# Buffer Stability: 2 - Stable Prior to the introduction of `TypedArray` in ECMAScript 2015 (ES6), the JavaScript language had no mechanism for reading or manipulating streams of binary data. The `Buffer` class was introduced as part of the Node.js API to make it possible to interact with octet streams in the context of things like TCP streams and file system operations. Now that `TypedArray` has been added in ES6, the `Buffer` class implements the `Uint8Array` API in a manner that is more optimized and suitable for Node.js' use cases. Instances of the `Buffer` class are similar to arrays of integers but correspond to fixed-sized, raw memory allocations outside the V8 heap. The size of the `Buffer` is established when it is created and cannot be resized. The `Buffer` class is a global within Node.js, making it unlikely that one would need to ever use `require('buffer').Buffer`. ```js const buf1 = Buffer.alloc(10); // Creates a zero-filled Buffer of length 10. const buf2 = Buffer.alloc(10, 1); // Creates a Buffer of length 10, filled with 0x01. const buf3 = Buffer.allocUnsafe(10); // Creates an uninitialized buffer of length 10. // This is faster than calling Buffer.alloc() but the returned // Buffer instance might contain old data that needs to be // overwritten using either fill() or write(). const buf4 = Buffer.from([1,2,3]); // Creates a Buffer containing [01, 02, 03]. const buf5 = Buffer.from('test'); // Creates a Buffer containing ASCII bytes [74, 65, 73, 74]. const buf6 = Buffer.from('tést', 'utf8'); // Creates a Buffer containing UTF8 bytes [74, c3, a9, 73, 74]. ``` ## `Buffer.from()`, `Buffer.alloc()`, and `Buffer.allocUnsafe()` In versions of Node.js prior to v6, `Buffer` instances were created using the `Buffer` constructor function, which allocates the returned `Buffer` differently based on what arguments are provided: * Passing a number as the first argument to `Buffer()` (e.g. `new Buffer(10)`), allocates a new `Buffer` object of the specified size. The memory allocated for such `Buffer` instances is *not* initialized and *can contain sensitive data*. Such `Buffer` objects *must* be initialized *manually* by using either [`buf.fill(0)`][] or by writing to the `Buffer` completely. While this behavior is *intentional* to improve performance, development experience has demonstrated that a more explicit distinction is required between creating a fast-but-uninitialized `Buffer` versus creating a slower-but-safer `Buffer`. * Passing a string, array, or `Buffer` as the first argument copies the passed object's data into the `Buffer`. * Passing an `ArrayBuffer` returns a `Buffer` that shares allocated memory with the given `ArrayBuffer`. Because the behavior of `new Buffer()` changes significantly based on the type of value passed as the first argument, applications that do not properly validate the input arguments passed to `new Buffer()`, or that fail to appropriately initialize newly allocated `Buffer` content, can inadvertently introduce security and reliability issues into their code. To make the creation of `Buffer` objects more reliable and less error prone, the various forms of the `new Buffer()` constructor have been **deprecated** and replaced by separate `Buffer.from()`, `Buffer.alloc()`, and `Buffer.allocUnsafe()` methods. *Developers should migrate all existing uses of the `new Buffer()` constructors to one of these new APIs.* * [`Buffer.from(array)`][buffer_from_array] returns a new `Buffer` containing a *copy* of the provided octets. * [`Buffer.from(arrayBuffer[, byteOffset [, length]])`][buffer_from_arraybuf] returns a new `Buffer` that *shares* the same allocated memory as the given `ArrayBuffer`. * [`Buffer.from(buffer)`][buffer_from_buffer] returns a new `Buffer` containing a *copy* of the contents of the given `Buffer`. * [`Buffer.from(str[, encoding])`][buffer_from_string] returns a new `Buffer` containing a *copy* of the provided string. * [`Buffer.alloc(size[, fill[, encoding]])`][buffer_alloc] returns a "filled" `Buffer` instance of the specified size. This method can be significantly slower than [`Buffer.allocUnsafe(size)`][buffer_allocunsafe] but ensures that newly created `Buffer` instances never contain old and potentially sensitive data. * [`Buffer.allocUnsafe(size)`][buffer_allocunsafe] and [`Buffer.allocUnsafeSlow(size)`][buffer_allocunsafeslow] each return a new `Buffer` of the specified `size` whose content *must* be initialized using either [`buf.fill(0)`][] or written to completely. `Buffer` instances returned by `Buffer.allocUnsafe(size)` *may* be allocated off a shared internal memory pool if `size` is less than or equal to half `Buffer.poolSize`. Instances returned by `Buffer.allocUnsafeSlow(size)` *never* use the shared internal memory pool. ### The `--zero-fill-buffers` command line option Node.js can be started using the `--zero-fill-buffers` command line option to force all newly allocated `Buffer` instances created using either `new Buffer(size)`, `Buffer.allocUnsafe(size)`, `Buffer.allocUnsafeSlow(size)` or `new SlowBuffer(size)` to be *automatically zero-filled* upon creation. Use of this flag *changes the default behavior* of these methods and *can have a significant impact* on performance. Use of the `--zero-fill-buffers` option is recommended only when absolutely necessary to enforce that newly allocated `Buffer` instances cannot contain potentially sensitive data. ``` $ node --zero-fill-buffers > Buffer.allocUnsafe(5); ``` ### What makes `Buffer.allocUnsafe(size)` and `Buffer.allocUnsafeSlow(size)` "unsafe"? When calling `Buffer.allocUnsafe()` (and `Buffer.allocUnsafeSlow()`), the segment of allocated memory is *uninitialized* (it is not zeroed-out). While this design makes the allocation of memory quite fast, the allocated segment of memory might contain old data that is potentially sensitive. Using a `Buffer` created by `Buffer.allocUnsafe()` without *completely* overwriting the memory can allow this old data to be leaked when the `Buffer` memory is read. While there are clear performance advantages to using `Buffer.allocUnsafe()`, extra care *must* be taken in order to avoid introducing security vulnerabilities into an application. ## Buffers and Character Encodings Buffers are commonly used to represent sequences of encoded characters such as UTF8, UCS2, Base64 or even Hex-encoded data. It is possible to convert back and forth between Buffers and ordinary JavaScript string objects by using an explicit encoding method. ```js const buf = Buffer.from('hello world', 'ascii'); console.log(buf.toString('hex')); // prints: 68656c6c6f20776f726c64 console.log(buf.toString('base64')); // prints: aGVsbG8gd29ybGQ= ``` The character encodings currently supported by