// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been modified // significantly by Google Inc. // Copyright 2006-2008 the V8 project authors. All rights reserved. #include "v8.h" #include "disassembler.h" #include "macro-assembler.h" #include "serialize.h" namespace v8 { namespace internal { // ----------------------------------------------------------------------------- // Implementation of CpuFeatures // Safe default is no features. uint64_t CpuFeatures::supported_ = 0; uint64_t CpuFeatures::enabled_ = 0; // The Probe method needs executable memory, so it uses Heap::CreateCode. // Allocation failure is silent and leads to safe default. void CpuFeatures::Probe() { ASSERT(Heap::HasBeenSetup()); ASSERT(supported_ == 0); if (Serializer::enabled()) return; // No features if we might serialize. Assembler assm(NULL, 0); Label cpuid, done; #define __ assm. // Save old esp, since we are going to modify the stack. __ push(ebp); __ pushfd(); __ push(ecx); __ push(ebx); __ mov(ebp, Operand(esp)); // If we can modify bit 21 of the EFLAGS register, then CPUID is supported. __ pushfd(); __ pop(eax); __ mov(edx, Operand(eax)); __ xor_(eax, 0x200000); // Flip bit 21. __ push(eax); __ popfd(); __ pushfd(); __ pop(eax); __ xor_(eax, Operand(edx)); // Different if CPUID is supported. __ j(not_zero, &cpuid); // CPUID not supported. Clear the supported features in edx:eax. __ xor_(eax, Operand(eax)); __ xor_(edx, Operand(edx)); __ jmp(&done); // Invoke CPUID with 1 in eax to get feature information in // ecx:edx. Temporarily enable CPUID support because we know it's // safe here. __ bind(&cpuid); __ mov(eax, 1); supported_ = (1 << CPUID); { Scope fscope(CPUID); __ cpuid(); } supported_ = 0; // Move the result from ecx:edx to edx:eax and make sure to mark the // CPUID feature as supported. __ mov(eax, Operand(edx)); __ or_(eax, 1 << CPUID); __ mov(edx, Operand(ecx)); // Done. __ bind(&done); __ mov(esp, Operand(ebp)); __ pop(ebx); __ pop(ecx); __ popfd(); __ pop(ebp); __ ret(0); #undef __ CodeDesc desc; assm.GetCode(&desc); Object* code = Heap::CreateCode(desc, NULL, Code::ComputeFlags(Code::STUB), Handle::null()); if (!code->IsCode()) return; LOG(CodeCreateEvent(Logger::BUILTIN_TAG, Code::cast(code), "CpuFeatures::Probe")); typedef uint64_t (*F0)(); F0 probe = FUNCTION_CAST(Code::cast(code)->entry()); supported_ = probe(); } // ----------------------------------------------------------------------------- // Implementation of Displacement void Displacement::init(Label* L, Type type) { ASSERT(!L->is_bound()); int next = 0; if (L->is_linked()) { next = L->pos(); ASSERT(next > 0); // Displacements must be at positions > 0 } // Ensure that we _never_ overflow the next field. ASSERT(NextField::is_valid(Assembler::kMaximalBufferSize)); data_ = NextField::encode(next) | TypeField::encode(type); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo const int RelocInfo::kApplyMask = RelocInfo::kCodeTargetMask | 1 << RelocInfo::RUNTIME_ENTRY | 1 << RelocInfo::JS_RETURN | 1 << RelocInfo::INTERNAL_REFERENCE; void RelocInfo::PatchCode(byte* instructions, int instruction_count) { // Patch the code at the current address with the supplied instructions. for (int i = 0; i < instruction_count; i++) { *(pc_ + i) = *(instructions + i); } // Indicate that code has changed. CPU::FlushICache(pc_, instruction_count); } // Patch the code at the current PC with a call to the target address. // Additional guard int3 instructions can be added if required. void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { // Call instruction takes up 5 bytes and int3 takes up one byte. static const int kCallCodeSize = 5; int code_size = kCallCodeSize + guard_bytes; // Create a code patcher. CodePatcher patcher(pc_, code_size); // Add a label for checking the size of the code used for returning. #ifdef DEBUG Label check_codesize; patcher.masm()->bind(&check_codesize); #endif // Patch the code. patcher.masm()->call(target, RelocInfo::NONE); // Check that the size of the code generated is as expected. ASSERT_EQ(kCallCodeSize, patcher.masm()->SizeOfCodeGeneratedSince(&check_codesize)); // Add the requested number of int3 instructions after the call. for (int i = 0; i < guard_bytes; i++) { patcher.masm()->int3(); } } // ----------------------------------------------------------------------------- // Implementation of Operand Operand::Operand(Register base, int32_t disp, RelocInfo::Mode rmode) { // [base + disp/r] if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { // [base] set_modrm(0, base); if (base.is(esp)) set_sib(times_1, esp, base); } else if (is_int8(disp) && rmode == RelocInfo::NONE) { // [base + disp8] set_modrm(1, base); if (base.is(esp)) set_sib(times_1, esp, base); set_disp8(disp); } else { // [base + disp/r] set_modrm(2, base); if (base.is(esp)) set_sib(times_1, esp, base); set_dispr(disp, rmode); } } Operand::Operand(Register base, Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode) { ASSERT(!index.is(esp)); // illegal addressing mode // [base + index*scale + disp/r] if (disp == 0 && rmode == RelocInfo::NONE && !base.is(ebp)) { // [base + index*scale] set_modrm(0, esp); set_sib(scale, index, base); } else if (is_int8(disp) && rmode == RelocInfo::NONE) { // [base + index*scale + disp8] set_modrm(1, esp); set_sib(scale, index, base); set_disp8(disp); } else { // [base + index*scale + disp/r] set_modrm(2, esp); set_sib(scale, index, base); set_dispr(disp, rmode); } } Operand::Operand(Register index, ScaleFactor scale, int32_t disp, RelocInfo::Mode rmode) { ASSERT(!index.is(esp)); // illegal addressing mode // [index*scale + disp/r] set_modrm(0, esp); set_sib(scale, index, ebp); set_dispr(disp, rmode); } bool Operand::is_reg(Register reg) const { return ((buf_[0] & 0xF8) == 0xC0) // addressing mode is register only. && ((buf_[0] & 0x07) == reg.code()); // register codes match. } // ----------------------------------------------------------------------------- // Implementation of Assembler // Emit a single byte. Must always be inlined. #define EMIT(x) \ *pc_++ = (x) #ifdef GENERATED_CODE_COVERAGE static void InitCoverageLog(); #endif // spare_buffer_ byte* Assembler::spare_buffer_ = NULL; Assembler::Assembler(void* buffer, int buffer_size) { if (buffer == NULL) { // do our own buffer management if (buffer_size <= kMinimalBufferSize) { buffer_size = kMinimalBufferSize; if (spare_buffer_ != NULL) { buffer = spare_buffer_; spare_buffer_ = NULL; } } if (buffer == NULL) { buffer_ = NewArray(buffer_size); } else { buffer_ = static_cast(buffer); } buffer_size_ = buffer_size; own_buffer_ = true; } else { // use externally provided buffer instead ASSERT(buffer_size > 0); buffer_ = static_cast(buffer); buffer_size_ = buffer_size; own_buffer_ = false; } // Clear the buffer in debug mode unless it was provided by the // caller in which case we can't be sure it's okay to overwrite // existing code in it; see CodePatcher::CodePatcher(...). #ifdef DEBUG if (own_buffer_) { memset(buffer_, 0xCC, buffer_size); // int3 } #endif // setup buffer pointers ASSERT(buffer_ != NULL); pc_ = buffer_; reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); last_pc_ = NULL; current_statement_position_ = RelocInfo::kNoPosition; current_position_ = RelocInfo::kNoPosition; written_statement_position_ = current_statement_position_; written_position_ = current_position_; #ifdef GENERATED_CODE_COVERAGE InitCoverageLog(); #endif } Assembler::~Assembler() { if (own_buffer_) { if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { spare_buffer_ = buffer_; } else { DeleteArray(buffer_); } } } void Assembler::GetCode(CodeDesc* desc) { // finalize code // (at this point overflow() may be true, but the gap ensures that // we are still not overlapping instructions and relocation info) ASSERT(pc_ <= reloc_info_writer.pos()); // no overlap // setup desc desc->buffer = buffer_; desc->buffer_size = buffer_size_; desc->instr_size = pc_offset(); desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); desc->origin = this; Counters::reloc_info_size.Increment(desc->reloc_size); } void Assembler::Align(int m) { ASSERT(IsPowerOf2(m)); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::cpuid() { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CPUID)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xA2); } void Assembler::pushad() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x60); } void Assembler::popad() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x61); } void Assembler::pushfd() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x9C); } void Assembler::popfd() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x9D); } void Assembler::push(const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (x.is_int8()) { EMIT(0x6a); EMIT(x.x_); } else { EMIT(0x68); emit(x); } } void Assembler::push(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x50 | src.code()); } void Assembler::push(const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xFF); emit_operand(esi, src); } void Assembler::pop(Register dst) { ASSERT(reloc_info_writer.last_pc() != NULL); if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) { // (last_pc_ != NULL) is rolled into the above check // If a last_pc_ is set, we need to make sure that there has not been any // relocation information generated between the last instruction and this // pop instruction. byte instr = last_pc_[0]; if ((instr & ~0x7) == 0x50) { int push_reg_code = instr & 0x7; if (push_reg_code == dst.code()) { pc_ = last_pc_; if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (same reg) eliminated\n", pc_offset()); } } else { // Convert 'push src; pop dst' to 'mov dst, src'. last_pc_[0] = 0x8b; Register src = { push_reg_code }; EnsureSpace ensure_space(this); emit_operand(dst, Operand(src)); if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (reg->reg) eliminated\n", pc_offset()); } } last_pc_ = NULL; return; } else if (instr == 0xff) { // push of an operand, convert to a move byte op1 = last_pc_[1]; // Check if the operation is really a push if ((op1 & 0x38) == (6 << 3)) { op1 = (op1 & ~0x38) | static_cast(dst.code() << 3); last_pc_[0] = 0x8b; last_pc_[1] = op1; last_pc_ = NULL; if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (op->reg) eliminated\n", pc_offset()); } return; } } else if ((instr == 0x89) && (last_pc_[1] == 0x04) && (last_pc_[2] == 0x24)) { // 0x71283c 396 890424 mov [esp],eax // 0x71283f 399 58 pop eax if (dst.is(eax)) { // change to // 0x710fac 216 83c404 add esp,0x4 last_pc_[0] = 0x83; last_pc_[1] = 0xc4; last_pc_[2] = 0x04; last_pc_ = NULL; if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (mov-pop) eliminated\n", pc_offset()); } return; } } else if (instr == 0x6a && dst.is(eax)) { // push of immediate 8 bit byte imm8 = last_pc_[1]; if (imm8 == 0) { // 6a00 push 0x0 // 58 pop eax last_pc_[0] = 0x31; last_pc_[1] = 0xc0; // change to // 31c0 xor eax,eax last_pc_ = NULL; if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); } return; } else { // 6a00 push 0xXX // 58 pop eax last_pc_[0] = 0xb8; EnsureSpace ensure_space(this); if ((imm8 & 0x80) != 0) { EMIT(0xff); EMIT(0xff); EMIT(0xff); // change to // b8XXffffff mov eax,0xffffffXX } else { EMIT(0x00); EMIT(0x00); EMIT(0x00); // change to // b8XX000000 mov eax,0x000000XX } last_pc_ = NULL; if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); } return; } } else if (instr == 0x68 && dst.is(eax)) { // push of immediate 32 bit // 68XXXXXXXX push 0xXXXXXXXX // 58 pop eax last_pc_[0] = 0xb8; last_pc_ = NULL; // change to // b8XXXXXXXX mov eax,0xXXXXXXXX if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop (imm->reg) eliminated\n", pc_offset()); } return; } // Other potential patterns for peephole: // 0x712716 102 890424 mov [esp], eax // 0x712719 105 8b1424 mov edx, [esp] } EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x58 | dst.code()); } void Assembler::pop(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x8F); emit_operand(eax, dst); } void Assembler::enter(const Immediate& size) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xC8); emit_w(size); EMIT(0); } void Assembler::leave() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xC9); } void Assembler::mov_b(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x8A); emit_operand(dst, src); } void Assembler::mov_b(const Operand& dst, int8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xC6); emit_operand(eax, dst); EMIT(imm8); } void Assembler::mov_b(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x88); emit_operand(src, dst); } void Assembler::mov_w(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x66); EMIT(0x8B); emit_operand(dst, src); } void Assembler::mov_w(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x66); EMIT(0x89); emit_operand(src, dst); } void Assembler::mov(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xB8 | dst.code()); emit(imm32); } void Assembler::mov(Register dst, const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xB8 | dst.code()); emit(x); } void Assembler::mov(Register dst, Handle handle) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xB8 | dst.code()); emit(handle); } void Assembler::mov(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x8B); emit_operand(dst, src); } void Assembler::mov(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x89); EMIT(0xC0 | src.code() << 3 | dst.code()); } void Assembler::mov(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xC7); emit_operand(eax, dst); emit(x); } void Assembler::mov(const Operand& dst, Handle handle) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xC7); emit_operand(eax, dst); emit(handle); } void Assembler::mov(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x89); emit_operand(src, dst); } void Assembler::movsx_b(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xBE); emit_operand(dst, src); } void Assembler::movsx_w(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xBF); emit_operand(dst, src); } void Assembler::movzx_b(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xB6); emit_operand(dst, src); } void Assembler::movzx_w(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xB7); emit_operand(dst, src); } void Assembler::cmov(Condition cc, Register dst, int32_t imm32) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); EnsureSpace ensure_space(this); last_pc_ = pc_; UNIMPLEMENTED(); USE(cc); USE(dst); USE(imm32); } void Assembler::cmov(Condition cc, Register dst, Handle handle) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); EnsureSpace ensure_space(this); last_pc_ = pc_; UNIMPLEMENTED(); USE(cc); USE(dst); USE(handle); } void Assembler::cmov(Condition cc, Register dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::CMOV)); EnsureSpace ensure_space(this); last_pc_ = pc_; // Opcode: 0f 40 + cc /r EMIT(0x0F); EMIT(0x40 + cc); emit_operand(dst, src); } void Assembler::xchg(Register dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (src.is(eax) || dst.is(eax)) { // Single-byte encoding EMIT(0x90 | (src.is(eax) ? dst.code() : src.code())); } else { EMIT(0x87); EMIT(0xC0 | src.code() << 3 | dst.code()); } } void Assembler::adc(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(2, Operand(dst), Immediate(imm32)); } void Assembler::adc(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x13); emit_operand(dst, src); } void