set(env->servername_string(), String::Empty(env->isolate())); } else { Local str = OneByteString(env->isolate(), servername, strlen(servername)); info->Set(env->servername_string(), str); } bool ocsp = false; #ifdef NODE__HAVE_TLSEXT_STATUS_CB ocsp = s->tlsext_status_type == TLSEXT_STATUSTYPE_ocsp; #endif info->Set(env->ocsp_request_string(), Boolean::New(env->isolate(), ocsp)); Local argv[] = { info }; w->MakeCallback(env->oncertcb_string(), arraysize(argv), argv); if (!w->cert_cb_running_) return 1; // Performing async action, wait... return -1; } template void SSLWrap::CertCbDone(const FunctionCallbackInfo& args) { Base* w; ASSIGN_OR_RETURN_UNWRAP(&w, args.Holder()); Environment* env = w->env(); CHECK(w->is_waiting_cert_cb() && w->cert_cb_running_); Local object = w->object(); Local ctx = object->Get(env->sni_context_string()); Local cons = env->secure_context_constructor_template(); // Not an object, probably undefined or null if (!ctx->IsObject()) goto fire_cb; if (cons->HasInstance(ctx)) { SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, ctx.As()); w->sni_context_.Reset(); w->sni_context_.Reset(env->isolate(), ctx); int rv; // NOTE: reference count is not increased by this API methods X509* x509 = SSL_CTX_get0_certificate(sc->ctx_); EVP_PKEY* pkey = SSL_CTX_get0_privatekey(sc->ctx_); STACK_OF(X509)* chain; rv = SSL_CTX_get0_chain_certs(sc->ctx_, &chain); if (rv) rv = SSL_use_certificate(w->ssl_, x509); if (rv) rv = SSL_use_PrivateKey(w->ssl_, pkey); if (rv && chain != nullptr) rv = SSL_set1_chain(w->ssl_, chain); if (rv) rv = w->SetCACerts(sc); if (!rv) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (!err) return env->ThrowError("CertCbDone"); return ThrowCryptoError(env, err); } } else { // Failure: incorrect SNI context object Local err = Exception::TypeError(env->sni_context_err_string()); w->MakeCallback(env->onerror_string(), 1, &err); return; } fire_cb: CertCb cb; void* arg; cb = w->cert_cb_; arg = w->cert_cb_arg_; w->cert_cb_running_ = false; w->cert_cb_ = nullptr; w->cert_cb_arg_ = nullptr; cb(arg); } template void SSLWrap::SSLGetter(Local property, const PropertyCallbackInfo& info) { Base* base; ASSIGN_OR_RETURN_UNWRAP(&base, info.This()); SSL* ssl = base->ssl_; Local ext = External::New(info.GetIsolate(), ssl); info.GetReturnValue().Set(ext); } template void SSLWrap::DestroySSL() { if (ssl_ == nullptr) return; SSL_free(ssl_); env_->isolate()->AdjustAmountOfExternalAllocatedMemory(-kExternalSize); ssl_ = nullptr; } template void SSLWrap::SetSNIContext(SecureContext* sc) { InitNPN(sc); CHECK_EQ(SSL_set_SSL_CTX(ssl_, sc->ctx_), sc->ctx_); SetCACerts(sc); } template int SSLWrap::SetCACerts(SecureContext* sc) { int err = SSL_set1_verify_cert_store(ssl_, SSL_CTX_get_cert_store(sc->ctx_)); if (err != 1) return err; STACK_OF(X509_NAME)* list = SSL_dup_CA_list( SSL_CTX_get_client_CA_list(sc->ctx_)); // NOTE: `SSL_set_client_CA_list` takes the ownership of `list` SSL_set_client_CA_list(ssl_, list); return 1; } void Connection::OnClientHelloParseEnd(void* arg) { Connection* conn = static_cast(arg); // Write all accumulated data int r = BIO_write(conn->bio_read_, reinterpret_cast(conn->hello_data_), conn->hello_offset_); conn->HandleBIOError(conn->bio_read_, "BIO_write", r); conn->SetShutdownFlags(); } #ifdef SSL_PRINT_DEBUG # define DEBUG_PRINT(...) fprintf (stderr, __VA_ARGS__) #else # define DEBUG_PRINT(...) #endif int Connection::HandleBIOError(BIO *bio, const char* func, int rv) { if (rv >= 0) return rv; int retry = BIO_should_retry(bio); (void) retry; // unused if !defined(SSL_PRINT_DEBUG) if (BIO_should_write(bio)) { DEBUG_PRINT("[%p] BIO: %s want write. should retry %d\n", ssl_, func, retry); return 0; } else if (BIO_should_read(bio)) { DEBUG_PRINT("[%p] BIO: %s want read. should retry %d\n", ssl_, func, retry); return 0; } else { char ssl_error_buf[512]; ERR_error_string_n(rv, ssl_error_buf, sizeof(ssl_error_buf)); HandleScope scope(ssl_env()->isolate()); Local exception = Exception::Error(OneByteString(ssl_env()->isolate(), ssl_error_buf)); object()->Set(ssl_env()->error_string(), exception); DEBUG_PRINT("[%p] BIO: %s failed: (%d) %s\n", ssl_, func, rv, ssl_error_buf); return rv; } return 0; } int Connection::HandleSSLError(const char* func, int rv, ZeroStatus zs, SyscallStatus ss) { ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence unused variable warning. if (rv > 0) return rv; if (rv == 0 && zs == kZeroIsNotAnError) return rv; int err = SSL_get_error(ssl_, rv); if (err == SSL_ERROR_NONE) { return 0; } else if (err == SSL_ERROR_WANT_WRITE) { DEBUG_PRINT("[%p] SSL: %s want write\n", ssl_, func); return 0; } else if (err == SSL_ERROR_WANT_READ) { DEBUG_PRINT("[%p] SSL: %s want read\n", ssl_, func); return 0; } else if (err == SSL_ERROR_WANT_X509_LOOKUP) { DEBUG_PRINT("[%p] SSL: %s want x509 lookup\n", ssl_, func); return 0; } else if (err == SSL_ERROR_ZERO_RETURN) { HandleScope scope(ssl_env()->isolate()); Local exception = Exception::Error(ssl_env()->zero_return_string()); object()->Set(ssl_env()->error_string(), exception); return rv; } else if (err == SSL_ERROR_SYSCALL && ss == kIgnoreSyscall) { return 0; } else { HandleScope scope(ssl_env()->isolate()); BUF_MEM* mem; BIO *bio; CHECK(err == SSL_ERROR_SSL || err == SSL_ERROR_SYSCALL); // XXX We need to drain the error queue for this thread or else OpenSSL // has the possibility of blocking connections? This problem is not well // understood. And we should be somehow propagating these errors up // into JavaScript. There is no test which demonstrates this problem. // https://github.com/joyent/node/issues/1719 bio = BIO_new(BIO_s_mem()); if (bio != nullptr) { ERR_print_errors(bio); BIO_get_mem_ptr(bio, &mem); Local exception = Exception::Error( OneByteString(ssl_env()->isolate(), mem->data, mem->length)); object()->Set(ssl_env()->error_string(), exception); BIO_free_all(bio); } return rv; } return 0; } void Connection::ClearError() { #ifndef NDEBUG HandleScope scope(ssl_env()->isolate()); // We should clear the error in JS-land Local error_key = ssl_env()->error_string(); Local error = object()->Get(error_key); CHECK_EQ(error->BooleanValue(), false); #endif // NDEBUG } void Connection::SetShutdownFlags() { HandleScope scope(ssl_env()->isolate()); int flags = SSL_get_shutdown(ssl_); if (flags & SSL_SENT_SHUTDOWN) { Local sent_shutdown_key = ssl_env()->sent_shutdown_string(); object()->Set(sent_shutdown_key, True(ssl_env()->isolate())); } if (flags & SSL_RECEIVED_SHUTDOWN) { Local received_shutdown_key = ssl_env()->received_shutdown_string(); object()->Set(received_shutdown_key, True(ssl_env()->isolate())); } } void Connection::NewSessionDoneCb() { HandleScope scope(env()->isolate()); MakeCallback(env()->onnewsessiondone_string(), 0, nullptr); } void Connection::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(Connection::New); t->InstanceTemplate()->SetInternalFieldCount(1); t->SetClassName(FIXED_ONE_BYTE_STRING(env->isolate(), "Connection")); env->SetProtoMethod(t, "encIn", Connection::EncIn); env->SetProtoMethod(t, "clearOut", Connection::ClearOut); env->SetProtoMethod(t, "clearIn", Connection::ClearIn); env->SetProtoMethod(t, "encOut", Connection::EncOut); env->SetProtoMethod(t, "clearPending", Connection::ClearPending); env->SetProtoMethod(t, "encPending", Connection::EncPending); env->SetProtoMethod(t, "start", Connection::Start); env->SetProtoMethod(t, "close", Connection::Close); SSLWrap::AddMethods(env, t); #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB env->SetProtoMethod(t, "getServername", Connection::GetServername); env->SetProtoMethod(t, "setSNICallback", Connection::SetSNICallback); #endif target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Connection"), t->GetFunction()); } inline int compar(const void* a, const void* b) { return memcmp(a, b, CNNIC_WHITELIST_HASH_LEN); } inline int IsSelfSigned(X509* cert) { return X509_NAME_cmp(X509_get_subject_name(cert), X509_get_issuer_name(cert)) == 0; } inline X509* FindRoot(STACK_OF(X509)* sk) { for (int i = 0; i < sk_X509_num(sk); i++) { X509* cert = sk_X509_value(sk, i); if (IsSelfSigned(cert)) return cert; } return nullptr; } inline bool CertIsStartComOrWoSign(X509_NAME* name) { const unsigned char* startcom_wosign_data; X509_NAME* startcom_wosign_name; for (const auto& dn : StartComAndWoSignDNs) { startcom_wosign_data = dn.data; startcom_wosign_name = d2i_X509_NAME(nullptr, &startcom_wosign_data, dn.len); if (X509_NAME_cmp(name, startcom_wosign_name) == 0) return true; } return false; } // Revoke the certificates issued by StartCom or WoSign that has // notBefore after 00:00:00 on October 21, 2016 (1477008000 in epoch). inline bool CheckStartComOrWoSign(X509_NAME* root_name, X509* cert) { if (!CertIsStartComOrWoSign(root_name)) return true; time_t october_21_2016 = static_cast(1477008000); if (X509_cmp_time(X509_get_notBefore(cert), &october_21_2016) < 0) return true; return false; } // Whitelist check for certs issued by CNNIC, StartCom and WoSign. See // https://blog.mozilla.org/security/2015/04/02 // /distrusting-new-cnnic-certificates/ and // https://blog.mozilla.org/security/2016/10/24/ // distrusting-new-wosign-and-startcom-certificates inline CheckResult CheckWhitelistedServerCert(X509_STORE_CTX* ctx) { unsigned char hash[CNNIC_WHITELIST_HASH_LEN]; unsigned int hashlen = CNNIC_WHITELIST_HASH_LEN; STACK_OF(X509)* chain = X509_STORE_CTX_get1_chain(ctx); CHECK_NE(chain, nullptr); CHECK_GT(sk_X509_num(chain), 0); // Take the last cert as root at the first time. X509* root_cert = sk_X509_value(chain, sk_X509_num(chain)-1); X509_NAME* root_name = X509_get_subject_name(root_cert); if (!IsSelfSigned(root_cert)) { root_cert = FindRoot(chain); CHECK_NE(root_cert, nullptr); root_name = X509_get_subject_name(root_cert); } X509* leaf_cert = sk_X509_value(chain, 0); if (!CheckStartComOrWoSign(root_name, leaf_cert)) return CHECK_CERT_REVOKED; // When the cert is issued from either CNNNIC ROOT CA or CNNNIC EV // ROOT CA, check a hash of its leaf cert if it is in the whitelist. if (X509_NAME_cmp(root_name, cnnic_name) == 0 || X509_NAME_cmp(root_name, cnnic_ev_name) == 0) { int ret = X509_digest(leaf_cert, EVP_sha256(), hash, &hashlen); CHECK(ret); void* result = bsearch(hash, WhitelistedCNNICHashes, arraysize(WhitelistedCNNICHashes), CNNIC_WHITELIST_HASH_LEN, compar); if (result == nullptr) { sk_X509_pop_free(chain, X509_free); return CHECK_CERT_REVOKED; } } sk_X509_pop_free(chain, X509_free); return CHECK_OK; } inline int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) { // Failure on verification of the cert is handled in // Connection::VerifyError. if (preverify_ok == 0 || X509_STORE_CTX_get_error(ctx) != X509_V_OK) return 1; // Server does not need to check the whitelist. SSL* ssl = static_cast( X509_STORE_CTX_get_ex_data(ctx, SSL_get_ex_data_X509_STORE_CTX_idx())); if (SSL_is_server(ssl)) return 1; // Client needs to check if the server cert is listed in the // whitelist when it is issued by the specific rootCAs. CheckResult ret = CheckWhitelistedServerCert(ctx); if (ret == CHECK_CERT_REVOKED) X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_REVOKED); return ret; } #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB int Connection::SelectSNIContextCallback_(SSL *s, int *ad, void* arg) { Connection* conn = static_cast(SSL_get_app_data(s)); Environment* env = conn->env(); HandleScope scope(env->isolate()); const char* servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); if (servername) { conn->servername_.Reset(env->isolate(), OneByteString(env->isolate(), servername)); // Call the SNI callback and use its return value as context if (!conn->sniObject_.IsEmpty()) { conn->sni_context_.Reset(); Local sni_obj = PersistentToLocal(env->isolate(), conn->sniObject_); Local arg = PersistentToLocal(env->isolate(), conn->servername_); Local ret = node::MakeCallback(env->isolate(), sni_obj, env->onselect_string(), 1, &arg); // If ret is SecureContext Local secure_context_constructor_template = env->secure_context_constructor_template(); if (secure_context_constructor_template->HasInstance(ret)) { conn->sni_context_.Reset(env->isolate(), ret); SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, ret.As(), SSL_TLSEXT_ERR_NOACK); conn->SetSNIContext(sc); } else { return SSL_TLSEXT_ERR_NOACK; } } } return SSL_TLSEXT_ERR_OK; } #endif void Connection::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (args.Length() < 1 || !args[0]->IsObject()) { env->ThrowError("First argument must be a tls module SecureContext"); return; } SecureContext* sc; ASSIGN_OR_RETURN_UNWRAP(&sc, args[0].As()); bool is_server = args[1]->BooleanValue(); SSLWrap::Kind kind = is_server ? SSLWrap::kServer : SSLWrap::kClient; Connection* conn = new Connection(env, args.This(), sc, kind); conn->bio_read_ = NodeBIO::New(); conn->bio_write_ = NodeBIO::New(); SSL_set_app_data(conn->ssl_, conn); if (is_server) SSL_set_info_callback(conn->ssl_, SSLInfoCallback); InitNPN(sc); SSL_set_cert_cb(conn->ssl_, SSLWrap::SSLCertCallback, conn); #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB if (is_server) { SSL_CTX_set_tlsext_servername_callback(sc->ctx_, SelectSNIContextCallback_); } else if (args[2]->IsString()) { const node::Utf8Value servername(env->isolate(), args[2]); SSL_set_tlsext_host_name(conn->ssl_, *servername); } #endif SSL_set_bio(conn->ssl_, conn->bio_read_, conn->bio_write_); #ifdef SSL_MODE_RELEASE_BUFFERS long mode = SSL_get_mode(conn->ssl_); // NOLINT(runtime/int) SSL_set_mode(conn->ssl_, mode | SSL_MODE_RELEASE_BUFFERS); #endif int verify_mode; if (is_server) { bool request_cert = args[2]->BooleanValue(); if (!request_cert) { // Note reject_unauthorized ignored. verify_mode = SSL_VERIFY_NONE; } else { bool reject_unauthorized = args[3]->BooleanValue(); verify_mode = SSL_VERIFY_PEER; if (reject_unauthorized) verify_mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT; } } else { // Note request_cert and reject_unauthorized are ignored for clients. verify_mode = SSL_VERIFY_NONE; } // Always allow a connection. We'll reject in javascript. SSL_set_verify(conn->ssl_, verify_mode, VerifyCallback); if (is_server) { SSL_set_accept_state(conn->ssl_); } else { SSL_set_connect_state(conn->ssl_); } } void Connection::SSLInfoCallback(const SSL *ssl_, int where, int ret) { if (!(where & (SSL_CB_HANDSHAKE_START | SSL_CB_HANDSHAKE_DONE))) return; // Be compatible with older versions of OpenSSL. SSL_get_app_data() wants // a non-const SSL* in OpenSSL <= 0.9.7e. SSL* ssl = const_cast(ssl_); Connection* conn = static_cast(SSL_get_app_data(ssl)); Environment* env = conn->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); if (where & SSL_CB_HANDSHAKE_START) { conn->MakeCallback(env->onhandshakestart_string(), 0, nullptr); } if (where & SSL_CB_HANDSHAKE_DONE) { conn->MakeCallback(env->onhandshakedone_string(), 0, nullptr); } } void Connection::EncIn(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); Environment* env = conn->env(); if (args.Length() < 3) { return env->ThrowTypeError( "Data, offset, and length arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (!Buffer::IsWithinBounds(off, len, buffer_length)) return env->ThrowRangeError("offset + length > buffer.length"); int bytes_written; char* data = buffer_data + off; if (conn->is_server() && !conn->hello_parser_.IsEnded()) { // Just accumulate data, everything will be pushed to BIO later if (conn->hello_parser_.IsPaused()) { bytes_written = 0; } else { // Copy incoming data to the internal buffer // (which has a size of the biggest possible TLS frame) size_t available = sizeof(conn->hello_data_) - conn->hello_offset_; size_t copied = len < available ? len : available; memcpy(conn->hello_data_ + conn->hello_offset_, data, copied); conn->hello_offset_ += copied; conn->hello_parser_.Parse(conn->hello_data_, conn->hello_offset_); bytes_written = copied; } } else { bytes_written = BIO_write(conn->bio_read_, data, len); conn->HandleBIOError(conn->bio_read_, "BIO_write", bytes_written); conn->SetShutdownFlags(); } args.GetReturnValue().Set(bytes_written); } void Connection::ClearOut(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); Environment* env = conn->env(); if (args.Length() < 3) { return env->ThrowTypeError( "Data, offset, and length arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (!Buffer::IsWithinBounds(off, len, buffer_length)) return env->ThrowRangeError("offset + length > buffer.length"); if (!SSL_is_init_finished(conn->ssl_)) { int rv; if (conn->is_server()) { rv = SSL_accept(conn->ssl_); conn->HandleSSLError("SSL_accept:ClearOut", rv, kZeroIsAnError, kSyscallError); } else { rv = SSL_connect(conn->ssl_); conn->HandleSSLError("SSL_connect:ClearOut", rv, kZeroIsAnError, kSyscallError); } if (rv < 0) { return args.GetReturnValue().Set(rv); } } int bytes_read = SSL_read(conn->ssl_, buffer_data + off, len); conn->HandleSSLError("SSL_read:ClearOut", bytes_read, kZeroIsNotAnError, kSyscallError); conn->SetShutdownFlags(); args.GetReturnValue().Set(bytes_read); } void Connection::ClearPending(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); int bytes_pending = BIO_pending(conn->bio_read_); args.GetReturnValue().Set(bytes_pending); } void Connection::EncPending(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); int bytes_pending = BIO_pending(conn->bio_write_); args.GetReturnValue().Set(bytes_pending); } void Connection::EncOut(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); Environment* env = conn->env(); if (args.Length() < 3) { return env->ThrowTypeError( "Data, offset, and length arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (!Buffer::IsWithinBounds(off, len, buffer_length)) return env->ThrowRangeError("offset + length > buffer.length"); int bytes_read = BIO_read(conn->bio_write_, buffer_data + off, len); conn->HandleBIOError(conn->bio_write_, "BIO_read:EncOut", bytes_read); conn->SetShutdownFlags(); args.GetReturnValue().Set(bytes_read); } void Connection::ClearIn(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); Environment* env = conn->env(); if (args.Length() < 3) { return env->ThrowTypeError( "Data, offset, and length arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (!Buffer::IsWithinBounds(off, len, buffer_length)) return env->ThrowRangeError("offset + length > buffer.length"); if (!SSL_is_init_finished(conn->ssl_)) { int rv; if (conn->is_server()) { rv = SSL_accept(conn->ssl_); conn->HandleSSLError("SSL_accept:ClearIn", rv, kZeroIsAnError, kSyscallError); } else { rv = SSL_connect(conn->ssl_); conn->HandleSSLError("SSL_connect:ClearIn", rv, kZeroIsAnError, kSyscallError); } if (rv < 0) { return args.GetReturnValue().Set(rv); } } int bytes_written = SSL_write(conn->ssl_, buffer_data + off, len); conn->HandleSSLError("SSL_write:ClearIn", bytes_written, len == 0 ? kZeroIsNotAnError : kZeroIsAnError, kSyscallError); conn->SetShutdownFlags(); args.GetReturnValue().Set(bytes_written); } void Connection::Start(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); int rv = 0; if (!SSL_is_init_finished(conn->ssl_)) { if (conn->is_server()) { rv = SSL_accept(conn->ssl_); conn->HandleSSLError("SSL_accept:Start", rv, kZeroIsAnError, kSyscallError); } else { rv = SSL_connect(conn->ssl_); conn->HandleSSLError("SSL_connect:Start", rv, kZeroIsAnError, kSyscallError); } } args.GetReturnValue().Set(rv); } void Connection::Close(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); if (conn->ssl_ != nullptr) { SSL_free(conn->ssl_); conn->ssl_ = nullptr; } } #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB void Connection::GetServername(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); if (conn->is_server() && !conn->servername_.IsEmpty()) { args.GetReturnValue().Set(conn->servername_); } else { args.GetReturnValue().Set(false); } } void Connection::SetSNICallback(const FunctionCallbackInfo& args) { Connection* conn; ASSIGN_OR_RETURN_UNWRAP(&conn, args.Holder()); Environment* env = conn->env(); if (args.Length() < 1 || !args[0]->IsFunction()) { return env->ThrowError("Must give a Function as first argument"); } Local obj = Object::New(env->isolate()); obj->Set(FIXED_ONE_BYTE_STRING(args.GetIsolate(), "onselect"), args[0]); conn->sniObject_.Reset(args.GetIsolate(), obj); } #endif void CipherBase::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "init", Init); env->SetProtoMethod(t, "initiv", InitIv); env->SetProtoMethod(t, "update", Update); env->SetProtoMethod(t, "final", Final); env->SetProtoMethod(t, "setAutoPadding", SetAutoPadding); env->SetProtoMethod(t, "getAuthTag", GetAuthTag); env->SetProtoMethod(t, "setAuthTag", SetAuthTag); env->SetProtoMethod(t, "setAAD", SetAAD); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "CipherBase"), t->GetFunction()); } void CipherBase::New(const FunctionCallbackInfo& args) { CHECK_EQ(args.IsConstructCall(), true); CipherKind kind = args[0]->IsTrue() ? kCipher : kDecipher; Environment* env = Environment::GetCurrent(args); new CipherBase(env, args.This(), kind); } void CipherBase::Init(const char* cipher_type, const char* key_buf, int key_buf_len) { HandleScope scope(env()->isolate()); #ifdef NODE_FIPS_MODE if (FIPS_mode()) { return env()->ThrowError( "crypto.createCipher() is not supported in FIPS mode."); } #endif // NODE_FIPS_MODE CHECK_EQ(cipher_, nullptr); cipher_ = EVP_get_cipherbyname(cipher_type); if (cipher_ == nullptr) { return env()->ThrowError("Unknown cipher"); } unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; int key_len = EVP_BytesToKey(cipher_, EVP_md5(), nullptr, reinterpret_cast(key_buf), key_buf_len, 1, key, iv); EVP_CIPHER_CTX_init(&ctx_); const bool encrypt = (kind_ == kCipher); EVP_CipherInit_ex(&ctx_, cipher_, nullptr, nullptr, nullptr, encrypt); if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) { EVP_CIPHER_CTX_cleanup(&ctx_); return env()->ThrowError("Invalid key length"); } EVP_CipherInit_ex(&ctx_, nullptr, nullptr, reinterpret_cast(key), reinterpret_cast(iv), kind_ == kCipher); initialised_ = true; } void CipherBase::Init(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); Environment* env = cipher->env(); if (args.Length() < 2) { return env->ThrowError("Cipher type and key arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Cipher type"); THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Key"); const node::Utf8Value cipher_type(args.GetIsolate(), args[0]); const char* key_buf = Buffer::Data(args[1]); ssize_t key_buf_len = Buffer::Length(args[1]); cipher->Init(*cipher_type, key_buf, key_buf_len); } void CipherBase::InitIv(const char* cipher_type, const char* key, int key_len, const char* iv, int iv_len) { HandleScope scope(env()->isolate()); cipher_ = EVP_get_cipherbyname(cipher_type); if (cipher_ == nullptr) { return env()->ThrowError("Unknown cipher"); } const int expected_iv_len = EVP_CIPHER_iv_length(cipher_); const bool is_gcm_mode = (EVP_CIPH_GCM_MODE == EVP_CIPHER_mode(cipher_)); if (is_gcm_mode == false && iv_len != expected_iv_len) { return env()->ThrowError("Invalid IV length"); } EVP_CIPHER_CTX_init(&ctx_); const bool encrypt = (kind_ == kCipher); EVP_CipherInit_ex(&ctx_, cipher_, nullptr, nullptr, nullptr, encrypt); if (is_gcm_mode && !EVP_CIPHER_CTX_ctrl(&ctx_, EVP_CTRL_GCM_SET_IVLEN, iv_len, nullptr)) { EVP_CIPHER_CTX_cleanup(&ctx_); return env()->ThrowError("Invalid IV length"); } if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) { EVP_CIPHER_CTX_cleanup(&ctx_); return env()->ThrowError("Invalid key length"); } EVP_CipherInit_ex(&ctx_, nullptr, nullptr, reinterpret_cast(key), reinterpret_cast(iv), kind_ == kCipher); initialised_ = true; } void CipherBase::InitIv(const FunctionCallbackInfo& args) { CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); Environment* env = cipher->env(); if (args.Length() < 3) { return env->ThrowError("Cipher type, key, and IV arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Cipher type"); THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Key"); THROW_AND_RETURN_IF_NOT_BUFFER(args[2], "IV"); const node::Utf8Value cipher_type(env->isolate(), args[0]); ssize_t key_len = Buffer::Length(args[1]); const char* key_buf = Buffer::Data(args[1]); ssize_t iv_len = Buffer::Length(args[2]); const char* iv_buf = Buffer::Data(args[2]); cipher->InitIv(*cipher_type, key_buf, key_len, iv_buf, iv_len); } bool CipherBase::IsAuthenticatedMode() const { // check if this cipher operates in an AEAD mode that we support. if (!cipher_) return false; int mode = EVP_CIPHER_mode(cipher_); return mode == EVP_CIPH_GCM_MODE; } bool CipherBase::GetAuthTag(char** out, unsigned int* out_len) const { // only callable after Final and if encrypting. if (initialised_ || kind_ != kCipher || !auth_tag_) return false; *out_len = auth_tag_len_; *out = node::Malloc(auth_tag_len_); memcpy(*out, auth_tag_, auth_tag_len_); return true; } void CipherBase::GetAuthTag(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); char* out = nullptr; unsigned int out_len = 0; if (cipher->GetAuthTag(&out, &out_len)) { Local buf = Buffer::New(env, out, out_len).ToLocalChecked(); args.GetReturnValue().Set(buf); } else { env->ThrowError("Attempting to get auth tag in unsupported state"); } } bool CipherBase::SetAuthTag(const char* data, unsigned int len) { if (!initialised_ || !IsAuthenticatedMode() || kind_ != kDecipher) return false; delete[] auth_tag_; auth_tag_len_ = len; auth_tag_ = new char[len]; memcpy(auth_tag_, data, len); return true; } void CipherBase::SetAuthTag(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Auth tag"); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); if (!cipher->SetAuthTag(Buffer::Data(args[0]), Buffer::Length(args[0]))) env->ThrowError("Attempting to set auth tag in unsupported state"); } bool CipherBase::SetAAD(const char* data, unsigned int len) { if (!initialised_ || !IsAuthenticatedMode()) return false; int outlen; if (!EVP_CipherUpdate(&ctx_, nullptr, &outlen, reinterpret_cast(data), len)) { return false; } return true; } void CipherBase::SetAAD(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "AAD"); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); if (!cipher->SetAAD(Buffer::Data(args[0]), Buffer::Length(args[0]))) env->ThrowError("Attempting to set AAD in unsupported state"); } bool CipherBase::Update(const char* data, int len, unsigned char** out, int* out_len) { if (!initialised_) return 0; // on first update: if (kind_ == kDecipher && IsAuthenticatedMode() && auth_tag_ != nullptr) { EVP_CIPHER_CTX_ctrl(&ctx_, EVP_CTRL_GCM_SET_TAG, auth_tag_len_, reinterpret_cast(auth_tag_)); delete[] auth_tag_; auth_tag_ = nullptr; } *out_len = len + EVP_CIPHER_CTX_block_size(&ctx_); *out = new unsigned char[*out_len]; return EVP_CipherUpdate(&ctx_, *out, out_len, reinterpret_cast(data), len); } void CipherBase::Update(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0], "Cipher data"); unsigned char* out = nullptr; bool r; int out_len = 0; // Only copy the data if we have to, because it's a string if (args[0]->IsString()) { StringBytes::InlineDecoder decoder; if (!decoder.Decode(env, args[0].As(), args[1], UTF8)) return; r = cipher->Update(decoder.out(), decoder.size(), &out, &out_len); } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = cipher->Update(buf, buflen, &out, &out_len); } if (!r) { delete[] out; return ThrowCryptoError(env, ERR_get_error(), "Trying to add data in unsupported state"); } CHECK(out != nullptr || out_len == 0); Local buf = Buffer::Copy(env, reinterpret_cast(out), out_len).ToLocalChecked(); if (out) delete[] out; args.GetReturnValue().Set(buf); } bool CipherBase::SetAutoPadding(bool auto_padding) { if (!initialised_) return false; return EVP_CIPHER_CTX_set_padding(&ctx_, auto_padding); } void CipherBase::SetAutoPadding(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); if (!cipher->SetAutoPadding(args.Length() < 1 || args[0]->BooleanValue())) env->ThrowError("Attempting to set auto padding in unsupported state"); } bool CipherBase::Final(unsigned char** out, int *out_len) { if (!initialised_) return false; *out = new unsigned char[EVP_CIPHER_CTX_block_size(&ctx_)]; int r = EVP_CipherFinal_ex(&ctx_, *out, out_len); if (r && kind_ == kCipher) { delete[] auth_tag_; auth_tag_ = nullptr; if (IsAuthenticatedMode()) { auth_tag_len_ = EVP_GCM_TLS_TAG_LEN; // use default tag length auth_tag_ = new char[auth_tag_len_]; memset(auth_tag_, 0, auth_tag_len_); EVP_CIPHER_CTX_ctrl(&ctx_, EVP_CTRL_GCM_GET_TAG, auth_tag_len_, reinterpret_cast(auth_tag_)); } } EVP_CIPHER_CTX_cleanup(&ctx_); initialised_ = false; return r == 1; } void CipherBase::Final(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherBase* cipher; ASSIGN_OR_RETURN_UNWRAP(&cipher, args.Holder()); unsigned char* out_value = nullptr; int out_len = -1; Local outString; bool r = cipher->Final(&out_value, &out_len); if (out_len <= 0 || !r) { delete[] out_value; out_value = nullptr; out_len = 0; if (!r) { const char* msg = cipher->IsAuthenticatedMode() ? "Unsupported state or unable to authenticate data" : "Unsupported state"; return ThrowCryptoError(env, ERR_get_error(), msg); } } Local buf = Buffer::Copy( env, reinterpret_cast(out_value), out_len).ToLocalChecked(); args.GetReturnValue().Set(buf); delete[] out_value; } void Hmac::Initialize(Environment* env, v8::Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "init", HmacInit); env->SetProtoMethod(t, "update", HmacUpdate); env->SetProtoMethod(t, "digest", HmacDigest); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Hmac"), t->GetFunction()); } void Hmac::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new Hmac(env, args.This()); } void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) { HandleScope scope(env()->isolate()); CHECK_EQ(initialised_, false); const EVP_MD* md = EVP_get_digestbyname(hash_type); if (md == nullptr) { return env()->ThrowError("Unknown message digest"); } HMAC_CTX_init(&ctx_); if (key_len == 0) { key = ""; } if (!HMAC_Init_ex(&ctx_, key, key_len, md, nullptr)) { return ThrowCryptoError(env(), ERR_get_error()); } initialised_ = true; } void Hmac::HmacInit(const FunctionCallbackInfo& args) { Hmac* hmac; ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder()); Environment* env = hmac->env(); if (args.Length() < 2) { return env->ThrowError("Hash type and key arguments are mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Hash type"); THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Key"); const node::Utf8Value hash_type(env->isolate(), args[0]); const char* buffer_data = Buffer::Data(args[1]); size_t buffer_length = Buffer::Length(args[1]); hmac->HmacInit(*hash_type, buffer_data, buffer_length); } bool Hmac::HmacUpdate(const char* data, int len) { if (!initialised_) return false; int r = HMAC_Update(&ctx_, reinterpret_cast(data), len); return r == 1; } void Hmac::HmacUpdate(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Hmac* hmac; ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder()); THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0], "Data"); // Only copy the data if we have to, because it's a string bool r; if (args[0]->IsString()) { StringBytes::InlineDecoder decoder; if (!decoder.Decode(env, args[0].As(), args[1], UTF8)) return; r = hmac->HmacUpdate(decoder.out(), decoder.size()); } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = hmac->HmacUpdate(buf, buflen); } if (!r) { return env->ThrowTypeError("HmacUpdate fail"); } } bool Hmac::HmacDigest(unsigned char** md_value, unsigned int* md_len) { if (!initialised_) return false; *md_value = new unsigned char[EVP_MAX_MD_SIZE]; HMAC_Final(&ctx_, *md_value, md_len); HMAC_CTX_cleanup(&ctx_); initialised_ = false; return true; } void Hmac::HmacDigest(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Hmac* hmac; ASSIGN_OR_RETURN_UNWRAP(&hmac, args.Holder()); enum encoding encoding = BUFFER; if (args.Length() >= 1) { encoding = ParseEncoding(env->isolate(), args[0]->ToString(env->isolate()), BUFFER); } unsigned char* md_value = nullptr; unsigned int md_len = 0; bool r = hmac->HmacDigest(&md_value, &md_len); if (!r) { md_value = nullptr; md_len = 0; } Local rc = StringBytes::Encode(env->isolate(), reinterpret_cast(md_value), md_len, encoding); delete[] md_value; args.GetReturnValue().Set(rc); } void Hash::Initialize(Environment* env, v8::Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "update", HashUpdate); env->SetProtoMethod(t, "digest", HashDigest); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Hash"), t->GetFunction()); } void Hash::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (args.Length() == 0 || !args[0]->IsString()) { return env->ThrowError("Must give hashtype string as argument"); } const node::Utf8Value hash_type(env->isolate(), args[0]); Hash* hash = new Hash(env, args.This()); if (!hash->HashInit(*hash_type)) { return ThrowCryptoError(env, ERR_get_error(), "Digest method not supported"); } } bool Hash::HashInit(const char* hash_type) { CHECK_EQ(initialised_, false); const EVP_MD* md = EVP_get_digestbyname(hash_type); if (md == nullptr) return false; EVP_MD_CTX_init(&mdctx_); if (EVP_DigestInit_ex(&mdctx_, md, nullptr) <= 0) { return false; } initialised_ = true; finalized_ = false; return true; } bool Hash::HashUpdate(const char* data, int len) { if (!initialised_) return false; EVP_DigestUpdate(&mdctx_, data, len); return true; } void Hash::HashUpdate(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Hash* hash; ASSIGN_OR_RETURN_UNWRAP(&hash, args.Holder()); THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0], "Data"); if (!hash->initialised_) { return env->ThrowError("Not initialized"); } if (hash->finalized_) { return env->ThrowError("Digest already called"); } // Only copy the data if we have to, because it's a string bool r; if (args[0]->IsString()) { StringBytes::InlineDecoder decoder; if (!decoder.Decode(env, args[0].As(), args[1], UTF8)) return; r = hash->HashUpdate(decoder.out(), decoder.size()); } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = hash->HashUpdate(buf, buflen); } if (!r) { return env->ThrowTypeError("HashUpdate fail"); } } void Hash::HashDigest(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Hash* hash; ASSIGN_OR_RETURN_UNWRAP(&hash, args.Holder()); if (!hash->initialised_) { return env->ThrowError("Not initialized"); } if (hash->finalized_) { return env->ThrowError("Digest already called"); } enum encoding encoding = BUFFER; if (args.Length() >= 1) { encoding = ParseEncoding(env->isolate(), args[0]->ToString(env->isolate()), BUFFER); } unsigned char md_value[EVP_MAX_MD_SIZE]; unsigned int md_len; EVP_DigestFinal_ex(&hash->mdctx_, md_value, &md_len); EVP_MD_CTX_cleanup(&hash->mdctx_); hash->finalized_ = true; Local rc = StringBytes::Encode(env->isolate(), reinterpret_cast(md_value), md_len, encoding); args.GetReturnValue().Set(rc); } void SignBase::CheckThrow(SignBase::Error error) { HandleScope scope(env()->isolate()); switch (error) { case kSignUnknownDigest: return env()->ThrowError("Unknown message digest"); case kSignNotInitialised: return env()->ThrowError("Not initialised"); case kSignInit: case kSignUpdate: case kSignPrivateKey: case kSignPublicKey: { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) if (err) return ThrowCryptoError(env(), err); switch (error) { case kSignInit: return env()->ThrowError("EVP_SignInit_ex failed"); case kSignUpdate: return env()->ThrowError("EVP_SignUpdate failed"); case kSignPrivateKey: return env()->ThrowError("PEM_read_bio_PrivateKey failed"); case kSignPublicKey: return env()->ThrowError("PEM_read_bio_PUBKEY failed"); default: ABORT(); } } case kSignOk: return; } } void Sign::Initialize(Environment* env, v8::Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "init", SignInit); env->SetProtoMethod(t, "update", SignUpdate); env->SetProtoMethod(t, "sign", SignFinal); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Sign"), t->GetFunction()); } void Sign::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new Sign(env, args.This()); } SignBase::Error Sign::SignInit(const char* sign_type) { CHECK_EQ(initialised_, false); const EVP_MD* md = EVP_get_digestbyname(sign_type); if (md == nullptr) return kSignUnknownDigest; EVP_MD_CTX_init(&mdctx_); if (!EVP_SignInit_ex(&mdctx_, md, nullptr)) return kSignInit; initialised_ = true; return kSignOk; } void Sign::SignInit(const FunctionCallbackInfo& args) { Sign* sign; ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder()); Environment* env = sign->env(); if (args.Length() == 0) { return env->ThrowError("Sign type argument is mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Sign type"); const node::Utf8Value sign_type(args.GetIsolate(), args[0]); sign->CheckThrow(sign->SignInit(*sign_type)); } SignBase::Error Sign::SignUpdate(const char* data, int len) { if (!initialised_) return kSignNotInitialised; if (!EVP_SignUpdate(&mdctx_, data, len)) return kSignUpdate; return kSignOk; } void Sign::SignUpdate(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Sign* sign; ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder()); THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0], "Data"); // Only copy the data if we have to, because it's a string Error err; if (args[0]->IsString()) { StringBytes::InlineDecoder decoder; if (!decoder.Decode(env, args[0].As(), args[1], UTF8)) return; err = sign->SignUpdate(decoder.out(), decoder.size()); } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); err = sign->SignUpdate(buf, buflen); } sign->CheckThrow(err); } SignBase::Error Sign::SignFinal(const char* key_pem, int key_pem_len, const char* passphrase, unsigned char** sig, unsigned int *sig_len) { if (!initialised_) return kSignNotInitialised; BIO* bp = nullptr; EVP_PKEY* pkey = nullptr; bool fatal = true; bp = BIO_new_mem_buf(const_cast(key_pem), key_pem_len); if (bp == nullptr) goto exit; pkey = PEM_read_bio_PrivateKey(bp, nullptr, CryptoPemCallback, const_cast(passphrase)); // Errors might be injected into OpenSSL's error stack // without `pkey` being set to nullptr; // cf. the test of `test_bad_rsa_privkey.pem` for an example. if (pkey == nullptr || 0 != ERR_peek_error()) goto exit; #ifdef NODE_FIPS_MODE /* Validate DSA2 parameters from FIPS 186-4 */ if (FIPS_mode() && EVP_PKEY_DSA == pkey->type) { size_t L = BN_num_bits(pkey->pkey.dsa->p); size_t N = BN_num_bits(pkey->pkey.dsa->q); bool result = false; if (L == 1024 && N == 160) result = true; else if (L == 2048 && N == 224) result = true; else if (L == 2048 && N == 256) result = true; else if (L == 3072 && N == 256) result = true; if (!result) { fatal = true; goto exit; } } #endif // NODE_FIPS_MODE if (EVP_SignFinal(&mdctx_, *sig, sig_len, pkey)) fatal = false; initialised_ = false; exit: if (pkey != nullptr) EVP_PKEY_free(pkey); if (bp != nullptr) BIO_free_all(bp); EVP_MD_CTX_cleanup(&mdctx_); if (fatal) return kSignPrivateKey; return kSignOk; } void Sign::SignFinal(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Sign* sign; ASSIGN_OR_RETURN_UNWRAP(&sign, args.Holder()); unsigned char* md_value; unsigned int md_len; unsigned int len = args.Length(); enum encoding encoding = BUFFER; if (len >= 2 && args[1]->IsString()) { encoding = ParseEncoding(env->isolate(), args[1]->ToString(env->isolate()), BUFFER); } node::Utf8Value passphrase(env->isolate(), args[2]); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); size_t buf_len = Buffer::Length(args[0]); char* buf = Buffer::Data(args[0]); md_len = 8192; // Maximum key size is 8192 bits md_value = new unsigned char[md_len]; ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. Error err = sign->SignFinal( buf, buf_len, len >= 3 && !args[2]->IsNull() ? *passphrase : nullptr, &md_value, &md_len); if (err != kSignOk) { delete[] md_value; md_value = nullptr; md_len = 0; return sign->CheckThrow(err); } Local rc = StringBytes::Encode(env->isolate(), reinterpret_cast(md_value), md_len, encoding); delete[] md_value; args.GetReturnValue().Set(rc); } void Verify::Initialize(Environment* env, v8::Local target) { Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "init", VerifyInit); env->SetProtoMethod(t, "update", VerifyUpdate); env->SetProtoMethod(t, "verify", VerifyFinal); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "Verify"), t->GetFunction()); } void