Node.js include: * `'ascii'` - for 7-bit ASCII data only. This encoding method is very fast and will strip the high bit if set. * `'utf8'` - Multibyte encoded Unicode characters. Many web pages and other document formats use UTF-8. * `'utf16le'` - 2 or 4 bytes, little-endian encoded Unicode characters. Surrogate pairs (U+10000 to U+10FFFF) are supported. * `'ucs2'` - Alias of `'utf16le'`. * `'base64'` - Base64 string encoding. When creating a buffer from a string, this encoding will also correctly accept "URL and Filename Safe Alphabet" as specified in [RFC 4648, Section 5]. * `'latin1'` - A way of encoding the buffer into a one-byte encoded string (as defined by the IANA in [RFC1345](https://tools.ietf.org/html/rfc1345), page 63, to be the Latin-1 supplement block and C0/C1 control codes). * `'binary'` - (deprecated) A way of encoding the buffer into a one-byte (`latin1`) encoded string. * `'hex'` - Encode each byte as two hexadecimal characters. _Note_: Today's browsers follow the [WHATWG spec](https://encoding.spec.whatwg.org/) that aliases both `latin1` and `iso-8859-1` to `win-1252`. Meaning, while doing something like `http.get()`, if the returned charset is one of those listed in the WHATWG spec it's possible that the server actually returned `win-1252` encoded data, and using `latin1` encoding may incorrectly decode the graphical characters. ## Buffers and TypedArray Buffers are also `Uint8Array` TypedArray instances. However, there are subtle incompatibilities with the TypedArray specification in ECMAScript 2015. For instance, while `ArrayBuffer#slice()` creates a copy of the slice, the implementation of [`Buffer#slice()`][`buf.slice()`] creates a view over the existing Buffer without copying, making `Buffer#slice()` far more efficient. It is also possible to create new TypedArray instances from a `Buffer` with the following caveats: 1. The `Buffer` object's memory is copied to the TypedArray, not shared. 2. The `Buffer` object's memory is interpreted as an array of distinct elements, and not as a byte array of the target type. That is, `new Uint32Array(Buffer.from([1,2,3,4]))` creates a 4-element `Uint32Array` with elements `[1,2,3,4]`, not a `Uint32Array` with a single element `[0x1020304]` or `[0x4030201]`. It is possible to create a new `Buffer` that shares the same allocated memory as a TypedArray instance by using the TypeArray object's `.buffer` property: ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf1 = Buffer.from(arr); // copies the buffer const buf2 = Buffer.from(arr.buffer); // shares the memory with arr; console.log(buf1); // Prints: , copied buffer has only two elements console.log(buf2); // Prints: arr[1] = 6000; console.log(buf1); // Prints: console.log(buf2); // Prints: ``` Note that when creating a `Buffer` using the TypedArray's `.buffer`, it is possible to use only a portion of the underlying `ArrayBuffer` by passing in `byteOffset` and `length` parameters: ```js const arr = new Uint16Array(20); const buf = Buffer.from(arr.buffer, 0, 16); console.log(buf.length); // Prints: 16 ``` The `Buffer.from()` and [`TypedArray.from()`][] (e.g.`Uint8Array.from()`) have different signatures and implementations. Specifically, the TypedArray variants accept a second argument that is a mapping function that is invoked on every element of the typed array: * `TypedArray.from(source[, mapFn[, thisArg]])` The `Buffer.from()` method, however, does not support the use of a mapping function: * [`Buffer.from(array)`][buffer_from_array] * [`Buffer.from(buffer)`][buffer_from_buffer] * [`Buffer.from(arrayBuffer[, byteOffset [, length]])`][buffer_from_arraybuf] * [`Buffer.from(str[, encoding])`][buffer_from_string] ## Buffers and ES6 iteration Buffers can be iterated over using the ECMAScript 2015 (ES6) `for..of` syntax: ```js const buf = Buffer.from([1, 2, 3]); for (var b of buf) console.log(b); // Prints: // 1 // 2 // 3 ``` Additionally, the [`buf.values()`][], [`buf.keys()`][], and [`buf.entries()`][] methods can be used to create iterators. ## Class: Buffer The Buffer class is a global type for dealing with binary data directly. It can be constructed in a variety of ways. ### new Buffer(array) Stability: 0 - Deprecated: Use [`Buffer.from(array)`][buffer_from_array] instead. * `array` {Array} Allocates a new Buffer using an `array` of octets. ```js const buf = new Buffer([0x62,0x75,0x66,0x66,0x65,0x72]); // creates a new Buffer containing ASCII bytes // ['b','u','f','f','e','r'] ``` ### new Buffer(buffer) Stability: 0 - Deprecated: Use [`Buffer.from(buffer)`][buffer_from_buffer] instead. * `buffer` {Buffer} Copies the passed `buffer` data onto a new `Buffer` instance. ```js const buf1 = new Buffer('buffer'); const buf2 = new Buffer(buf1); buf1[0] = 0x61; console.log(buf1.toString()); // 'auffer' console.log(buf2.toString()); // 'buffer' (copy is not changed) ``` ### new Buffer(arrayBuffer[, byteOffset [, length]]) Stability: 0 - Deprecated: Use [`Buffer.from(arrayBuffer[, byteOffset [, length]])`][buffer_from_arraybuf] instead. * `arrayBuffer` {ArrayBuffer} The `.buffer` property of a `TypedArray` or a `new ArrayBuffer()` * `byteOffset` {Number} Default: `0` * `length` {Number} Default: `arrayBuffer.length - byteOffset` When passed a reference to the `.buffer` property of a `TypedArray` instance, the newly created Buffer will share the same allocated memory as the TypedArray. The optional `byteOffset` and `length` arguments specify a memory range within the `arrayBuffer` that will be shared by the `Buffer`. ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf = new Buffer(arr.buffer); // shares the memory with arr; console.log(buf); // Prints: // changing the TypdArray changes the Buffer also arr[1] = 6000; console.log(buf); // Prints: ``` ### new Buffer(size) Stability: 0 - Deprecated: Use [`Buffer.alloc(size[, fill[, encoding]])`][buffer_alloc] instead (also see [`Buffer.allocUnsafe(size)`][buffer_allocunsafe]). * `size` {Number} Allocates a new `Buffer` of `size` bytes. The `size` must be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will be created if a `size` less than or equal to 0 is specified. Unlike `ArrayBuffers`, the underlying memory for `Buffer` instances created in this way is *not initialized*. The contents of a newly created `Buffer` are unknown and *could contain sensitive data*. Use [`buf.fill(0)`][] to initialize a `Buffer` to zeroes. ```js const buf = new Buffer(5); console.log(buf); // // (octets will be different, every time) buf.fill(0); console.log(buf); // ``` ### new Buffer(str[, encoding]) Stability: 0 - Deprecated: Use [`Buffer.from(str[, encoding])`][buffer_from_string] instead. * `str` {String} string to encode. * `encoding` {String} Default: `'utf8'` Creates