Assembler::add(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x03); emit_operand(dst, src); } void Assembler::add(const Operand& dst, const Immediate& x) { ASSERT(reloc_info_writer.last_pc() != NULL); if (FLAG_push_pop_elimination && (reloc_info_writer.last_pc() <= last_pc_)) { byte instr = last_pc_[0]; if ((instr & 0xf8) == 0x50) { // Last instruction was a push. Check whether this is a pop without a // result. if ((dst.is_reg(esp)) && (x.x_ == kPointerSize) && (x.rmode_ == RelocInfo::NONE)) { pc_ = last_pc_; last_pc_ = NULL; if (FLAG_print_push_pop_elimination) { PrintF("%d push/pop(noreg) eliminated\n", pc_offset()); } return; } } } EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(0, dst, x); } void Assembler::and_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(4, Operand(dst), Immediate(imm32)); } void Assembler::and_(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x23); emit_operand(dst, src); } void Assembler::and_(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(4, dst, x); } void Assembler::and_(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x21); emit_operand(src, dst); } void Assembler::cmpb(const Operand& op, int8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x80); emit_operand(edi, op); // edi == 7 EMIT(imm8); } void Assembler::cmpw(const Operand& op, Immediate imm16) { ASSERT(imm16.is_int16()); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x66); EMIT(0x81); emit_operand(edi, op); emit_w(imm16); } void Assembler::cmp(Register reg, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(7, Operand(reg), Immediate(imm32)); } void Assembler::cmp(Register reg, Handle handle) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(7, Operand(reg), Immediate(handle)); } void Assembler::cmp(Register reg, const Operand& op) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x3B); emit_operand(reg, op); } void Assembler::cmp(const Operand& op, const Immediate& imm) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(7, op, imm); } void Assembler::cmp(const Operand& op, Handle handle) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(7, op, Immediate(handle)); } void Assembler::cmpb_al(const Operand& op) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x38); // CMP r/m8, r8 emit_operand(eax, op); // eax has same code as register al. } void Assembler::cmpw_ax(const Operand& op) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x66); EMIT(0x39); // CMP r/m16, r16 emit_operand(eax, op); // eax has same code as register ax. } void Assembler::dec_b(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xFE); EMIT(0xC8 | dst.code()); } void Assembler::dec(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x48 | dst.code()); } void Assembler::dec(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xFF); emit_operand(ecx, dst); } void Assembler::cdq() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x99); } void Assembler::idiv(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF7); EMIT(0xF8 | src.code()); } void Assembler::imul(Register reg) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF7); EMIT(0xE8 | reg.code()); } void Assembler::imul(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xAF); emit_operand(dst, src); } void Assembler::imul(Register dst, Register src, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (is_int8(imm32)) { EMIT(0x6B); EMIT(0xC0 | dst.code() << 3 | src.code()); EMIT(imm32); } else { EMIT(0x69); EMIT(0xC0 | dst.code() << 3 | src.code()); emit(imm32); } } void Assembler::inc(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x40 | dst.code()); } void Assembler::inc(const Operand& dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xFF); emit_operand(eax, dst); } void Assembler::lea(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x8D); emit_operand(dst, src); } void Assembler::mul(Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF7); EMIT(0xE0 | src.code()); } void Assembler::neg(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF7); EMIT(0xD8 | dst.code()); } void Assembler::not_(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF7); EMIT(0xD0 | dst.code()); } void Assembler::or_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(1, Operand(dst), Immediate(imm32)); } void Assembler::or_(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0B); emit_operand(dst, src); } void Assembler::or_(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(1, dst, x); } void Assembler::or_(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x09); emit_operand(src, dst); } void Assembler::rcl(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xD0 | dst.code()); } else { EMIT(0xC1); EMIT(0xD0 | dst.code()); EMIT(imm8); } } void Assembler::sar(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xF8 | dst.code()); } else { EMIT(0xC1); EMIT(0xF8 | dst.code()); EMIT(imm8); } } void Assembler::sar(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD3); EMIT(0xF8 | dst.code()); } void Assembler::sbb(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x1B); emit_operand(dst, src); } void