Verify::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); new Verify(env, args.This()); } SignBase::Error Verify::VerifyInit(const char* verify_type) { CHECK_EQ(initialised_, false); const EVP_MD* md = EVP_get_digestbyname(verify_type); if (md == nullptr) return kSignUnknownDigest; EVP_MD_CTX_init(&mdctx_); if (!EVP_VerifyInit_ex(&mdctx_, md, nullptr)) return kSignInit; initialised_ = true; return kSignOk; } void Verify::VerifyInit(const FunctionCallbackInfo& args) { Verify* verify; ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder()); Environment* env = verify->env(); if (args.Length() == 0) { return env->ThrowError("Verify type argument is mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Verify type"); const node::Utf8Value verify_type(args.GetIsolate(), args[0]); verify->CheckThrow(verify->VerifyInit(*verify_type)); } SignBase::Error Verify::VerifyUpdate(const char* data, int len) { if (!initialised_) return kSignNotInitialised; if (!EVP_VerifyUpdate(&mdctx_, data, len)) return kSignUpdate; return kSignOk; } void Verify::VerifyUpdate(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Verify* verify; ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder()); THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[0], "Data"); // Only copy the data if we have to, because it's a string Error err; if (args[0]->IsString()) { StringBytes::InlineDecoder decoder; if (!decoder.Decode(env, args[0].As(), args[1], UTF8)) return; err = verify->VerifyUpdate(decoder.out(), decoder.size()); } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); err = verify->VerifyUpdate(buf, buflen); } verify->CheckThrow(err); } SignBase::Error Verify::VerifyFinal(const char* key_pem, int key_pem_len, const char* sig, int siglen, bool* verify_result) { if (!initialised_) return kSignNotInitialised; ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. EVP_PKEY* pkey = nullptr; BIO* bp = nullptr; X509* x509 = nullptr; bool fatal = true; int r = 0; bp = BIO_new_mem_buf(const_cast(key_pem), key_pem_len); if (bp == nullptr) goto exit; // Check if this is a PKCS#8 or RSA public key before trying as X.509. // Split this out into a separate function once we have more than one // consumer of public keys. if (strncmp(key_pem, PUBLIC_KEY_PFX, PUBLIC_KEY_PFX_LEN) == 0) { pkey = PEM_read_bio_PUBKEY(bp, nullptr, CryptoPemCallback, nullptr); if (pkey == nullptr) goto exit; } else if (strncmp(key_pem, PUBRSA_KEY_PFX, PUBRSA_KEY_PFX_LEN) == 0) { RSA* rsa = PEM_read_bio_RSAPublicKey(bp, nullptr, CryptoPemCallback, nullptr); if (rsa) { pkey = EVP_PKEY_new(); if (pkey) EVP_PKEY_set1_RSA(pkey, rsa); RSA_free(rsa); } if (pkey == nullptr) goto exit; } else { // X.509 fallback x509 = PEM_read_bio_X509(bp, nullptr, CryptoPemCallback, nullptr); if (x509 == nullptr) goto exit; pkey = X509_get_pubkey(x509); if (pkey == nullptr) goto exit; } fatal = false; r = EVP_VerifyFinal(&mdctx_, reinterpret_cast(sig), siglen, pkey); exit: if (pkey != nullptr) EVP_PKEY_free(pkey); if (bp != nullptr) BIO_free_all(bp); if (x509 != nullptr) X509_free(x509); EVP_MD_CTX_cleanup(&mdctx_); initialised_ = false; if (fatal) return kSignPublicKey; *verify_result = r == 1; return kSignOk; } void Verify::VerifyFinal(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); Verify* verify; ASSIGN_OR_RETURN_UNWRAP(&verify, args.Holder()); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Key"); char* kbuf = Buffer::Data(args[0]); ssize_t klen = Buffer::Length(args[0]); THROW_AND_RETURN_IF_NOT_STRING_OR_BUFFER(args[1], "Hash"); enum encoding encoding = UTF8; if (args.Length() >= 3) { encoding = ParseEncoding(env->isolate(), args[2]->ToString(env->isolate()), UTF8); } ssize_t hlen = StringBytes::Size(env->isolate(), args[1], encoding); // only copy if we need to, because it's a string. char* hbuf; if (args[1]->IsString()) { hbuf = new char[hlen]; ssize_t hwritten = StringBytes::Write(env->isolate(), hbuf, hlen, args[1], encoding); CHECK_EQ(hwritten, hlen); } else { hbuf = Buffer::Data(args[1]); } bool verify_result; Error err = verify->VerifyFinal(kbuf, klen, hbuf, hlen, &verify_result); if (args[1]->IsString()) delete[] hbuf; if (err != kSignOk) return verify->CheckThrow(err); args.GetReturnValue().Set(verify_result); } template bool PublicKeyCipher::Cipher(const char* key_pem, int key_pem_len, const char* passphrase, int padding, const unsigned char* data, int len, unsigned char** out, size_t* out_len) { EVP_PKEY* pkey = nullptr; EVP_PKEY_CTX* ctx = nullptr; BIO* bp = nullptr; X509* x509 = nullptr; bool fatal = true; bp = BIO_new_mem_buf(const_cast(key_pem), key_pem_len); if (bp == nullptr) goto exit; // Check if this is a PKCS#8 or RSA public key before trying as X.509 and // private key. if (operation == kPublic && strncmp(key_pem, PUBLIC_KEY_PFX, PUBLIC_KEY_PFX_LEN) == 0) { pkey = PEM_read_bio_PUBKEY(bp, nullptr, nullptr, nullptr); if (pkey == nullptr) goto exit; } else if (operation == kPublic && strncmp(key_pem, PUBRSA_KEY_PFX, PUBRSA_KEY_PFX_LEN) == 0) { RSA* rsa = PEM_read_bio_RSAPublicKey(bp, nullptr, nullptr, nullptr); if (rsa) { pkey = EVP_PKEY_new(); if (pkey) EVP_PKEY_set1_RSA(pkey, rsa); RSA_free(rsa); } if (pkey == nullptr) goto exit; } else if (operation == kPublic && strncmp(key_pem, CERTIFICATE_PFX, CERTIFICATE_PFX_LEN) == 0) { x509 = PEM_read_bio_X509(bp, nullptr, CryptoPemCallback, nullptr); if (x509 == nullptr) goto exit; pkey = X509_get_pubkey(x509); if (pkey == nullptr) goto exit; } else { pkey = PEM_read_bio_PrivateKey(bp, nullptr, CryptoPemCallback, const_cast(passphrase)); if (pkey == nullptr) goto exit; } ctx = EVP_PKEY_CTX_new(pkey, nullptr); if (!ctx) goto exit; if (EVP_PKEY_cipher_init(ctx) <= 0) goto exit; if (EVP_PKEY_CTX_set_rsa_padding(ctx, padding) <= 0) goto exit; if (EVP_PKEY_cipher(ctx, nullptr, out_len, data, len) <= 0) goto exit; *out = new unsigned char[*out_len]; if (EVP_PKEY_cipher(ctx, *out, out_len, data, len) <= 0) goto exit; fatal = false; exit: if (x509 != nullptr) X509_free(x509); if (pkey != nullptr) EVP_PKEY_free(pkey); if (bp != nullptr) BIO_free_all(bp); if (ctx != nullptr) EVP_PKEY_CTX_free(ctx); return !fatal; } template void PublicKeyCipher::Cipher(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Key"); char* kbuf = Buffer::Data(args[0]); ssize_t klen = Buffer::Length(args[0]); THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Data"); char* buf = Buffer::Data(args[1]); ssize_t len = Buffer::Length(args[1]); int padding = args[2]->Uint32Value(); String::Utf8Value passphrase(args[3]); unsigned char* out_value = nullptr; size_t out_len = 0; ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. bool r = Cipher( kbuf, klen, args.Length() >= 3 && !args[2]->IsNull() ? *passphrase : nullptr, padding, reinterpret_cast(buf), len, &out_value, &out_len); if (out_len == 0 || !r) { delete[] out_value; out_value = nullptr; out_len = 0; if (!r) { return ThrowCryptoError(env, ERR_get_error()); } } Local vbuf = Buffer::Copy( env, reinterpret_cast(out_value), out_len).ToLocalChecked(); args.GetReturnValue().Set(vbuf); delete[] out_value; } void DiffieHellman::Initialize(Environment* env, Local target) { Local t = env->NewFunctionTemplate(New); const PropertyAttribute attributes = static_cast(v8::ReadOnly | v8::DontDelete); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "generateKeys", GenerateKeys); env->SetProtoMethod(t, "computeSecret", ComputeSecret); env->SetProtoMethod(t, "getPrime", GetPrime); env->SetProtoMethod(t, "getGenerator", GetGenerator); env->SetProtoMethod(t, "getPublicKey", GetPublicKey); env->SetProtoMethod(t, "getPrivateKey", GetPrivateKey); env->SetProtoMethod(t, "setPublicKey", SetPublicKey); env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey); t->InstanceTemplate()->SetAccessor( env->verify_error_string(), DiffieHellman::VerifyErrorGetter, nullptr, env->as_external(), DEFAULT, attributes, AccessorSignature::New(env->isolate(), t)); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellman"), t->GetFunction()); Local t2 = env->NewFunctionTemplate(DiffieHellmanGroup); t2->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t2, "generateKeys", GenerateKeys); env->SetProtoMethod(t2, "computeSecret", ComputeSecret); env->SetProtoMethod(t2, "getPrime", GetPrime); env->SetProtoMethod(t2, "getGenerator", GetGenerator); env->SetProtoMethod(t2, "getPublicKey", GetPublicKey); env->SetProtoMethod(t2, "getPrivateKey", GetPrivateKey); t2->InstanceTemplate()->SetAccessor( env->verify_error_string(), DiffieHellman::VerifyErrorGetter, nullptr, env->as_external(), DEFAULT, attributes, AccessorSignature::New(env->isolate(), t2)); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "DiffieHellmanGroup"), t2->GetFunction()); } bool DiffieHellman::Init(int primeLength, int g) { dh = DH_new(); if (!DH_generate_parameters_ex(dh, primeLength, g, 0)) return false; bool result = VerifyContext(); if (!result) return false; initialised_ = true; return true; } bool DiffieHellman::Init(const char* p, int p_len, int g) { dh = DH_new(); dh->p = BN_bin2bn(reinterpret_cast(p), p_len, 0); dh->g = BN_new(); if (!BN_set_word(dh->g, g)) return false; bool result = VerifyContext(); if (!result) return false; initialised_ = true; return true; } bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) { dh = DH_new(); dh->p = BN_bin2bn(reinterpret_cast(p), p_len, 0); dh->g = BN_bin2bn(reinterpret_cast(g), g_len, 0); bool result = VerifyContext(); if (!result) return false; initialised_ = true; return true; } void DiffieHellman::DiffieHellmanGroup( const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman = new DiffieHellman(env, args.This()); if (args.Length() != 1) { return env->ThrowError("Group name argument is mandatory"); } THROW_AND_RETURN_IF_NOT_STRING(args[0], "Group name"); bool initialized = false; const node::Utf8Value group_name(env->isolate(), args[0]); for (size_t i = 0; i < arraysize(modp_groups); ++i) { const modp_group* it = modp_groups + i; if (!StringEqualNoCase(*group_name, it->name)) continue; initialized = diffieHellman->Init(it->prime, it->prime_size, it->gen, it->gen_size); if (!initialized) env->ThrowError("Initialization failed"); return; } env->ThrowError("Unknown group"); } void DiffieHellman::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman = new DiffieHellman(env, args.This()); bool initialized = false; if (args.Length() == 2) { if (args[0]->IsInt32()) { if (args[1]->IsInt32()) { initialized = diffieHellman->Init(args[0]->Int32Value(), args[1]->Int32Value()); } } else { if (args[1]->IsInt32()) { initialized = diffieHellman->Init(Buffer::Data(args[0]), Buffer::Length(args[0]), args[1]->Int32Value()); } else { initialized = diffieHellman->Init(Buffer::Data(args[0]), Buffer::Length(args[0]), Buffer::Data(args[1]), Buffer::Length(args[1])); } } } if (!initialized) { return ThrowCryptoError(env, ERR_get_error(), "Initialization failed"); } } void DiffieHellman::GenerateKeys(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } if (!DH_generate_key(diffieHellman->dh)) { return ThrowCryptoError(env, ERR_get_error(), "Key generation failed"); } int dataSize = BN_num_bytes(diffieHellman->dh->pub_key); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->pub_key, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetPrime(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } int dataSize = BN_num_bytes(diffieHellman->dh->p); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->p, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetGenerator(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } int dataSize = BN_num_bytes(diffieHellman->dh->g); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->g, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } if (diffieHellman->dh->pub_key == nullptr) { return env->ThrowError("No public key - did you forget to generate one?"); } int dataSize = BN_num_bytes(diffieHellman->dh->pub_key); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->pub_key, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } if (diffieHellman->dh->priv_key == nullptr) { return env->ThrowError("No private key - did you forget to generate one?"); } int dataSize = BN_num_bytes(diffieHellman->dh->priv_key); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->priv_key, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::ComputeSecret(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. BIGNUM* key = nullptr; if (args.Length() == 0) { return env->ThrowError("Other party's public key argument is mandatory"); } else { THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Other party's public key"); key = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0])), Buffer::Length(args[0]), 0); } int dataSize = DH_size(diffieHellman->dh); char* data = new char[dataSize]; int size = DH_compute_key(reinterpret_cast(data), key, diffieHellman->dh); if (size == -1) { int checkResult; int checked; checked = DH_check_pub_key(diffieHellman->dh, key, &checkResult); BN_free(key); delete[] data; if (!checked) { return ThrowCryptoError(env, ERR_get_error(), "Invalid Key"); } else if (checkResult) { if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) { return env->ThrowError("Supplied key is too small"); } else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) { return env->ThrowError("Supplied key is too large"); } else { return env->ThrowError("Invalid key"); } } else { return env->ThrowError("Invalid key"); } } BN_free(key); CHECK_GE(size, 0); // DH_size returns number of bytes in a prime number // DH_compute_key returns number of bytes in a remainder of exponent, which // may have less bytes than a prime number. Therefore add 0-padding to the // allocated buffer. if (size != dataSize) { CHECK(dataSize > size); memmove(data + dataSize - size, data, size); memset(data, 0, dataSize - size); } args.GetReturnValue().Set(Encode(env->isolate(), data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::SetPublicKey(const FunctionCallbackInfo& args) { DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); Environment* env = diffieHellman->env(); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } if (args.Length() == 0) { return env->ThrowError("Public key argument is mandatory"); } else { THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Public key"); diffieHellman->dh->pub_key = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0])), Buffer::Length(args[0]), 0); } } void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo& args) { DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); Environment* env = diffieHellman->env(); if (!diffieHellman->initialised_) { return ThrowCryptoError(env, ERR_get_error(), "Not initialized"); } if (args.Length() == 0) { return env->ThrowError("Private key argument is mandatory"); } else { THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Private key"); diffieHellman->dh->priv_key = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0])), Buffer::Length(args[0]), 0); } } void DiffieHellman::VerifyErrorGetter(Local property, const PropertyCallbackInfo& args) { HandleScope scope(args.GetIsolate()); DiffieHellman* diffieHellman; ASSIGN_OR_RETURN_UNWRAP(&diffieHellman, args.Holder()); if (!diffieHellman->initialised_) return ThrowCryptoError(diffieHellman->env(), ERR_get_error(), "Not initialized"); args.GetReturnValue().Set(diffieHellman->verifyError_); } bool DiffieHellman::VerifyContext() { int codes; if (!DH_check(dh, &codes)) return false; verifyError_ = codes; return true; } void ECDH::Initialize(Environment* env, Local target) { HandleScope scope(env->isolate()); Local t = env->NewFunctionTemplate(New); t->InstanceTemplate()->SetInternalFieldCount(1); env->SetProtoMethod(t, "generateKeys", GenerateKeys); env->SetProtoMethod(t, "computeSecret", ComputeSecret); env->SetProtoMethod(t, "getPublicKey", GetPublicKey); env->SetProtoMethod(t, "getPrivateKey", GetPrivateKey); env->SetProtoMethod(t, "setPublicKey", SetPublicKey); env->SetProtoMethod(t, "setPrivateKey", SetPrivateKey); target->Set(FIXED_ONE_BYTE_STRING(env->isolate(), "ECDH"), t->GetFunction()); } void ECDH::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); MarkPopErrorOnReturn mark_pop_error_on_return; // TODO(indutny): Support raw curves? THROW_AND_RETURN_IF_NOT_STRING(args[0], "ECDH curve name"); node::Utf8Value curve(env->isolate(), args[0]); int nid = OBJ_sn2nid(*curve); if (nid == NID_undef) return env->ThrowTypeError("First argument should be a valid curve name"); EC_KEY* key = EC_KEY_new_by_curve_name(nid); if (key == nullptr) return env->ThrowError("Failed to create EC_KEY using curve name"); new ECDH(env, args.This(), key); } void ECDH::GenerateKeys(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); if (!EC_KEY_generate_key(ecdh->key_)) return env->ThrowError("Failed to generate EC_KEY"); } EC_POINT* ECDH::BufferToPoint(char* data, size_t len) { EC_POINT* pub; int r; pub = EC_POINT_new(group_); if (pub == nullptr) { env()->ThrowError("Failed to allocate EC_POINT for a public key"); return nullptr; } r = EC_POINT_oct2point( group_, pub, reinterpret_cast(data), len, nullptr); if (!r) { env()->ThrowError("Failed to translate Buffer to a EC_POINT"); goto fatal; } return pub; fatal: EC_POINT_free(pub); return nullptr; } void ECDH::ComputeSecret(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); if (!ecdh->IsKeyPairValid()) return env->ThrowError("Invalid key pair"); EC_POINT* pub = ecdh->BufferToPoint(Buffer::Data(args[0]), Buffer::Length(args[0])); if (pub == nullptr) return; // NOTE: field_size is in bits int field_size = EC_GROUP_get_degree(ecdh->group_); size_t out_len = (field_size + 7) / 8; char* out = node::Malloc(out_len); int r = ECDH_compute_key(out, out_len, pub, ecdh->key_, nullptr); EC_POINT_free(pub); if (!r) { free(out); return env->ThrowError("Failed to compute ECDH key"); } Local buf = Buffer::New(env, out, out_len).ToLocalChecked(); args.GetReturnValue().Set(buf); } void ECDH::GetPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); // Conversion form CHECK_EQ(args.Length(), 1); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); const EC_POINT* pub = EC_KEY_get0_public_key(ecdh->key_); if (pub == nullptr) return env->ThrowError("Failed to get ECDH public key"); int size; point_conversion_form_t form = static_cast(args[0]->Uint32Value()); size = EC_POINT_point2oct(ecdh->group_, pub, form, nullptr, 0, nullptr); if (size == 0) return env->ThrowError("Failed to get public key length"); unsigned char* out = node::Malloc(size); int r = EC_POINT_point2oct(ecdh->group_, pub, form, out, size, nullptr); if (r != size) { free(out); return env->ThrowError("Failed to get public key"); } Local buf = Buffer::New(env, reinterpret_cast(out), size).ToLocalChecked(); args.GetReturnValue().Set(buf); } void ECDH::GetPrivateKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); const BIGNUM* b = EC_KEY_get0_private_key(ecdh->key_); if (b == nullptr) return env->ThrowError("Failed to get ECDH private key"); int size = BN_num_bytes(b); unsigned char* out = node::Malloc(size); if (size != BN_bn2bin(b, out)) { free(out); return env->ThrowError("Failed to convert ECDH private key to Buffer"); } Local buf = Buffer::New(env, reinterpret_cast(out), size).ToLocalChecked(); args.GetReturnValue().Set(buf); } void ECDH::SetPrivateKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Private key"); BIGNUM* priv = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0].As())), Buffer::Length(args[0].As()), nullptr); if (priv == nullptr) return env->ThrowError("Failed to convert Buffer to BN"); if (!ecdh->IsKeyValidForCurve(priv)) { BN_free(priv); return env->ThrowError("Private key is not valid for specified curve."); } int result = EC_KEY_set_private_key(ecdh->key_, priv); BN_free(priv); if (!result) { return env->ThrowError("Failed to convert BN to a private key"); } // To avoid inconsistency, clear the current public key in-case computing // the new one fails for some reason. EC_KEY_set_public_key(ecdh->key_, nullptr); MarkPopErrorOnReturn mark_pop_error_on_return; (void) &mark_pop_error_on_return; // Silence compiler warning. const BIGNUM* priv_key = EC_KEY_get0_private_key(ecdh->key_); CHECK_NE(priv_key, nullptr); EC_POINT* pub = EC_POINT_new(ecdh->group_); CHECK_NE(pub, nullptr); if (!EC_POINT_mul(ecdh->group_, pub, priv_key, nullptr, nullptr, nullptr)) { EC_POINT_free(pub); return env->ThrowError("Failed to generate ECDH public key"); } if (!EC_KEY_set_public_key(ecdh->key_, pub)) { EC_POINT_free(pub); return env->ThrowError("Failed to set generated public key"); } EC_POINT_free(pub); } void ECDH::SetPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); ECDH* ecdh; ASSIGN_OR_RETURN_UNWRAP(&ecdh, args.Holder()); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Public key"); EC_POINT* pub = ecdh->BufferToPoint(Buffer::Data(args[0].As()), Buffer::Length(args[0].As())); if (pub == nullptr) return env->ThrowError("Failed to convert Buffer to EC_POINT"); int r = EC_KEY_set_public_key(ecdh->key_, pub); EC_POINT_free(pub); if (!r) return env->ThrowError("Failed to set EC_POINT as the public key"); } bool ECDH::IsKeyValidForCurve(const BIGNUM* private_key) { ASSERT_NE(group_, nullptr); CHECK_NE(private_key, nullptr); // Private keys must be in the range [1, n-1]. // Ref: Section 3.2.1 - http://www.secg.org/sec1-v2.pdf if (BN_cmp(private_key, BN_value_one()) < 0) { return false; } BIGNUM* order = BN_new(); CHECK_NE(order, nullptr); bool result = EC_GROUP_get_order(group_, order, nullptr) && BN_cmp(private_key, order) < 0; BN_free(order); return result; } bool ECDH::IsKeyPairValid() { MarkPopErrorOnReturn mark_pop_error_on_return; (void) &mark_pop_error_on_return; // Silence compiler warning. return 1 == EC_KEY_check_key(key_); } class PBKDF2Request : public AsyncWrap { public: PBKDF2Request(Environment* env, Local object, const EVP_MD* digest, int passlen, char* pass, int saltlen, char* salt, int iter, int keylen) : AsyncWrap(env, object, AsyncWrap::PROVIDER_CRYPTO), digest_(digest), error_(0), passlen_(passlen), pass_(pass), saltlen_(saltlen), salt_(salt), keylen_(keylen), key_(node::Malloc(keylen)), iter_(iter) { Wrap(object, this); } ~PBKDF2Request() override { release(); ClearWrap(object()); persistent().Reset(); } uv_work_t* work_req() { return &work_req_; } inline const EVP_MD* digest() const { return digest_; } inline int passlen() const { return passlen_; } inline char* pass() const { return pass_; } inline int saltlen() const { return saltlen_; } inline char* salt() const { return salt_; } inline int keylen() const { return keylen_; } inline char* key() const { return key_; } inline int iter() const { return iter_; } inline void release() { free(pass_); pass_ = nullptr; passlen_ = 0; free(salt_); salt_ = nullptr; saltlen_ = 0; free(key_); key_ = nullptr; keylen_ = 0; } inline int error() const { return error_; } inline void set_error(int err) { error_ = err; } size_t self_size() const override { return sizeof(*this); } uv_work_t work_req_; private: const EVP_MD* digest_; int error_; int passlen_; char* pass_; int saltlen_; char* salt_; int keylen_; char* key_; int iter_; }; void EIO_PBKDF2(PBKDF2Request* req) { req->set_error(PKCS5_PBKDF2_HMAC( req->pass(), req->passlen(), reinterpret_cast(req->salt()), req->saltlen(), req->iter(), req->digest(), req->keylen(), reinterpret_cast(req->key()))); OPENSSL_cleanse(req->pass(), req->passlen()); OPENSSL_cleanse(req->salt(), req->saltlen()); } void EIO_PBKDF2(uv_work_t* work_req) { PBKDF2Request* req = ContainerOf(&PBKDF2Request::work_req_, work_req); EIO_PBKDF2(req); } void EIO_PBKDF2After(PBKDF2Request* req, Local argv[2]) { if (req->error()) { argv[0] = Undefined(req->env()->isolate()); argv[1] = Encode(req->env()->isolate(), req->key(), req->keylen(), BUFFER); OPENSSL_cleanse(req->key(), req->keylen()); } else { argv[0] = Exception::Error(req->env()->pbkdf2_error_string()); argv[1] = Undefined(req->env()->isolate()); } } void EIO_PBKDF2After(uv_work_t* work_req, int status) { CHECK_EQ(status, 0); PBKDF2Request* req = ContainerOf(&PBKDF2Request::work_req_, work_req); Environment* env = req->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local argv[2]; EIO_PBKDF2After(req, argv); req->MakeCallback(env->ondone_string(), arraysize(argv), argv); delete req; } void PBKDF2(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); const EVP_MD* digest = nullptr; const char* type_error = nullptr; char* pass = nullptr; char* salt = nullptr; int passlen = -1; int saltlen = -1; double raw_keylen = -1; int keylen = -1; int iter = -1; PBKDF2Request* req = nullptr; Local obj; if (args.Length() != 5 && args.Length() != 6) { type_error = "Bad parameter"; goto err; } THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Pass phrase"); passlen = Buffer::Length(args[0]); if (passlen < 0) { type_error = "Bad password"; goto err; } THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Salt"); pass = node::Malloc(passlen); memcpy(pass, Buffer::Data(args[0]), passlen); saltlen = Buffer::Length(args[1]); if (saltlen < 0) { type_error = "Bad salt"; goto err; } salt = node::Malloc(saltlen); memcpy(salt, Buffer::Data(args[1]), saltlen); if (!args[2]->IsNumber()) { type_error = "Iterations not a number"; goto err; } iter = args[2]->Int32Value(); if (iter < 0) { type_error = "Bad iterations"; goto err; } if (!args[3]->IsNumber()) { type_error = "Key length not a number"; goto err; } raw_keylen = args[3]->NumberValue(); if (raw_keylen < 0.0 || isnan(raw_keylen) || isinf(raw_keylen) || raw_keylen > INT_MAX) { type_error = "Bad key length"; goto err; } keylen = static_cast(raw_keylen); if (args[4]->IsString()) { node::Utf8Value digest_name(env->isolate(), args[4]); digest = EVP_get_digestbyname(*digest_name); if (digest == nullptr) { type_error = "Bad digest name"; goto err; } } if (digest == nullptr) { digest = EVP_sha1(); } obj = env->NewInternalFieldObject(); req = new PBKDF2Request(env, obj, digest, passlen, pass, saltlen, salt, iter, keylen); if (args[5]->IsFunction()) { obj->Set(env->ondone_string(), args[5]); if (env->in_domain()) obj->Set(env->domain_string(), env->domain_array()->Get(0)); uv_queue_work(env->event_loop(), req->work_req(), EIO_PBKDF2, EIO_PBKDF2After); } else { env->PrintSyncTrace(); Local argv[2]; EIO_PBKDF2(req); EIO_PBKDF2After(req, argv); delete req; if (argv[0]->IsObject()) env->isolate()->ThrowException(argv[0]); else args.GetReturnValue().Set(argv[1]); } return; err: free(salt); free(pass); return env->ThrowTypeError(type_error); } // Only instantiate within a valid HandleScope. class RandomBytesRequest : public AsyncWrap { public: RandomBytesRequest(Environment* env, Local object, size_t size) : AsyncWrap(env, object, AsyncWrap::PROVIDER_CRYPTO), error_(0), size_(size), data_(node::Malloc(size)) { Wrap(object, this); } ~RandomBytesRequest() override { ClearWrap(object()); persistent().Reset(); } uv_work_t* work_req() { return &work_req_; } inline size_t size() const { return size_; } inline char* data() const { return data_; } inline void release() { free(data_); size_ = 0; } inline void return_memory(char** d, size_t* len) { *d = data_; data_ = nullptr; *len = size_; size_ = 0; } inline unsigned long error() const { // NOLINT(runtime/int) return error_; } inline void set_error(unsigned long err) { // NOLINT(runtime/int) error_ = err; } size_t self_size() const override { return sizeof(*this); } uv_work_t work_req_; private: unsigned long error_; // NOLINT(runtime/int) size_t size_; char* data_; }; void RandomBytesWork(uv_work_t* work_req) { RandomBytesRequest* req = ContainerOf(&RandomBytesRequest::work_req_, work_req); // Ensure that OpenSSL's PRNG is properly seeded. CheckEntropy(); const int r = RAND_bytes(reinterpret_cast(req->data()), req->size()); // RAND_bytes() returns 0 on error. if (r == 0) { req->set_error(ERR_get_error()); // NOLINT(runtime/int) } else if (r == -1) { req->set_error(static_cast(-1)); // NOLINT(runtime/int) } } // don't call this function without a valid HandleScope void RandomBytesCheck(RandomBytesRequest* req, Local argv[2]) { if (req->error()) { char errmsg[256] = "Operation not supported"; if (req->error() != static_cast(-1)) // NOLINT(runtime/int) ERR_error_string_n(req->error(), errmsg, sizeof errmsg); argv[0] = Exception::Error(OneByteString(req->env()->isolate(), errmsg)); argv[1] = Null(req->env()->isolate()); req->release(); } else { char* data = nullptr; size_t size; req->return_memory(&data, &size); argv[0] = Null(req->env()->isolate()); argv[1] = Buffer::New(req->env(), data, size).ToLocalChecked(); } } void RandomBytesAfter(uv_work_t* work_req, int status) { CHECK_EQ(status, 0); RandomBytesRequest* req = ContainerOf(&RandomBytesRequest::work_req_, work_req); Environment* env = req->env(); HandleScope handle_scope(env->isolate()); Context::Scope context_scope(env->context()); Local argv[2]; RandomBytesCheck(req, argv); req->MakeCallback(env->ondone_string(), arraysize(argv), argv); delete req; } void RandomBytes(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); // maybe allow a buffer to write to? cuts down on object creation // when generating random data in a loop if (!args[0]->IsUint32()) { return env->ThrowTypeError("size must be a number >= 0"); } const int64_t size = args[0]->IntegerValue(); if (size < 0 || size > Buffer::kMaxLength) return env->ThrowRangeError("size is not a valid Smi"); Local obj = env->NewInternalFieldObject(); RandomBytesRequest* req = new RandomBytesRequest(env, obj, size); if (args[1]->IsFunction()) { obj->Set(FIXED_ONE_BYTE_STRING(args.GetIsolate(), "ondone"), args[1]); if (env->in_domain()) obj->Set(env->domain_string(), env->domain_array()->Get(0)); uv_queue_work(env->event_loop(), req->work_req(), RandomBytesWork, RandomBytesAfter); args.GetReturnValue().Set(obj); } else { env->PrintSyncTrace(); Local argv[2]; RandomBytesWork(req->work_req()); RandomBytesCheck(req, argv); delete req; if (!argv[0]->IsNull()) env->isolate()->ThrowException(argv[0]); else args.GetReturnValue().Set(argv[1]); } } void GetSSLCiphers(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); SSL_CTX* ctx = SSL_CTX_new(TLSv1_server_method()); if (ctx == nullptr) { return env->ThrowError("SSL_CTX_new() failed."); } SSL* ssl = SSL_new(ctx); if (ssl == nullptr) { SSL_CTX_free(ctx); return env->ThrowError("SSL_new() failed."); } Local arr = Array::New(env->isolate()); STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl); for (int i = 0; i < sk_SSL_CIPHER_num(ciphers); ++i) { const SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i); arr->Set(i, OneByteString(args.GetIsolate(), SSL_CIPHER_get_name(cipher))); } SSL_free(ssl); SSL_CTX_free(ctx); args.GetReturnValue().Set(arr); } class CipherPushContext { public: explicit CipherPushContext(Environment* env) : arr(Array::New(env->isolate())), env_(env) { } inline Environment* env() const { return env_; } Local arr; private: Environment* env_; }; template static void array_push_back(const TypeName* md, const char* from, const char* to, void* arg) { CipherPushContext* ctx = static_cast(arg); ctx->arr->Set(ctx->arr->Length(), OneByteString(ctx->env()->isolate(), from)); } void GetCiphers(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherPushContext ctx(env); EVP_CIPHER_do_all_sorted(array_push_back, &ctx); args.GetReturnValue().Set(ctx.arr); } void GetHashes(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CipherPushContext ctx(env); EVP_MD_do_all_sorted(array_push_back, &ctx); args.GetReturnValue().Set(ctx.arr); } void GetCurves(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); const size_t num_curves = EC_get_builtin_curves(nullptr, 0); Local arr = Array::New(env->isolate(), num_curves); EC_builtin_curve* curves; if (num_curves) { curves = node::Malloc(num_curves); if (EC_get_builtin_curves(curves, num_curves)) { for (size_t i = 0; i < num_curves; i++) { arr->Set(i, OneByteString(env->isolate(), OBJ_nid2sn(curves[i].nid))); } } free(curves); } args.GetReturnValue().Set(arr); } bool VerifySpkac(const char* data, unsigned int len) { bool i = 0; EVP_PKEY* pkey = nullptr; NETSCAPE_SPKI* spki = nullptr; spki = NETSCAPE_SPKI_b64_decode(data, len); if (spki == nullptr) goto exit; pkey = X509_PUBKEY_get(spki->spkac->pubkey); if (pkey == nullptr) goto exit; i = NETSCAPE_SPKI_verify(spki, pkey) > 0; exit: if (pkey != nullptr) EVP_PKEY_free(pkey); if (spki != nullptr) NETSCAPE_SPKI_free(spki); return i; } void VerifySpkac(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); bool i = false; if (args.Length() < 1) return env->ThrowTypeError("Data argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Data"); size_t length = Buffer::Length(args[0]); if (length == 0) return args.GetReturnValue().Set(i); char* data = Buffer::Data(args[0]); CHECK_NE(data, nullptr); i = VerifySpkac(data, length); args.GetReturnValue().Set(i); } const char* ExportPublicKey(const char* data, int len) { char* buf = nullptr; EVP_PKEY* pkey = nullptr; NETSCAPE_SPKI* spki = nullptr; BIO* bio = BIO_new(BIO_s_mem()); if (bio == nullptr) goto exit; spki = NETSCAPE_SPKI_b64_decode(data, len); if (spki == nullptr) goto exit; pkey = NETSCAPE_SPKI_get_pubkey(spki); if (pkey == nullptr) goto exit; if (PEM_write_bio_PUBKEY(bio, pkey) <= 0) goto exit; BIO_write(bio, "\0", 1); BUF_MEM* ptr; BIO_get_mem_ptr(bio, &ptr); buf = new char[ptr->length]; memcpy(buf, ptr->data, ptr->length); exit: if (pkey != nullptr) EVP_PKEY_free(pkey); if (spki != nullptr) NETSCAPE_SPKI_free(spki); if (bio != nullptr) BIO_free_all(bio); return buf; } void ExportPublicKey(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (args.Length() < 1) return env->ThrowTypeError("Public key argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Public key"); size_t length = Buffer::Length(args[0]); if (length == 0) return args.GetReturnValue().SetEmptyString(); char* data = Buffer::Data(args[0]); CHECK_NE(data, nullptr); const char* pkey = ExportPublicKey(data, length); if (pkey == nullptr) return args.GetReturnValue().SetEmptyString(); Local out = Encode(env->isolate(), pkey, strlen(pkey), BUFFER); delete[] pkey; args.GetReturnValue().Set(out); } const char* ExportChallenge(const char* data, int len) { NETSCAPE_SPKI* sp = nullptr; sp = NETSCAPE_SPKI_b64_decode(data, len); if (sp == nullptr) return nullptr; unsigned char* buf = nullptr; ASN1_STRING_to_UTF8(&buf, sp->spkac->challenge); NETSCAPE_SPKI_free(sp); return reinterpret_cast(buf); } void ExportChallenge(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); if (args.Length() < 1) return env->ThrowTypeError("Challenge argument is mandatory"); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "Challenge"); size_t len = Buffer::Length(args[0]); if (len == 0) return args.GetReturnValue().SetEmptyString(); char* data = Buffer::Data(args[0]); CHECK_NE(data, nullptr); const char* cert = ExportChallenge(data, len); if (cert == nullptr) return args.GetReturnValue().SetEmptyString(); Local outString = Encode(env->isolate(), cert, strlen(cert), BUFFER); OPENSSL_free(const_cast(cert)); args.GetReturnValue().Set(outString); } void TimingSafeEqual(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); THROW_AND_RETURN_IF_NOT_BUFFER(args[0], "First argument"); THROW_AND_RETURN_IF_NOT_BUFFER(args[1], "Second argument"); size_t buf_length = Buffer::Length(args[0]); if (buf_length != Buffer::Length(args[1])) { return env->ThrowTypeError("Input buffers must have the same length"); } const char* buf1 = Buffer::Data(args[0]); const char* buf2 = Buffer::Data(args[1]); return args.GetReturnValue().Set(CRYPTO_memcmp(buf1, buf2, buf_length) == 0); } void InitCryptoOnce() { SSL_load_error_strings(); OPENSSL_no_config(); // --openssl-config=... if (!openssl_config.empty()) { OPENSSL_load_builtin_modules(); #ifndef OPENSSL_NO_ENGINE ENGINE_load_builtin_engines(); #endif ERR_clear_error(); CONF_modules_load_file( openssl_config.c_str(), nullptr, CONF_MFLAGS_DEFAULT_SECTION); int err = ERR_get_error(); if (0 != err) { fprintf(stderr, "openssl config failed: %s\n", ERR_error_string(err, NULL)); CHECK_NE(err, 0); } } SSL_library_init(); OpenSSL_add_all_algorithms(); crypto_lock_init(); CRYPTO_set_locking_callback(crypto_lock_cb); CRYPTO_THREADID_set_callback(crypto_threadid_cb); #ifdef NODE_FIPS_MODE /* Override FIPS settings in cnf file, if needed. */ unsigned long err = 0; // NOLINT(runtime/int) if (enable_fips_crypto || force_fips_crypto) { if (0 == FIPS_mode() && !FIPS_mode_set(1)) { err = ERR_get_error(); } } if (0 != err) { fprintf(stderr, "openssl fips failed: %s\n", ERR_error_string(err, NULL)); UNREACHABLE(); } #endif // NODE_FIPS_MODE // Turn off compression. Saves memory and protects against CRIME attacks. // No-op with OPENSSL_NO_COMP builds of OpenSSL. sk_SSL_COMP_zero(SSL_COMP_get_compression_methods()); #ifndef OPENSSL_NO_ENGINE ERR_load_ENGINE_strings(); ENGINE_load_builtin_engines(); #endif // !OPENSSL_NO_ENGINE } #ifndef OPENSSL_NO_ENGINE void SetEngine(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); CHECK(args.Length() >= 2 && args[0]->IsString()); unsigned int flags = args[1]->Uint32Value(); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. const node::Utf8Value engine_id(env->isolate(), args[0]); ENGINE* engine = ENGINE_by_id(*engine_id); // Engine not found, try loading dynamically if (engine == nullptr) { engine = ENGINE_by_id("dynamic"); if (engine != nullptr) { if (!ENGINE_ctrl_cmd_string(engine, "SO_PATH", *engine_id, 0) || !ENGINE_ctrl_cmd_string(engine, "LOAD", nullptr, 0)) { ENGINE_free(engine); engine = nullptr; } } } if (engine == nullptr) { int err = ERR_get_error(); if (err == 0) { char tmp[1024]; snprintf(tmp, sizeof(tmp), "Engine \"%s\" was not found", *engine_id); return env->ThrowError(tmp); } else { return ThrowCryptoError(env, err); } } int r = ENGINE_set_default(engine, flags); ENGINE_free(engine); if (r == 0) return ThrowCryptoError(env, ERR_get_error()); } #endif // !OPENSSL_NO_ENGINE void GetFipsCrypto(const FunctionCallbackInfo& args) { if (FIPS_mode()) { args.GetReturnValue().Set(1); } else { args.GetReturnValue().Set(0); } } void SetFipsCrypto(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args); #ifdef NODE_FIPS_MODE bool mode = args[0]->BooleanValue(); if (force_fips_crypto) { return env->ThrowError( "Cannot set FIPS mode, it was forced with --force-fips at startup."); } else if (!FIPS_mode_set(mode)) { unsigned long err = ERR_get_error(); // NOLINT(runtime/int) return ThrowCryptoError(env, err); } #else return env->ThrowError("Cannot set FIPS mode in a non-FIPS build."); #endif /* NODE_FIPS_MODE */ } void InitCrypto(Local target, Local unused, Local context, void* priv) { static uv_once_t init_once = UV_ONCE_INIT; uv_once(&init_once, InitCryptoOnce); Environment* env = Environment::GetCurrent(context); SecureContext::Initialize(env, target); Connection::Initialize(env, target); CipherBase::Initialize(env, target); DiffieHellman::Initialize(env, target); ECDH::Initialize(env, target); Hmac::Initialize(env, target); Hash::Initialize(env, target); Sign::Initialize(env, target); Verify::Initialize(env, target); env->SetMethod(target, "certVerifySpkac", VerifySpkac); env->SetMethod(target, "certExportPublicKey", ExportPublicKey); env->SetMethod(target, "certExportChallenge", ExportChallenge); #ifndef OPENSSL_NO_ENGINE env->SetMethod(target, "setEngine", SetEngine); #endif // !OPENSSL_NO_ENGINE env->SetMethod(target, "getFipsCrypto", GetFipsCrypto); env->SetMethod(target, "setFipsCrypto", SetFipsCrypto); env->SetMethod(target, "PBKDF2", PBKDF2); env->SetMethod(target, "randomBytes", RandomBytes); env->SetMethod(target, "timingSafeEqual", TimingSafeEqual); env->SetMethod(target, "getSSLCiphers", GetSSLCiphers); env->SetMethod(target, "getCiphers", GetCiphers); env->SetMethod(target, "getHashes", GetHashes); env->SetMethod(target, "getCurves", GetCurves); env->SetMethod(target, "publicEncrypt", PublicKeyCipher::Cipher); env->SetMethod(target, "privateDecrypt", PublicKeyCipher::Cipher); env->SetMethod(target, "privateEncrypt", PublicKeyCipher::Cipher); env->SetMethod(target, "publicDecrypt", PublicKeyCipher::Cipher); } } // namespace crypto } // namespace node NODE_MODULE_CONTEXT_AWARE_BUILTIN(crypto, node::crypto::InitCrypto)