a new Buffer containing the given JavaScript string `str`. If provided, the `encoding` parameter identifies the strings character encoding. ```js const buf1 = new Buffer('this is a tést'); console.log(buf1.toString()); // prints: this is a tést console.log(buf1.toString('ascii')); // prints: this is a tC)st const buf2 = new Buffer('7468697320697320612074c3a97374', 'hex'); console.log(buf2.toString()); // prints: this is a tést ``` ### Class Method: Buffer.alloc(size[, fill[, encoding]]) * `size` {Number} * `fill` {Value} Default: `undefined` * `encoding` {String} Default: `utf8` Allocates a new `Buffer` of `size` bytes. If `fill` is `undefined`, the `Buffer` will be *zero-filled*. ```js const buf = Buffer.alloc(5); console.log(buf); // ``` The `size` must be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will be created if a `size` less than or equal to 0 is specified. If `fill` is specified, the allocated `Buffer` will be initialized by calling `buf.fill(fill)`. See [`buf.fill()`][] for more information. ```js const buf = Buffer.alloc(5, 'a'); console.log(buf); // ``` If both `fill` and `encoding` are specified, the allocated `Buffer` will be initialized by calling `buf.fill(fill, encoding)`. For example: ```js const buf = Buffer.alloc(11, 'aGVsbG8gd29ybGQ=', 'base64'); console.log(buf); // ``` Calling `Buffer.alloc(size)` can be significantly slower than the alternative `Buffer.allocUnsafe(size)` but ensures that the newly created `Buffer` instance contents will *never contain sensitive data*. A `TypeError` will be thrown if `size` is not a number. ### Class Method: Buffer.allocUnsafe(size) * `size` {Number} Allocates a new *non-zero-filled* `Buffer` of `size` bytes. The `size` must be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will be created if a `size` less than or equal to 0 is specified. The underlying memory for `Buffer` instances created in this way is *not initialized*. The contents of the newly created `Buffer` are unknown and *may contain sensitive data*. Use [`buf.fill(0)`][] to initialize such `Buffer` instances to zeroes. ```js const buf = Buffer.allocUnsafe(5); console.log(buf); // // (octets will be different, every time) buf.fill(0); console.log(buf); // ``` A `TypeError` will be thrown if `size` is not a number. Note that the `Buffer` module pre-allocates an internal `Buffer` instance of size `Buffer.poolSize` that is used as a pool for the fast allocation of new `Buffer` instances created using `Buffer.allocUnsafe(size)` (and the deprecated `new Buffer(size)` constructor) only when `size` is less than or equal to `Buffer.poolSize >> 1` (floor of `Buffer.poolSize` divided by two). The default value of `Buffer.poolSize` is `8192` but can be modified. Use of this pre-allocated internal memory pool is a key difference between calling `Buffer.alloc(size, fill)` vs. `Buffer.allocUnsafe(size).fill(fill)`. Specifically, `Buffer.alloc(size, fill)` will *never* use the internal Buffer pool, while `Buffer.allocUnsafe(size).fill(fill)` *will* use the internal Buffer pool if `size` is less than or equal to half `Buffer.poolSize`. The difference is subtle but can be important when an application requires the additional performance that `Buffer.allocUnsafe(size)` provides. ### Class Method: Buffer.allocUnsafeSlow(size) * `size` {Number} Allocates a new *non-zero-filled* and non-pooled `Buffer` of `size` bytes. The `size` must be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will be created if a `size` less than or equal to 0 is specified. The underlying memory for `Buffer` instances created in this way is *not initialized*. The contents of the newly created `Buffer` are unknown and *may contain sensitive data*. Use [`buf.fill(0)`][] to initialize such `Buffer` instances to zeroes. When using `Buffer.allocUnsafe()` to allocate new `Buffer` instances, allocations under 4KB are, by default, sliced from a single pre-allocated `Buffer`. This allows applications to avoid the garbage collection overhead of creating many individually allocated Buffers. This approach improves both performance and memory usage by eliminating the need to track and cleanup as many `Persistent` objects. However, in the case where a developer may need to retain a small chunk of memory from a pool for an indeterminate amount of time, it may be appropriate to create an un-pooled Buffer instance using `Buffer.allocUnsafeSlow()` then copy out the relevant bits. ```js // need to keep around a few small chunks of memory const store = []; socket.on('readable', () => { const data = socket.read(); // allocate for retained data const sb = Buffer.allocUnsafeSlow(10); // copy the data into the new allocation data.copy(sb, 0, 0, 10); store.push(sb); }); ``` Use of `Buffer.allocUnsafeSlow()` should be used only as a last resort *after* a developer has observed undue memory retention in their applications. A `TypeError` will be thrown if `size` is not a number. ### Class Method: Buffer.byteLength(string[, encoding]) * `string` {String | Buffer | TypedArray | DataView | ArrayBuffer} * `encoding` {String} Default: `'utf8'` * Return: {Number} Returns the actual byte length of a string. This is not the same as [`String.prototype.length`][] since that returns the number of *characters* in a string. Example: ```js const str = '\u00bd + \u00bc = \u00be'; console.log(`${str}: ${str.length} characters, ` + `${Buffer.byteLength(str, 'utf8')} bytes`); // ½ + ¼ = ¾: 9 characters, 12 bytes ``` When `string` is a `Buffer`/[`DataView`][]/[`TypedArray`][]/`ArrayBuffer`, returns the actual byte length. Otherwise, converts to `String` and returns the byte length of string. ### Class Method: Buffer.compare(buf1, buf2) * `buf1` {Buffer} * `buf2` {Buffer} * Return: {Number} Compares `buf1` to `buf2` typically for the purpose of sorting arrays of Buffers. This is equivalent is calling [`buf1.compare(buf2)`][]. ```js const arr = [Buffer.from('1234'), Buffer.from('0123')]; arr.sort(Buffer.compare); ``` ### Class Method: Buffer.concat(list[, totalLength]) * `list` {Array} List of Buffer objects to concat * `totalLength` {Number} Total length of the Buffers in the list when concatenated * Return: {Buffer} Returns a new Buffer which is the result of concatenating all the Buffers in the `list` together. If the list has no items, or if the `totalLength` is 0, then a new zero-length Buffer is returned. If `totalLength` is not provided, it is calculated from the Buffers in the `list`. This, however, adds an additional loop to the function, so it is faster to provide the length explicitly. Example: build a single Buffer from a list of three Buffers: ```js const buf1 = Buffer.alloc(10); const buf2 = Buffer.alloc(14); const buf3 = Buffer.alloc(18); const totalLength = buf1.length + buf2.length + buf3.length; console.log(totalLength); const bufA = Buffer.concat([buf1, buf2, buf3], totalLength); console.log(bufA); console.log(bufA.length); // 42 // // 42 ``` ### Class Method: Buffer.from(array) * `array` {Array} Allocates a new `Buffer` using an `array` of octets. ```js const buf = Buffer.from([0x62,0x75,0x66,0x66,0x65,0x72]); // creates a new Buffer containing ASCII bytes // ['b','u','f','f','e','r'] ``` A `TypeError` will be thrown if `array` is not an `Array`. ### Class Method: Buffer.from(arrayBuffer[, byteOffset[, length]]) * `arrayBuffer` {ArrayBuffer} The `.buffer` property of a `TypedArray` or a `new ArrayBuffer()` * `byteOffset` {Number} Default: `0` * `length` {Number} Default: `arrayBuffer.length - byteOffset` When passed a reference to the `.buffer` property of a `TypedArray` instance, the newly created `Buffer` will share the same allocated memory as the TypedArray. ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf = Buffer.from(arr.buffer); // shares the memory with arr; console.log(buf); // Prints: // changing the TypedArray changes the Buffer also arr[1] = 6000; console.log(buf); // Prints: ``` The optional `byteOffset` and `length` arguments specify a memory range within the `arrayBuffer` that will be shared by the `Buffer`. ```js const ab = new ArrayBuffer(10); const buf = Buffer.from(ab, 0, 2); console.log(buf.length); // Prints: 2 ``` A `TypeError` will be thrown if `arrayBuffer` is not an `ArrayBuffer`. ### Class Method: Buffer.from(buffer) * `buffer` {Buffer} Copies the passed `buffer` data onto a new `Buffer` instance. ```js const buf1 = Buffer.from('buffer'); const buf2 = Buffer.from(buf1); buf1[0] = 0x61; console.log(buf1.toString()); // 'auffer' console.log(buf2.toString()); // 'buffer' (copy is not changed) ``` A `TypeError` will be thrown if `buffer` is not a `Buffer`. ### Class Method: Buffer.from(str[, encoding]) * `str` {String} String to encode. * `encoding` {String} Encoding to use, Default: `'utf8'` Creates a new `Buffer` containing the given JavaScript string `str`. If provided, the `encoding` parameter identifies the character encoding. If not provided, `encoding` defaults to `'utf8'`. ```js const buf1 = Buffer.from('this is a tést'); console.log(buf1.toString()); // prints: this is a tést console.log(buf1.toString('ascii')); // prints: this is a tC)st const buf2 = Buffer.from('7468697320697320612074c3a97374', 'hex'); console.log(buf2.toString()); // prints: this is a tést ``` A `TypeError` will be thrown if `str` is not a string. ### Class Method: Buffer.isBuffer(obj) * `obj` {Object} * Return: {Boolean} Returns 'true' if `obj` is a Buffer. ### Class Method: Buffer.isEncoding(encoding) * `encoding` {String} The encoding string to test * Return: {Boolean} Returns true if the `encoding` is a valid encoding argument, or false otherwise. ### buf[index] The index operator `[index]` can be used to get and set the octet at position `index` in the Buffer. The values refer to individual bytes, so the legal value range is between `0x00` and `0xFF` (hex) or `0` and `255` (decimal). Example: copy an ASCII string into a Buffer, one byte at a time: ```js const str = "Node.js"; const buf = Buffer.allocUnsafe(str.length); for (let i = 0; i < str.length ; i++) { buf[i] = str.charCodeAt(i); } console.log(buf.toString('ascii')); // Prints: Node.js ``` ### buf.compare(target[, targetStart[, targetEnd[, sourceStart[, sourceEnd]]]]) * `target` {Buffer} * `targetStart` {Integer} The offset within `target` at which to begin comparison. default = `0`. * `targetEnd` {Integer} The offset with `target` at which to end comparison. Ignored when `targetStart` is `undefined`. default = `target.byteLength`. * `sourceStart` {Integer} The offset within `buf` at which to begin comparison. Ignored when `targetStart` is `undefined`. default = `0` * `sourceEnd` {Integer} The offset within `buf` at which to end comparison. Ignored when `targetStart` is `undefined`. default = `buf.byteLength`. * Return: {Number} Compares two Buffer instances and returns a number indicating whether `buf` comes before, after, or is the same as the `target` in sort order. Comparison is based on the actual sequence of bytes in each Buffer. * `0` is returned if `target` is the same as `buf` * `1` is returned if `target` should come *before* `buf` when sorted. * `-1` is returned if `target` should come *after* `buf` when sorted. ```js const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('BCD'); const buf3 = Buffer.from('ABCD'); console.log(buf1.compare(buf1)); // Prints: 0 console.log(buf1.compare(buf2)); // Prints: -1 console.log(buf1.compare(buf3)); // Prints: -1 console.log(buf2.compare(buf1)); // Prints: 1 console.log(buf2.compare(buf3)); // Prints: 1 [buf1, buf2, buf3].sort(Buffer.compare); // produces sort order [buf1, buf3, buf2] ``` The optional `targetStart`, `targetEnd`, `sourceStart`, and `sourceEnd` arguments can be used to limit the comparison to specific ranges within the two `Buffer` objects. ```js const buf1 = Buffer.from([1, 2, 3, 4, 5, 6, 7, 8, 9]); const buf2 = Buffer.from([5, 6, 7, 8, 9, 1, 2, 3, 4]); console.log(buf1.compare(buf2, 5, 9, 0, 4)); // Prints: 0 console.log(buf1.compare(buf2, 0, 6, 4)); // Prints: -1 console.log(buf1.compare(buf2, 5, 6, 5)); // Prints: 1 ``` A `RangeError` will be thrown if: `targetStart < 0`, `sourceStart < 0`, `targetEnd > target.byteLength` or `sourceEnd > source.byteLength`. ### buf.copy(targetBuffer[, targetStart[, sourceStart[, sourceEnd]]]) * `targetBuffer` {Buffer} Buffer to copy into * `targetStart` {Number} Default: 0 * `sourceStart` {Number} Default: 0 * `sourceEnd` {Number} Default: `buffer.length` * Return: {Number} The number of bytes copied. Copies data from a region of this Buffer to a region in the target Buffer even if the target memory region overlaps with the source. Example: build two Buffers, then copy `buf1` from byte 16 through byte 19 into `buf2`, starting at the 8th byte in `buf2`. ```js const buf1 = Buffer.allocUnsafe(26); const buf2 = Buffer.allocUnsafe(26).fill('!'); for (let i = 0 ; i < 26 ; i++) { buf1[i] = i + 97; // 97 is ASCII a } buf1.copy(buf2, 8, 16, 20); console.log(buf2.toString('ascii', 0, 25)); // Prints: !!!!!!!!qrst!!!!!!!!!!!!! ``` Example: Build a single Buffer, then copy data from one region to an overlapping region in the same Buffer ```js const buf = Buffer.allocUnsafe(26); for (var i = 0 ; i < 26 ; i++) { buf[i] = i + 97; // 97 is ASCII a } buf.copy(buf, 0, 4, 10); console.log(buf.toString()); // efghijghijklmnopqrstuvwxyz ``` ### buf.entries() * Return: {Iterator} Creates and returns an [iterator][] of `[index, byte]` pairs from the Buffer contents. ```js const buf = Buffer.from('buffer'); for (var pair of buf.entries()) { console.log(pair); } // prints: // [0, 98] // [1, 117] // [2, 102] // [3, 102] // [4, 101] // [5, 114] ``` ### buf.equals(otherBuffer) * `otherBuffer` {Buffer} * Return: {Boolean} Returns a boolean indicating whether `this` and `otherBuffer` have exactly the same bytes. ```js const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('414243', 'hex'); const buf3 = Buffer.from('ABCD'); console.log(buf1.equals(buf2)); // Prints: true console.log(buf1.equals(buf3)); // Prints: false ``` ### buf.fill(value[, offset[, end]][, encoding]) * `value` {String|Buffer|Number} * `offset` {Number} Default: 0 * `end` {Number} Default: `buf.length` * `encoding` {String} Default: `'utf8'` * Return: {Buffer} Fills the Buffer with the specified value. If the `offset` (defaults to `0`) and `end` (defaults to `buf.length`) are not given the entire buffer will be filled. The method returns a reference to the Buffer, so calls can be chained. This is meant as a small simplification to creating a Buffer. Allowing the creation and fill of the Buffer to be done on a single line: ```js const b = Buffer.allocUnsafe(50).fill('h'); console.log(b.toString()); // Prints: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ``` `encoding` is only relevant if `value` is a string. Otherwise it is ignored. `value` is coerced to a `uint32` value if it is not a String or Number. The `fill()` operation writes bytes into the Buffer dumbly. If the final write falls in between a multi-byte character then whatever bytes fit into the buffer are written. ```js Buffer(3).fill('\u0222'); // Prints: ``` ### buf.indexOf(value[, byteOffset][, encoding]) * `value` {String|Buffer|Number} * `byteOffset` {Number} Default: 0 * `encoding` {String} Default: `'utf8'` * Return: {Number} Operates similar to [`Array#indexOf()`][] in that it returns either the starting index position of `value` in Buffer or `-1` if the Buffer does not contain `value`. The `value` can be a String, Buffer or Number. Strings are by default interpreted as UTF8. Buffers will use the entire Buffer (to compare a partial Buffer use [`buf.slice()`][]). Numbers will be interpreted as unsigned 8-bit integer values between `0` and `255`. ```js const buf = Buffer.from('this is a buffer'); buf.indexOf('this'); // returns 0 buf.indexOf('is'); // returns 2 buf.indexOf(Buffer.from('a buffer')); // returns 8 buf.indexOf(97); // ascii for 'a' // returns 8 buf.indexOf(Buffer.from('a buffer example')); // returns -1 buf.indexOf(Buffer.from('a buffer example').slice(0,8)); // returns 8 const utf16Buffer = Buffer.from('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2'); utf16Buffer.indexOf('\u03a3', 0, 'ucs2'); // returns 4 utf16Buffer.indexOf('\u03a3', -4, 'ucs2'); // returns 6 ``` ### buf.includes(value[, byteOffset][, encoding]) * `value` {String|Buffer|Number} * `byteOffset` {Number} Default: 0 * `encoding` {String} Default: `'utf8'` * Return: {Boolean} Operates similar to [`Array#includes()`][]. The `value` can be a String, Buffer or Number. Strings are interpreted as UTF8 unless overridden with the `encoding` argument. Buffers will use the entire Buffer (to compare a partial Buffer use [`buf.slice()`][]). Numbers will be interpreted as unsigned 8-bit integer values between `0` and `255`. The `byteOffset` indicates the index in `buf` where searching begins. ```js const buf = Buffer.from('this is a buffer'); buf.includes('this'); // returns true buf.includes('is'); // returns true buf.includes(Buffer.from('a buffer')); // returns true buf.includes(97); // ascii for 'a' // returns true buf.includes(Buffer.from('a buffer example')); // returns false buf.includes(Buffer.from('a buffer example').slice(0,8)); // returns true buf.includes('this', 4); // returns false ``` ### buf.keys() * Return: {Iterator} Creates and returns an [iterator][] of Buffer keys (indices). ```js const buf = Buffer.from('buffer'); for (var key of buf.keys()) { console.log(key); } // prints: // 0 // 1 // 2 // 3 // 4 // 5 ``` ### buf.lastIndexOf(value[, byteOffset][, encoding]) * `value` {String|Buffer|Number} * `byteOffset` {Number} Default: `buf.length` * `encoding` {String} Default: `'utf8'` * Return: {Number} Identical to [`Buffer#indexOf()`][], but searches the Buffer from back to front instead of front to back. Returns the starting index position of `value` in Buffer or `-1` if the Buffer does not contain `value`. The `value` can be a String, Buffer or Number. Strings are by default interpreted as UTF8. If `byteOffset` is provided, will return the last match that begins at or before `byteOffset`. ```js const buf = new Buffer('this buffer is a buffer'); buf.lastIndexOf('this'); // returns 0 buf.lastIndexOf('buffer'); // returns 17 buf.lastIndexOf(new Buffer('buffer')); // returns 17 buf.lastIndexOf(97); // ascii for 'a' // returns 15 buf.lastIndexOf(new Buffer('yolo')); // returns -1 buf.lastIndexOf('buffer', 5) // returns 5 buf.lastIndexOf('buffer', 4) // returns -1 const utf16Buffer = new Buffer('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2'); utf16Buffer.lastIndexOf('\u03a3', null, 'ucs2'); // returns 6 utf16Buffer.lastIndexOf('\u03a3', -5, 'ucs2'); // returns 4 ``` ### buf.length * {Number} Returns the amount of memory allocated for the Buffer in number of bytes. Note that this does not necessarily reflect the amount of usable data within the Buffer. For instance, in the example below, a Buffer with 1234 bytes is allocated, but only 11 ASCII bytes are written. ```js const buf = Buffer.alloc(1234); console.log(buf.length); // Prints: 1234 buf.write('some string', 0, 'ascii'); console.log(buf.length); // Prints: 1234 ``` While the `length` property is not immutable, changing the value of `length` can result in undefined and inconsistent behavior. Applications that wish to modify the length of a Buffer should therefore treat `length` as read-only and use [`buf.slice()`][] to create a new Buffer. ```js var buf = Buffer.allocUnsafe(10); buf.write('abcdefghj', 0, 'ascii'); console.log(buf.length); // Prints: 10 buf = buf.slice(0,5); console.log(buf.length); // Prints: 5 ``` ### buf.readDoubleBE(offset[, noAssert]) ### buf.readDoubleLE(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 8` * `noAssert` {Boolean} Default: false * Return: {Number} Reads a 64-bit double from the Buffer at the specified `offset` with specified endian format (`readDoubleBE()` returns big endian, `readDoubleLE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. ```js const buf = Buffer.from([1,2,3,4,5,6,7,8]); buf.readDoubleBE(); // Returns: 8.20788039913184e-304 buf.readDoubleLE(); // Returns: 5.447603722011605e-270 buf.readDoubleLE(1); // throws RangeError: Index out of range buf.readDoubleLE(1, true); // Warning: reads passed end of buffer! // Segmentation fault! don't do this! ``` ### buf.readFloatBE(offset[, noAssert]) ### buf.readFloatLE(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 4` * `noAssert` {Boolean} Default: false * Return: {Number} Reads a 32-bit float from the Buffer at the specified `offset` with specified endian format (`readFloatBE()` returns big endian, `readFloatLE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. ```js const buf = Buffer.from([1,2,3,4]); buf.readFloatBE(); // Returns: 2.387939260590663e-38 buf.readFloatLE(); // Returns: 1.539989614439558e-36 buf.readFloatLE(1); // throws RangeError: Index out of range buf.readFloatLE(1, true); // Warning: reads passed end of buffer! // Segmentation fault! don't do this! ``` ### buf.readInt8(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 1` * `noAssert` {Boolean} Default: false * Return: {Number} Reads a signed 8-bit integer from the Buffer at the specified `offset`. Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. Integers read from the Buffer are interpreted as two's complement signed values. ```js const buf = Buffer.from([1,-2,3,4]); buf.readInt8(0); // returns 1 buf.readInt8(1); // returns -2 ``` ### buf.readInt16BE(offset[, noAssert]) ### buf.readInt16LE(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 2` * `noAssert` {Boolean} Default: false * Return: {Number} Reads a signed 16-bit integer from the Buffer at the specified `offset` with the specified endian format (`readInt16BE()` returns big endian, `readInt16LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. Integers read from the Buffer are interpreted as two's complement signed values. ```js const buf = Buffer.from([1,-2,3,4]); buf.readInt16BE(); // returns 510 buf.readInt16LE(1); // returns 1022 ``` ### buf.readInt32BE(offset[, noAssert]) ### buf.readInt32LE(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 4` * `noAssert` {Boolean} Default: false * Return: {Number} Reads a signed 32-bit integer from the Buffer at the specified `offset` with the specified endian format (`readInt32BE()` returns big endian, `readInt32LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. Integers read from the Buffer are interpreted as two's complement signed values. ```js const buf = Buffer.from([1,-2,3,4]); buf.readInt32BE(); // returns 33424132 buf.readInt32LE(); // returns 67370497 buf.readInt32LE(1); // throws RangeError: Index out of range ``` ### buf.readIntBE(offset, byteLength[, noAssert]) ### buf.readIntLE(offset, byteLength[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - byteLength` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} Reads `byteLength` number of bytes from the Buffer at the specified `offset` and interprets the result as a two's complement signed value. Supports up to 48 bits of accuracy. For example: ```js const buf = Buffer.allocUnsafe(6); buf.writeUInt16LE(0x90ab, 0); buf.writeUInt32LE(0x12345678, 2); buf.readIntLE(0, 6).toString(16); // Specify 6 bytes (48 bits) // Returns: '1234567890ab' buf.readIntBE(0, 6).toString(16); // Returns: -546f87a9cbee ``` Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. ### buf.readUInt8(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 1` * `noAssert` {Boolean} Default: false * Return: {Number} Reads an unsigned 8-bit integer from the Buffer at the specified `offset`. Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. ```js const buf = Buffer.from([1,-2,3,4]); buf.readUInt8(0); // returns 1 buf.readUInt8(1); // returns 254 ``` ### buf.readUInt16BE(offset[, noAssert]) ### buf.readUInt16LE(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 2` * `noAssert` {Boolean} Default: false * Return: {Number} Reads an unsigned 16-bit integer from the Buffer at the specified `offset` with specified endian format (`readUInt16BE()` returns big endian, `readUInt16LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. Example: ```js const buf = Buffer.from([0x3, 0x4, 0x23, 0x42]); buf.readUInt16BE(0); // Returns: 0x0304 buf.readUInt16LE(0); // Returns: 0x0403 buf.readUInt16BE(1); // Returns: 0x0423 buf.readUInt16LE(1); // Returns: 0x2304 buf.readUInt16BE(2); // Returns: 0x2342 buf.readUInt16LE(2); // Returns: 0x4223 ``` ### buf.readUInt32BE(offset[, noAssert]) ### buf.readUInt32LE(offset[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - 4` * `noAssert` {Boolean} Default: false * Return: {Number} Reads an unsigned 32-bit integer from the Buffer at the specified `offset` with specified endian format (`readUInt32BE()` returns big endian, `readUInt32LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. Example: ```js const buf = Buffer.from([0x3, 0x4, 0x23, 0x42]); buf.readUInt32BE(0); // Returns: 0x03042342 console.log(buf.readUInt32LE(0)); // Returns: 0x42230403 ``` ### buf.readUIntBE(offset, byteLength[, noAssert]) ### buf.readUIntLE(offset, byteLength[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length - byteLength` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} Reads `byteLength` number of bytes from the Buffer at the specified `offset` and interprets the result as an unsigned integer. Supports up to 48 bits of accuracy. For example: ```js const buf = Buffer.allocUnsafe(6); buf.writeUInt16LE(0x90ab, 0); buf.writeUInt32LE(0x12345678, 2); buf.readUIntLE(0, 6).toString(16); // Specify 6 bytes (48 bits) // Returns: '1234567890ab' buf.readUIntBE(0, 6).toString(16); // Returns: ab9078563412 ``` Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. ### buf.slice([start[, end]]) * `start` {Number} Default: 0 * `end` {Number} Default: `buffer.length` * Return: {Buffer} Returns a new Buffer that references the same memory as the original, but offset and cropped by the `start` and `end` indices. **Note that modifying the new Buffer slice will modify the memory in the original Buffer because the allocated memory of the two objects overlap.