Assembler::shld(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xA5); emit_operand(dst, src); } void Assembler::shl(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint5(imm8)); // illegal shift count if (imm8 == 1) { EMIT(0xD1); EMIT(0xE0 | dst.code()); } else { EMIT(0xC1); EMIT(0xE0 | dst.code()); EMIT(imm8); } } void Assembler::shl(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD3); EMIT(0xE0 | dst.code()); } void Assembler::shrd(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xAD); emit_operand(dst, src); } void Assembler::shr(Register dst, uint8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint5(imm8)); // illegal shift count EMIT(0xC1); EMIT(0xE8 | dst.code()); EMIT(imm8); } void Assembler::shr(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD3); EMIT(0xE8 | dst.code()); } void Assembler::shr_cl(Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD1); EMIT(0xE8 | dst.code()); } void Assembler::subb(const Operand& op, int8_t imm8) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (op.is_reg(eax)) { EMIT(0x2c); } else { EMIT(0x80); emit_operand(ebp, op); // ebp == 5 } EMIT(imm8); } void Assembler::sub(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(5, dst, x); } void Assembler::sub(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x2B); emit_operand(dst, src); } void Assembler::sub(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x29); emit_operand(src, dst); } void Assembler::test(Register reg, const Immediate& imm) { EnsureSpace ensure_space(this); last_pc_ = pc_; // Only use test against byte for registers that have a byte // variant: eax, ebx, ecx, and edx. if (imm.rmode_ == RelocInfo::NONE && is_uint8(imm.x_) && reg.code() < 4) { uint8_t imm8 = imm.x_; if (reg.is(eax)) { EMIT(0xA8); EMIT(imm8); } else { emit_arith_b(0xF6, 0xC0, reg, imm8); } } else { // This is not using emit_arith because test doesn't support // sign-extension of 8-bit operands. if (reg.is(eax)) { EMIT(0xA9); } else { EMIT(0xF7); EMIT(0xC0 | reg.code()); } emit(imm); } } void Assembler::test(Register reg, const Operand& op) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x85); emit_operand(reg, op); } void Assembler::test(const Operand& op, const Immediate& imm) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF7); emit_operand(eax, op); emit(imm); } void Assembler::xor_(Register dst, int32_t imm32) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(6, Operand(dst), Immediate(imm32)); } void Assembler::xor_(Register dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x33); emit_operand(dst, src); } void Assembler::xor_(const Operand& src, Register dst) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x31); emit_operand(dst, src); } void Assembler::xor_(const Operand& dst, const Immediate& x) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_arith(6, dst, x); } void Assembler::bt(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xA3); emit_operand(src, dst); } void Assembler::bts(const Operand& dst, Register src) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0xAB); emit_operand(src, dst); } void Assembler::hlt() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF4); } void Assembler::int3() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xCC); } void Assembler::nop() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x90); } void Assembler::rdtsc() { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::RDTSC)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0x31); } void Assembler::ret(int imm16) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(is_uint16(imm16)); if (imm16 == 0) { EMIT(0xC3); } else { EMIT(0xC2); EMIT(imm16 & 0xFF); EMIT((imm16 >> 8) & 0xFF); } } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the 32bit // Displacement of the last instruction using the label. void Assembler::print(Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l = *L; PrintF("unbound label"); while (l.is_linked()) { Displacement disp = disp_at(&l); PrintF("@ %d ", l.pos()); disp.print(); PrintF("\n"); disp.next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { EnsureSpace ensure_space(this); last_pc_ = NULL; ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position while (L->is_linked()) { Displacement disp = disp_at(L); int fixup_pos = L->pos(); if (disp.type() == Displacement::CODE_RELATIVE) { // Relative to Code* heap object pointer. long_at_put(fixup_pos, pos + Code::kHeaderSize - kHeapObjectTag); } else { if (disp.type() == Displacement::UNCONDITIONAL_JUMP) { ASSERT(byte_at(fixup_pos - 1) == 0xE9); // jmp expected } // relative address, relative to point after address int imm32 = pos - (fixup_pos + sizeof(int32_t)); long_at_put(fixup_pos, imm32); } disp.next(L); } L->bind_to(pos); } void Assembler::link_to(Label* L, Label* appendix) { EnsureSpace ensure_space(this); last_pc_ = NULL; if (appendix->is_linked()) { if (L->is_linked()) { // append appendix to L's list Label p; Label q = *L; do { p = q; Displacement disp = disp_at(&q); disp.next(&q); } while (q.is_linked()); Displacement disp = disp_at(&p); disp.link_to(appendix); disp_at_put(&p, disp); p.Unuse(); // to