** Example: build a Buffer with the ASCII alphabet, take a slice, then modify one byte from the original Buffer. ```js const buf1 = Buffer.allocUnsafe(26); for (var i = 0 ; i < 26 ; i++) { buf1[i] = i + 97; // 97 is ASCII a } const buf2 = buf1.slice(0, 3); buf2.toString('ascii', 0, buf2.length); // Returns: 'abc' buf1[0] = 33; buf2.toString('ascii', 0, buf2.length); // Returns : '!bc' ``` Specifying negative indexes causes the slice to be generated relative to the end of the Buffer rather than the beginning. ```js const buf = Buffer.from('buffer'); buf.slice(-6, -1).toString(); // Returns 'buffe', equivalent to buf.slice(0, 5) buf.slice(-6, -2).toString(); // Returns 'buff', equivalent to buf.slice(0, 4) buf.slice(-5, -2).toString(); // Returns 'uff', equivalent to buf.slice(1, 4) ``` ### buf.swap16() * Return: {Buffer} Interprets the `Buffer` as an array of unsigned 16-bit integers and swaps the byte-order *in-place*. Throws a `RangeError` if the `Buffer` length is not a multiple of 16 bits. The method returns a reference to the Buffer, so calls can be chained. ```js const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf); // Prints buf.swap16(); console.log(buf); // Prints ``` ### buf.swap32() * Return: {Buffer} Interprets the `Buffer` as an array of unsigned 32-bit integers and swaps the byte-order *in-place*. Throws a `RangeError` if the `Buffer` length is not a multiple of 32 bits. The method returns a reference to the Buffer, so calls can be chained. ```js const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf); // Prints buf.swap32(); console.log(buf); // Prints ``` ### buf.swap64() * Return: {Buffer} Interprets the `Buffer` as an array of 64-bit numbers and swaps the byte-order *in-place*. Throws a `RangeError` if the `Buffer` length is not a multiple of 64 bits. The method returns a reference to the Buffer, so calls can be chained. ```js const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf); // Prints buf.swap64(); console.log(buf); // Prints ``` Note that JavaScript cannot encode 64-bit integers. This method is intended for working with 64-bit floats. ### buf.toString([encoding[, start[, end]]]) * `encoding` {String} Default: `'utf8'` * `start` {Number} Default: 0 * `end` {Number} Default: `buffer.length` * Return: {String} Decodes and returns a string from the Buffer data using the specified character set `encoding`. ```js const buf = Buffer.allocUnsafe(26); for (var i = 0 ; i < 26 ; i++) { buf[i] = i + 97; // 97 is ASCII a } buf.toString('ascii'); // Returns: 'abcdefghijklmnopqrstuvwxyz' buf.toString('ascii',0,5); // Returns: 'abcde' buf.toString('utf8',0,5); // Returns: 'abcde' buf.toString(undefined,0,5); // Returns: 'abcde', encoding defaults to 'utf8' ``` ### buf.toJSON() * Return: {Object} Returns a JSON representation of the Buffer instance. [`JSON.stringify()`][] implicitly calls this function when stringifying a Buffer instance. Example: ```js const buf = Buffer.from('test'); const json = JSON.stringify(buf); console.log(json); // Prints: '{"type":"Buffer","data":[116,101,115,116]}' const copy = JSON.parse(json, (key, value) => { return value && value.type === 'Buffer' ? Buffer.from(value.data) : value; }); console.log(copy.toString()); // Prints: 'test' ``` ### buf.values() * Return: {Iterator} Creates and returns an [iterator][] for Buffer values (bytes). This function is called automatically when the Buffer is used in a `for..of` statement. ```js const buf = Buffer.from('buffer'); for (var value of buf.values()) { console.log(value); } // prints: // 98 // 117 // 102 // 102 // 101 // 114 for (var value of buf) { console.log(value); } // prints: // 98 // 117 // 102 // 102 // 101 // 114 ``` ### buf.write(string[, offset[, length]][, encoding]) * `string` {String} Bytes to be written to buffer * `offset` {Number} Default: 0 * `length` {Number} Default: `buffer.length - offset` * `encoding` {String} Default: `'utf8'` * Return: {Number} Numbers of bytes written Writes `string` to the Buffer at `offset` using the given `encoding`. The `length` parameter is the number of bytes to write. If the Buffer did not contain enough space to fit the entire string, only a partial amount of the string will be written however, it will not write only partially encoded characters. ```js const buf = Buffer.allocUnsafe(256); const len = buf.write('\u00bd + \u00bc = \u00be', 0); console.log(`${len} bytes: ${buf.toString('utf8', 0, len)}`); // Prints: 12 bytes: ½ + ¼ = ¾ ``` ### buf.writeDoubleBE(value, offset[, noAssert]) ### buf.writeDoubleLE(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 8` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeDoubleBE()` writes big endian, `writeDoubleLE()` writes little endian). The `value` argument *should* be a valid 64-bit double. Behavior is not defined when `value` is anything other than a 64-bit double. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Example: ```js const buf = Buffer.allocUnsafe(8); buf.writeDoubleBE(0xdeadbeefcafebabe, 0); console.log(buf); // Prints: buf.writeDoubleLE(0xdeadbeefcafebabe, 0); console.log(buf); // Prints: ``` ### buf.writeFloatBE(value, offset[, noAssert]) ### buf.writeFloatLE(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 4` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeFloatBE()` writes big endian, `writeFloatLE()` writes little endian). Behavior is not defined when `value` is anything other than a 32-bit float. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Example: ```js const buf = Buffer.allocUnsafe(4); buf.writeFloatBE(0xcafebabe, 0); console.log(buf); // Prints: buf.writeFloatLE(0xcafebabe, 0); console.log(buf); // Prints: ``` ### buf.writeInt8(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 1` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset`. The `value` should be a valid signed 8-bit integer. Behavior is not defined when `value` is anything other than a signed 8-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. The `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(2); buf.writeInt8(2, 0); buf.writeInt8(-2, 1); console.log(buf); // Prints: ``` ### buf.writeInt16BE(value, offset[, noAssert]) ### buf.writeInt16LE(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 2` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeInt16BE()` writes big endian, `writeInt16LE()` writes little endian). The `value` should be a valid signed 16-bit integer. Behavior is not defined when `value` is anything other than a signed 16-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. The `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(4); buf.writeInt16BE(0x0102,0); buf.writeInt16LE(0x0304,2); console.log(buf); // Prints: ``` ### buf.writeInt32BE(value, offset[, noAssert]) ### buf.writeInt32LE(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 4` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeInt32BE()` writes big endian, `writeInt32LE()` writes little endian). The `value` should be a valid signed 32-bit integer. Behavior is not defined when `value` is anything other than a signed 32-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. The `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(8); buf.writeInt32BE(0x01020304,0); buf.writeInt32LE(0x05060708,4); console.log(buf); // Prints: ``` ### buf.writeIntBE(value, offset, byteLength[, noAssert]) ### buf.writeIntLE(value, offset, byteLength[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - byteLength` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` and `byteLength`. Supports up to 48 bits of accuracy. For example: ```js const buf1 = Buffer.allocUnsafe(6); buf1.