avoid assertion failure in ~Label } else { // L is empty, simply use appendix *L = *appendix; } } appendix->Unuse(); // appendix should not be used anymore } void Assembler::bind(Label* L) { EnsureSpace ensure_space(this); last_pc_ = NULL; ASSERT(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::call(Label* L) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (L->is_bound()) { const int long_size = 5; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); // 1110 1000 #32-bit disp EMIT(0xE8); emit(offs - long_size); } else { // 1110 1000 #32-bit disp EMIT(0xE8); emit_disp(L, Displacement::OTHER); } } void Assembler::call(byte* entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(!RelocInfo::IsCodeTarget(rmode)); EMIT(0xE8); emit(entry - (pc_ + sizeof(int32_t)), rmode); } void Assembler::call(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xFF); emit_operand(edx, adr); } void Assembler::call(Handle code, RelocInfo::Mode rmode) { WriteRecordedPositions(); EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(RelocInfo::IsCodeTarget(rmode)); EMIT(0xE8); emit(reinterpret_cast(code.location()), rmode); } void Assembler::jmp(Label* L) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (L->is_bound()) { const int short_size = 2; const int long_size = 5; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); if (is_int8(offs - short_size)) { // 1110 1011 #8-bit disp EMIT(0xEB); EMIT((offs - short_size) & 0xFF); } else { // 1110 1001 #32-bit disp EMIT(0xE9); emit(offs - long_size); } } else { // 1110 1001 #32-bit disp EMIT(0xE9); emit_disp(L, Displacement::UNCONDITIONAL_JUMP); } } void Assembler::jmp(byte* entry, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(!RelocInfo::IsCodeTarget(rmode)); EMIT(0xE9); emit(entry - (pc_ + sizeof(int32_t)), rmode); } void Assembler::jmp(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xFF); emit_operand(esp, adr); } void Assembler::jmp(Handle code, RelocInfo::Mode rmode) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(RelocInfo::IsCodeTarget(rmode)); EMIT(0xE9); emit(reinterpret_cast(code.location()), rmode); } void Assembler::j(Condition cc, Label* L, Hint hint) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT(0 <= cc && cc < 16); if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); if (L->is_bound()) { const int short_size = 2; const int long_size = 6; int offs = L->pos() - pc_offset(); ASSERT(offs <= 0); if (is_int8(offs - short_size)) { // 0111 tttn #8-bit disp EMIT(0x70 | cc); EMIT((offs - short_size) & 0xFF); } else { // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(offs - long_size); } } else { // 0000 1111 1000 tttn #32-bit disp // Note: could eliminate cond. jumps to this jump if condition // is the same however, seems to be rather unlikely case. EMIT(0x0F); EMIT(0x80 | cc); emit_disp(L, Displacement::OTHER); } } void Assembler::j(Condition cc, byte* entry, RelocInfo::Mode rmode, Hint hint) { EnsureSpace ensure_space(this); last_pc_ = pc_; ASSERT((0 <= cc) && (cc < 16)); if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(entry - (pc_ + sizeof(int32_t)), rmode); } void Assembler::j(Condition cc, Handle code, Hint hint) { EnsureSpace ensure_space(this); last_pc_ = pc_; if (FLAG_emit_branch_hints && hint != no_hint) EMIT(hint); // 0000 1111 1000 tttn #32-bit disp EMIT(0x0F); EMIT(0x80 | cc); emit(reinterpret_cast(code.location()), RelocInfo::CODE_TARGET); } // FPU instructions void Assembler::fld(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xD9, 0xC0, i); } void Assembler::fld1() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xE8); } void Assembler::fldz() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xEE); } void Assembler::fld_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); emit_operand(eax, adr); } void Assembler::fld_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDD); emit_operand(eax, adr); } void Assembler::fstp_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); emit_operand(ebx, adr); } void Assembler::fstp_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDD); emit_operand(ebx, adr); } void Assembler::fild_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDB); emit_operand(eax, adr); } void Assembler::fild_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDF); emit_operand(ebp, adr); } void Assembler::fistp_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDB); emit_operand(ebx, adr); } void Assembler::fisttp_s(const Operand& adr) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE3)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDB); emit_operand(ecx, adr); } void Assembler::fist_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDB); emit_operand(edx, adr); } void Assembler::fistp_d(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDF); emit_operand(edi, adr); } void Assembler::fabs() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xE1); } void Assembler::fchs() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xE0); } void Assembler::fcos() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xFF); } void Assembler::fsin() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xFE); } void Assembler::fadd(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xC0, i); } void Assembler::fsub(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xE8, i); } void Assembler::fisub_s(const Operand& adr) { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDA); emit_operand(esp, adr); } void Assembler::fmul(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xC8, i); } void Assembler::fdiv(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDC, 0xF8, i); } void Assembler::faddp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xC0, i); } void Assembler::fsubp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xE8, i); } void Assembler::fsubrp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xE0, i); } void Assembler::fmulp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xC8, i); } void Assembler::fdivp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDE, 0xF8, i); } void Assembler::fprem() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xF8); } void Assembler::fprem1() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xF5); } void Assembler::fxch(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xD9, 0xC8, i); } void Assembler::fincstp() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xF7); } void Assembler::ffree(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDD, 0xC0, i); } void Assembler::ftst() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xE4); } void Assembler::fucomp(int i) { EnsureSpace ensure_space(this); last_pc_ = pc_; emit_farith(0xDD, 0xE8, i); } void Assembler::fucompp() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDA); EMIT(0xE9); } void Assembler::fcompp() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDE); EMIT(0xD9); } void Assembler::fnstsw_ax() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDF); EMIT(0xE0); } void Assembler::fwait() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x9B); } void Assembler::frndint() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xD9); EMIT(0xFC); } void Assembler::fnclex() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xDB); EMIT(0xE2); } void Assembler::sahf() { EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x9E); } void Assembler::setcc(Condition cc, Register reg) { ASSERT(reg.is_byte_register()); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x0F); EMIT(0x90 | cc); EMIT(0xC0 | reg.code()); } void Assembler::cvttss2si(Register dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF3); EMIT(0x0F); EMIT(0x2C); emit_operand(dst, src); } void Assembler::cvttsd2si(Register dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); EMIT(0x0F); EMIT(0x2C); emit_operand(dst, src); } void Assembler::cvtsi2sd(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); EMIT(0x0F); EMIT(0x2A); emit_sse_operand(dst, src); } void Assembler::addsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); EMIT(0x0F); EMIT(0x58); emit_sse_operand(dst, src); } void Assembler::mulsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); EMIT(0x0F); EMIT(0x59); emit_sse_operand(dst, src); } void Assembler::subsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); EMIT(0x0F); EMIT(0x5C); emit_sse_operand(dst, src); } void Assembler::divsd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); EMIT(0x0F); EMIT(0x5E); emit_sse_operand(dst, src); } void Assembler::comisd(XMMRegister dst, XMMRegister src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0x66); EMIT(0x0F); EMIT(0x2F); emit_sse_operand(dst, src); } void Assembler::movdbl(XMMRegister dst, const Operand& src) { EnsureSpace ensure_space(this); last_pc_ = pc_; movsd(dst, src); } void Assembler::movdbl(const Operand& dst, XMMRegister src) { EnsureSpace ensure_space(this); last_pc_ = pc_; movsd(dst, src); } void Assembler::movsd(const Operand& dst, XMMRegister src ) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); // double EMIT(0x0F); EMIT(0x11); // store emit_sse_operand(src, dst); } void Assembler::movsd(XMMRegister dst, const Operand& src) { ASSERT(CpuFeatures::IsEnabled(CpuFeatures::SSE2)); EnsureSpace ensure_space(this); last_pc_ = pc_; EMIT(0xF2); // double EMIT(0x0F); EMIT(0x10); // load emit_sse_operand(dst, src); } void Assembler::emit_sse_operand(XMMRegister reg, const Operand& adr) { Register ireg = { reg.code() }; emit_operand(ireg, adr); } void Assembler::emit_sse_operand(XMMRegister dst, XMMRegister src) { EMIT(0xC0 | dst.code() << 3 | src.code()); } void Assembler::Print() { Disassembler::Decode(stdout, buffer_, pc_); } void Assembler::RecordJSReturn() { WriteRecordedPositions(); EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::JS_RETURN); } void Assembler::RecordComment(const char* msg) { if (FLAG_debug_code) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast(msg)); } } void Assembler::RecordPosition(int pos) { ASSERT(pos != RelocInfo::kNoPosition); ASSERT(pos >= 0); current_position_ = pos; } void Assembler::RecordStatementPosition(int pos) { ASSERT(pos != RelocInfo::kNoPosition); ASSERT(pos >= 0); current_statement_position_ = pos; } void Assembler::WriteRecordedPositions() { // Write the statement position if it is different from what was written last // time. if (current_statement_position_ != written_statement_position_) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); written_statement_position_ = current_statement_position_; } // Write the position if it is different from what was written last time and // also different from the written statement position. if (current_position_ != written_position_ && current_position_ != written_statement_position_) { EnsureSpace ensure_space(this); RecordRelocInfo(RelocInfo::POSITION, current_position_); written_position_ = current_position_; } } void Assembler::GrowBuffer() { ASSERT(overflow()); // should not call this otherwise if (!own_buffer_) FATAL("external code buffer is too small"); // compute new buffer size CodeDesc desc; // the new buffer if (buffer_size_ < 4*KB) { desc.buffer_size = 4*KB; } else { desc.buffer_size = 2*buffer_size_; } // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if ((desc.buffer_size > kMaximalBufferSize) || (desc.buffer_size > Heap::OldGenerationSize())) { V8::FatalProcessOutOfMemory("Assembler::GrowBuffer"); } // setup new buffer desc.buffer = NewArray(desc.buffer_size); desc.instr_size = pc_offset(); desc.reloc_size = (buffer_ + buffer_size_) - (reloc_info_writer.pos()); // Clear the buffer in debug mode. Use 'int3' instructions to make // sure to get into problems if we ever run uninitialized code. #ifdef DEBUG memset(desc.buffer, 0xCC, desc.buffer_size); #endif // copy the data int pc_delta = desc.buffer - buffer_; int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); memmove(desc.buffer, buffer_, desc.instr_size); memmove(rc_delta + reloc_info_writer.pos(), reloc_info_writer.pos(), desc.reloc_size); // switch buffers if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { spare_buffer_ = buffer_; } else { DeleteArray(buffer_); } buffer_ = desc.buffer; buffer_size_ = desc.buffer_size; pc_ += pc_delta; if (last_pc_ != NULL) { last_pc_ += pc_delta; } reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, reloc_info_writer.last_pc() + pc_delta); // relocate runtime entries for (RelocIterator it(desc); !it.done(); it.next()) { RelocInfo::Mode rmode = it.rinfo()->rmode(); if (rmode == RelocInfo::RUNTIME_ENTRY) { int32_t* p = reinterpret_cast(it.rinfo()->pc()); *p -= pc_delta; // relocate entry } else if (rmode == RelocInfo::INTERNAL_REFERENCE) { int32_t* p = reinterpret_cast(it.rinfo()->pc()); if (*p != 0) { // 0 means uninitialized. *p += pc_delta; } } } ASSERT(!overflow()); } void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) { ASSERT(is_uint8(op1) && is_uint8(op2)); // wrong opcode ASSERT(is_uint8(imm8)); ASSERT((op1 & 0x01) == 0); // should be 8bit operation EMIT(op1); EMIT(op2 | dst.code()); EMIT(imm8); } void Assembler::emit_arith(int sel, Operand dst, const Immediate& x) { ASSERT((0 <= sel) && (sel <= 7)); Register ireg = { sel }; if (x.is_int8()) { EMIT(0x83); // using a sign-extended 8-bit immediate. emit_operand(ireg, dst); EMIT(x.x_ & 0xFF); } else if (dst.is_reg(eax)) { EMIT((sel << 3) | 0x05); // short form if the destination is eax. emit(x); } else { EMIT(0x81); // using a literal 32-bit immediate. emit_operand(ireg, dst); emit(x); } } void Assembler::emit_operand(Register reg, const Operand& adr) { const unsigned length = adr.len_; ASSERT(length > 0); // Emit updated ModRM byte containing the given register. pc_[0] = (adr.buf_[0] & ~0x38) | (reg.code() << 3); // Emit the rest of the encoded operand. for (unsigned i = 1; i < length; i++) pc_[i] = adr.buf_[i]; pc_ += length; // Emit relocation information if necessary. if (length >= sizeof(int32_t) && adr.rmode_ != RelocInfo::NONE) { pc_ -= sizeof(int32_t); // pc_ must be *at* disp32 RecordRelocInfo(adr.rmode_); pc_ += sizeof(int32_t); } } void Assembler::emit_farith(int b1, int b2, int i) { ASSERT(is_uint8(b1) && is_uint8(b2)); // wrong opcode ASSERT(0 <= i && i < 8); // illegal stack offset EMIT(b1); EMIT(b2 + i); } void Assembler::dd(uint32_t data, RelocInfo::Mode reloc_info) { EnsureSpace ensure_space(this); emit(data, reloc_info); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { ASSERT(rmode != RelocInfo::NONE); // Don't record external references unless the heap will be serialized. if (rmode == RelocInfo::EXTERNAL_REFERENCE && !Serializer::enabled() && !FLAG_debug_code) { return; } RelocInfo rinfo(pc_, rmode, data); reloc_info_writer.Write(&rinfo); } #ifdef GENERATED_CODE_COVERAGE static FILE* coverage_log = NULL; static void InitCoverageLog() { char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); if (file_name != NULL) { coverage_log = fopen(file_name, "aw+"); } } void LogGeneratedCodeCoverage(const char* file_line) { const char* return_address = (&file_line)[-1]; char* push_insn = const_cast(return_address - 12); push_insn[0] = 0xeb; // Relative branch insn. push_insn[1] = 13; // Skip over coverage insns. if (coverage_log != NULL) { fprintf(coverage_log, "%s\n", file_line); fflush(coverage_log); } } #endif } } // namespace v8::internal