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf1); // Prints: const buf2 = Buffer.allocUnsafe(6); buf2.writeUIntLE(0x1234567890ab, 0, 6); console.log(buf2); // Prints: ``` Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Behavior is not defined when `value` is anything other than an integer. ### buf.writeUInt8(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 1` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset`. The `value` should be a valid unsigned 8-bit integer. Behavior is not defined when `value` is anything other than an unsigned 8-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Example: ```js const buf = Buffer.allocUnsafe(4); buf.writeUInt8(0x3, 0); buf.writeUInt8(0x4, 1); buf.writeUInt8(0x23, 2); buf.writeUInt8(0x42, 3); console.log(buf); // Prints: ``` ### buf.writeUInt16BE(value, offset[, noAssert]) ### buf.writeUInt16LE(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 2` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeUInt16BE()` writes big endian, `writeUInt16LE()` writes little endian). The `value` should be a valid unsigned 16-bit integer. Behavior is not defined when `value` is anything other than an unsigned 16-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Example: ```js const buf = Buffer.allocUnsafe(4); buf.writeUInt16BE(0xdead, 0); buf.writeUInt16BE(0xbeef, 2); console.log(buf); // Prints: buf.writeUInt16LE(0xdead, 0); buf.writeUInt16LE(0xbeef, 2); console.log(buf); // Prints: ``` ### buf.writeUInt32BE(value, offset[, noAssert]) ### buf.writeUInt32LE(value, offset[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - 4` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeUInt32BE()` writes big endian, `writeUInt32LE()` writes little endian). The `value` should be a valid unsigned 32-bit integer. Behavior is not defined when `value` is anything other than an unsigned 32-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Example: ```js const buf = Buffer.allocUnsafe(4); buf.writeUInt32BE(0xfeedface, 0); console.log(buf); // Prints: buf.writeUInt32LE(0xfeedface, 0); console.log(buf); // Prints: ``` ### buf.writeUIntBE(value, offset, byteLength[, noAssert]) ### buf.writeUIntLE(value, offset, byteLength[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length - byteLength` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} The offset plus the number of written bytes Writes `value` to the Buffer at the specified `offset` and `byteLength`. Supports up to 48 bits of accuracy. For example: ```js const buf = Buffer.allocUnsafe(6); buf.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf); // Prints: ``` Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Behavior is not defined when `value` is anything other than an unsigned integer. ## buffer.INSPECT_MAX_BYTES * {Number} Default: 50 Returns the maximum number of bytes that will be returned when `buffer.inspect()` is called. This can be overridden by user modules. See [`util.inspect()`][] for more details on `buffer.inspect()` behavior. Note that this is a property on the `buffer` module as returned by `require('buffer')`, not on the Buffer global or a Buffer instance. ## Class: SlowBuffer Stability: 0 - Deprecated: Use [`Buffer.allocUnsafeSlow(size)`][buffer_allocunsafeslow] instead. Returns an un-pooled `Buffer`. In order to avoid the garbage collection overhead of creating many individually allocated Buffers, by default allocations under 4KB are sliced from a single larger allocated object. This approach improves both performance and memory usage since v8 does not need to track and cleanup as many `Persistent` objects. In the case where a developer may need to retain a small chunk of memory from a pool for an indeterminate amount of time, it may be appropriate to create an un-pooled Buffer instance using `SlowBuffer` then copy out the relevant bits. ```js // need to keep around a few small chunks of memory const store = []; socket.on('readable', () => { var data = socket.read(); // allocate for retained data var sb = SlowBuffer(10); // copy the data into the new allocation data.copy(sb, 0, 0, 10); store.push(sb); }); ``` Use of `SlowBuffer` should be used only as a last resort *after* a developer has observed undue memory retention in their applications. ### new SlowBuffer(size) Stability: 0 - Deprecated: Use [`Buffer.allocUnsafeSlow(size)`][buffer_allocunsafeslow] instead. * `size` Number Allocates a new `SlowBuffer` of `size` bytes. The `size` must be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. A zero-length Buffer will be created if a `size` less than or equal to 0 is specified. The underlying memory for `SlowBuffer` instances is *not initialized*. The contents of a newly created `SlowBuffer` are unknown and could contain sensitive data. Use [`buf.fill(0)`][] to initialize a `SlowBuffer` to zeroes. ```js const SlowBuffer = require('buffer').SlowBuffer; const buf = new SlowBuffer(5); console.log(buf); // // (octets will be different, every time) buf.fill(0); console.log(buf); // ``` [iterator]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols [`Array#indexOf()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf [`Buffer#indexOf()`]: #buffer_buf_indexof_value_byteoffset_encoding [`Array#includes()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes [`buf.entries()`]: #buffer_buf_entries [`buf.fill(0)`]: #buffer_buf_fill_value_offset_end_encoding [`buf.fill()`]: #buffer_buf_fill_value_offset_end_encoding [`buf.keys()`]: #buffer_buf_keys [`buf.slice()`]: #buffer_buf_slice_start_end [`buf.values()`]: #buffer_buf_values [`buf1.compare(buf2)`]: #buffer_buf_compare_target_targetstart_targetend_sourcestart_sourceend [`JSON.stringify()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify [`RangeError`]: errors.html#errors_class_rangeerror [`String.prototype.length`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length [`util.inspect()`]: util.html#util_util_inspect_object_options [RFC 4648, Section 5]: https://tools.ietf.org/html/rfc4648#section-5 [buffer_from_array]: #buffer_class_method_buffer_from_array [buffer_from_buffer]: #buffer_class_method_buffer_from_buffer [buffer_from_arraybuf]: #buffer_class_method_buffer_from_arraybuffer_byteoffset_length [buffer_from_string]: #buffer_class_method_buffer_from_str_encoding [buffer_allocunsafe]: #buffer_class_method_buffer_allocunsafe_size [buffer_allocunsafeslow]: #buffer_class_method_buffer_allocunsafeslow_size [buffer_alloc]: #buffer_class_method_buffer_alloc_size_fill_encoding [`TypedArray.from()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/from [`DataView`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView [`TypedArray`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray