// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #include "node.h" #include "node_buffer.h" #include "node_crypto.h" #include "node_crypto_bio.h" #include "node_crypto_groups.h" #include "node_root_certs.h" #include "tls_wrap.h" // TLSCallbacks #include "env.h" #include "env-inl.h" #include "string_bytes.h" #include "util.h" #include "util-inl.h" #include "v8.h" #include #include #include #if defined(_MSC_VER) #define strcasecmp _stricmp #endif #if OPENSSL_VERSION_NUMBER >= 0x10000000L #define OPENSSL_CONST const #else #define OPENSSL_CONST #endif #define ASSERT_IS_STRING_OR_BUFFER(val) do { \ if (!Buffer::HasInstance(val) && !val->IsString()) { \ return ThrowTypeError("Not a string or buffer"); \ } \ } while (0) #define ASSERT_IS_BUFFER(val) do { \ if (!Buffer::HasInstance(val)) { \ return ThrowTypeError("Not a buffer"); \ } \ } while (0) static const char PUBLIC_KEY_PFX[] = "-----BEGIN PUBLIC KEY-----"; static const int PUBLIC_KEY_PFX_LEN = sizeof(PUBLIC_KEY_PFX) - 1; static const char PUBRSA_KEY_PFX[] = "-----BEGIN RSA PUBLIC KEY-----"; static const int PUBRSA_KEY_PFX_LEN = sizeof(PUBRSA_KEY_PFX) - 1; static const int X509_NAME_FLAGS = ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB | XN_FLAG_SEP_MULTILINE | XN_FLAG_FN_SN; namespace node { namespace crypto { using v8::Array; using v8::Boolean; using v8::Context; using v8::Exception; using v8::False; using v8::FunctionCallbackInfo; using v8::FunctionTemplate; using v8::Handle; using v8::HandleScope; using v8::Integer; using v8::Local; using v8::Null; using v8::Object; using v8::Persistent; using v8::String; using v8::ThrowException; using v8::V8; using v8::Value; // Forcibly clear OpenSSL's error stack on return. This stops stale errors // from popping up later in the lifecycle of crypto operations where they // would cause spurious failures. It's a rather blunt method, though. // ERR_clear_error() isn't necessarily cheap either. struct ClearErrorOnReturn { ~ClearErrorOnReturn() { ERR_clear_error(); } }; static uv_rwlock_t* locks; X509_STORE* root_cert_store; // Just to generate static methods template class SSLWrap; template void SSLWrap::AddMethods(Handle t); template SSL_SESSION* SSLWrap::GetSessionCallback( SSL* s, unsigned char* key, int len, int* copy); template int SSLWrap::NewSessionCallback(SSL* s, SSL_SESSION* sess); template void SSLWrap::OnClientHello( void* arg, const ClientHelloParser::ClientHello& hello); #ifdef OPENSSL_NPN_NEGOTIATED template int SSLWrap::AdvertiseNextProtoCallback( SSL* s, const unsigned char** data, unsigned int* len, void* arg); template int SSLWrap::SelectNextProtoCallback( SSL* s, unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg); #endif static void crypto_threadid_cb(CRYPTO_THREADID* tid) { CRYPTO_THREADID_set_numeric(tid, uv_thread_self()); } static void crypto_lock_init(void) { int i, n; n = CRYPTO_num_locks(); locks = new uv_rwlock_t[n]; for (i = 0; i < n; i++) if (uv_rwlock_init(locks + i)) abort(); } static void crypto_lock_cb(int mode, int n, const char* file, int line) { assert((mode & CRYPTO_LOCK) || (mode & CRYPTO_UNLOCK)); assert((mode & CRYPTO_READ) || (mode & CRYPTO_WRITE)); if (mode & CRYPTO_LOCK) { if (mode & CRYPTO_READ) uv_rwlock_rdlock(locks + n); else uv_rwlock_wrlock(locks + n); } else { if (mode & CRYPTO_READ) uv_rwlock_rdunlock(locks + n); else uv_rwlock_wrunlock(locks + n); } } static int CryptoPemCallback(char *buf, int size, int rwflag, void *u) { if (u) { size_t buflen = static_cast(size); size_t len = strlen(static_cast(u)); len = len > buflen ? buflen : len; memcpy(buf, u, len); return len; } return 0; } void ThrowCryptoErrorHelper(unsigned long err, bool is_type_error) { HandleScope scope(node_isolate); char errmsg[128]; ERR_error_string_n(err, errmsg, sizeof(errmsg)); if (is_type_error) ThrowTypeError(errmsg); else ThrowError(errmsg); } void ThrowCryptoError(unsigned long err) { ThrowCryptoErrorHelper(err, false); } void ThrowCryptoTypeError(unsigned long err) { ThrowCryptoErrorHelper(err, true); } bool EntropySource(unsigned char* buffer, size_t length) { // RAND_bytes() can return 0 to indicate that the entropy data is not truly // random. That's okay, it's still better than V8's stock source of entropy, // which is /dev/urandom on UNIX platforms and the current time on Windows. return RAND_bytes(buffer, length) != -1; } void SecureContext::Initialize(Environment* env, Handle target) { Local t = FunctionTemplate::New(SecureContext::New); t->InstanceTemplate()->SetInternalFieldCount(1); t->SetClassName(FIXED_ONE_BYTE_STRING(node_isolate, "SecureContext")); NODE_SET_PROTOTYPE_METHOD(t, "init", SecureContext::Init); NODE_SET_PROTOTYPE_METHOD(t, "setKey", SecureContext::SetKey); NODE_SET_PROTOTYPE_METHOD(t, "setCert", SecureContext::SetCert); NODE_SET_PROTOTYPE_METHOD(t, "addCACert", SecureContext::AddCACert); NODE_SET_PROTOTYPE_METHOD(t, "addCRL", SecureContext::AddCRL); NODE_SET_PROTOTYPE_METHOD(t, "addRootCerts", SecureContext::AddRootCerts); NODE_SET_PROTOTYPE_METHOD(t, "setCiphers", SecureContext::SetCiphers); NODE_SET_PROTOTYPE_METHOD(t, "setECDHCurve", SecureContext::SetECDHCurve); NODE_SET_PROTOTYPE_METHOD(t, "setOptions", SecureContext::SetOptions); NODE_SET_PROTOTYPE_METHOD(t, "setSessionIdContext", SecureContext::SetSessionIdContext); NODE_SET_PROTOTYPE_METHOD(t, "setSessionTimeout", SecureContext::SetSessionTimeout); NODE_SET_PROTOTYPE_METHOD(t, "close", SecureContext::Close); NODE_SET_PROTOTYPE_METHOD(t, "loadPKCS12", SecureContext::LoadPKCS12); NODE_SET_PROTOTYPE_METHOD(t, "getTicketKeys", SecureContext::GetTicketKeys); NODE_SET_PROTOTYPE_METHOD(t, "setTicketKeys", SecureContext::SetTicketKeys); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "SecureContext"), t->GetFunction()); env->set_secure_context_constructor_template(t); } void SecureContext::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); new SecureContext(env, args.This()); } void SecureContext::Init(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); OPENSSL_CONST SSL_METHOD *method = SSLv23_method(); if (args.Length() == 1 && args[0]->IsString()) { const String::Utf8Value sslmethod(args[0]); if (strcmp(*sslmethod, "SSLv2_method") == 0) { #ifndef OPENSSL_NO_SSL2 method = SSLv2_method(); #else return ThrowError("SSLv2 methods disabled"); #endif } else if (strcmp(*sslmethod, "SSLv2_server_method") == 0) { #ifndef OPENSSL_NO_SSL2 method = SSLv2_server_method(); #else return ThrowError("SSLv2 methods disabled"); #endif } else if (strcmp(*sslmethod, "SSLv2_client_method") == 0) { #ifndef OPENSSL_NO_SSL2 method = SSLv2_client_method(); #else return ThrowError("SSLv2 methods disabled"); #endif } else if (strcmp(*sslmethod, "SSLv3_method") == 0) { method = SSLv3_method(); } else if (strcmp(*sslmethod, "SSLv3_server_method") == 0) { method = SSLv3_server_method(); } else if (strcmp(*sslmethod, "SSLv3_client_method") == 0) { method = SSLv3_client_method(); } else if (strcmp(*sslmethod, "SSLv23_method") == 0) { method = SSLv23_method(); } else if (strcmp(*sslmethod, "SSLv23_server_method") == 0) { method = SSLv23_server_method(); } else if (strcmp(*sslmethod, "SSLv23_client_method") == 0) { method = SSLv23_client_method(); } else if (strcmp(*sslmethod, "TLSv1_method") == 0) { method = TLSv1_method(); } else if (strcmp(*sslmethod, "TLSv1_server_method") == 0) { method = TLSv1_server_method(); } else if (strcmp(*sslmethod, "TLSv1_client_method") == 0) { method = TLSv1_client_method(); } else if (strcmp(*sslmethod, "TLSv1_1_method") == 0) { method = TLSv1_1_method(); } else if (strcmp(*sslmethod, "TLSv1_1_server_method") == 0) { method = TLSv1_1_server_method(); } else if (strcmp(*sslmethod, "TLSv1_1_client_method") == 0) { method = TLSv1_1_client_method(); } else if (strcmp(*sslmethod, "TLSv1_2_method") == 0) { method = TLSv1_2_method(); } else if (strcmp(*sslmethod, "TLSv1_2_server_method") == 0) { method = TLSv1_2_server_method(); } else if (strcmp(*sslmethod, "TLSv1_2_client_method") == 0) { method = TLSv1_2_client_method(); } else { return ThrowError("Unknown method"); } } sc->ctx_ = SSL_CTX_new(method); // SSL session cache configuration SSL_CTX_set_session_cache_mode(sc->ctx_, SSL_SESS_CACHE_SERVER | SSL_SESS_CACHE_NO_INTERNAL | SSL_SESS_CACHE_NO_AUTO_CLEAR); SSL_CTX_sess_set_get_cb(sc->ctx_, SSLWrap::GetSessionCallback); SSL_CTX_sess_set_new_cb(sc->ctx_, SSLWrap::NewSessionCallback); sc->ca_store_ = NULL; } // Takes a string or buffer and loads it into a BIO. // Caller responsible for BIO_free_all-ing the returned object. static BIO* LoadBIO(Handle v) { BIO* bio = NodeBIO::New(); if (!bio) return NULL; HandleScope scope(node_isolate); int r = -1; if (v->IsString()) { const String::Utf8Value s(v); r = BIO_write(bio, *s, s.length()); } else if (Buffer::HasInstance(v)) { char* buffer_data = Buffer::Data(v); size_t buffer_length = Buffer::Length(v); r = BIO_write(bio, buffer_data, buffer_length); } if (r <= 0) { BIO_free_all(bio); return NULL; } return bio; } // Takes a string or buffer and loads it into an X509 // Caller responsible for X509_free-ing the returned object. static X509* LoadX509(Handle v) { HandleScope scope(node_isolate); BIO *bio = LoadBIO(v); if (!bio) return NULL; X509 * x509 = PEM_read_bio_X509(bio, NULL, CryptoPemCallback, NULL); if (!x509) { BIO_free_all(bio); return NULL; } BIO_free_all(bio); return x509; } void SecureContext::SetKey(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); unsigned int len = args.Length(); if (len != 1 && len != 2) { return ThrowTypeError("Bad parameter"); } if (len == 2 && !args[1]->IsString()) { return ThrowTypeError("Bad parameter"); } BIO *bio = LoadBIO(args[0]); if (!bio) return; String::Utf8Value passphrase(args[1]); EVP_PKEY* key = PEM_read_bio_PrivateKey(bio, NULL, CryptoPemCallback, len == 1 ? NULL : *passphrase); if (!key) { BIO_free_all(bio); unsigned long err = ERR_get_error(); if (!err) { return ThrowError("PEM_read_bio_PrivateKey"); } return ThrowCryptoError(err); } SSL_CTX_use_PrivateKey(sc->ctx_, key); EVP_PKEY_free(key); BIO_free_all(bio); } // Read a file that contains our certificate in "PEM" format, // possibly followed by a sequence of CA certificates that should be // sent to the peer in the Certificate message. // // Taken from OpenSSL - editted for style. int SSL_CTX_use_certificate_chain(SSL_CTX *ctx, BIO *in) { int ret = 0; X509 *x = NULL; x = PEM_read_bio_X509_AUX(in, NULL, CryptoPemCallback, NULL); if (x == NULL) { SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE, ERR_R_PEM_LIB); goto end; } ret = SSL_CTX_use_certificate(ctx, x); if (ERR_peek_error() != 0) { // Key/certificate mismatch doesn't imply ret==0 ... ret = 0; } if (ret) { // If we could set up our certificate, now proceed to // the CA certificates. X509 *ca; int r; unsigned long err; if (ctx->extra_certs != NULL) { sk_X509_pop_free(ctx->extra_certs, X509_free); ctx->extra_certs = NULL; } while ((ca = PEM_read_bio_X509(in, NULL, CryptoPemCallback, NULL))) { r = SSL_CTX_add_extra_chain_cert(ctx, ca); if (!r) { X509_free(ca); ret = 0; goto end; } // Note that we must not free r if it was successfully // added to the chain (while we must free the main // certificate, since its reference count is increased // by SSL_CTX_use_certificate). } // When the while loop ends, it's usually just EOF. err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { ERR_clear_error(); } else { // some real error ret = 0; } } end: if (x != NULL) X509_free(x); return ret; } void SecureContext::SetCert(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1) { return ThrowTypeError("Bad parameter"); } BIO* bio = LoadBIO(args[0]); if (!bio) return; int rv = SSL_CTX_use_certificate_chain(sc->ctx_, bio); BIO_free_all(bio); if (!rv) { unsigned long err = ERR_get_error(); if (!err) { return ThrowError("SSL_CTX_use_certificate_chain"); } return ThrowCryptoError(err); } } void SecureContext::AddCACert(const FunctionCallbackInfo& args) { bool newCAStore = false; HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1) { return ThrowTypeError("Bad parameter"); } if (!sc->ca_store_) { sc->ca_store_ = X509_STORE_new(); newCAStore = true; } X509* x509 = LoadX509(args[0]); if (!x509) return; X509_STORE_add_cert(sc->ca_store_, x509); SSL_CTX_add_client_CA(sc->ctx_, x509); X509_free(x509); if (newCAStore) { SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_); } } void SecureContext::AddCRL(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1) { return ThrowTypeError("Bad parameter"); } ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. BIO *bio = LoadBIO(args[0]); if (!bio) return; X509_CRL *x509 = PEM_read_bio_X509_CRL(bio, NULL, CryptoPemCallback, NULL); if (x509 == NULL) { BIO_free_all(bio); return; } X509_STORE_add_crl(sc->ca_store_, x509); X509_STORE_set_flags(sc->ca_store_, X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL); BIO_free_all(bio); X509_CRL_free(x509); } void SecureContext::AddRootCerts(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); assert(sc->ca_store_ == NULL); if (!root_cert_store) { root_cert_store = X509_STORE_new(); for (int i = 0; root_certs[i]; i++) { BIO* bp = NodeBIO::New(); if (!BIO_write(bp, root_certs[i], strlen(root_certs[i]))) { BIO_free_all(bp); return; } X509 *x509 = PEM_read_bio_X509(bp, NULL, CryptoPemCallback, NULL); if (x509 == NULL) { BIO_free_all(bp); return; } X509_STORE_add_cert(root_cert_store, x509); BIO_free_all(bp); X509_free(x509); } } sc->ca_store_ = root_cert_store; SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_); } void SecureContext::SetCiphers(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1 || !args[0]->IsString()) { return ThrowTypeError("Bad parameter"); } const String::Utf8Value ciphers(args[0]); SSL_CTX_set_cipher_list(sc->ctx_, *ciphers); } void SecureContext::SetECDHCurve(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1 || !args[0]->IsString()) return ThrowTypeError("First argument should be a string"); String::Utf8Value curve(args[0]); int nid = OBJ_sn2nid(*curve); if (nid == NID_undef) return ThrowTypeError("First argument should be a valid curve name"); EC_KEY* ecdh = EC_KEY_new_by_curve_name(nid); if (ecdh == NULL) return ThrowTypeError("First argument should be a valid curve name"); SSL_CTX_set_options(sc->ctx_, SSL_OP_SINGLE_ECDH_USE); SSL_CTX_set_tmp_ecdh(sc->ctx_, ecdh); EC_KEY_free(ecdh); } void SecureContext::SetOptions(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1 || !args[0]->IntegerValue()) { return ThrowTypeError("Bad parameter"); } SSL_CTX_set_options(sc->ctx_, args[0]->IntegerValue()); } void SecureContext::SetSessionIdContext( const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1 || !args[0]->IsString()) { return ThrowTypeError("Bad parameter"); } const String::Utf8Value sessionIdContext(args[0]); const unsigned char* sid_ctx = reinterpret_cast(*sessionIdContext); unsigned int sid_ctx_len = sessionIdContext.length(); int r = SSL_CTX_set_session_id_context(sc->ctx_, sid_ctx, sid_ctx_len); if (r == 1) return; BIO* bio; BUF_MEM* mem; Local message; bio = BIO_new(BIO_s_mem()); if (bio == NULL) { message = FIXED_ONE_BYTE_STRING(node_isolate, "SSL_CTX_set_session_id_context error"); } else { ERR_print_errors(bio); BIO_get_mem_ptr(bio, &mem); message = OneByteString(node_isolate, mem->data, mem->length); BIO_free_all(bio); } ThrowException(Exception::TypeError(message)); } void SecureContext::SetSessionTimeout(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); if (args.Length() != 1 || !args[0]->IsInt32()) { return ThrowTypeError("Bad parameter"); } int32_t sessionTimeout = args[0]->Int32Value(); SSL_CTX_set_timeout(sc->ctx_, sessionTimeout); } void SecureContext::Close(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SecureContext* sc = Unwrap(args.This()); sc->FreeCTXMem(); } // Takes .pfx or .p12 and password in string or buffer format void SecureContext::LoadPKCS12(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); BIO* in = NULL; PKCS12* p12 = NULL; EVP_PKEY* pkey = NULL; X509* cert = NULL; STACK_OF(X509)* extraCerts = NULL; char* pass = NULL; bool ret = false; SecureContext* sc = Unwrap(args.This()); if (args.Length() < 1) { return ThrowTypeError("Bad parameter"); } in = LoadBIO(args[0]); if (in == NULL) { return ThrowError("Unable to load BIO"); } if (args.Length() >= 2) { ASSERT_IS_BUFFER(args[1]); int passlen = Buffer::Length(args[1]); if (passlen < 0) { BIO_free_all(in); return ThrowTypeError("Bad password"); } pass = new char[passlen + 1]; int pass_written = DecodeWrite(pass, passlen, args[1], BINARY); assert(pass_written == passlen); pass[passlen] = '\0'; } if (d2i_PKCS12_bio(in, &p12) && PKCS12_parse(p12, pass, &pkey, &cert, &extraCerts) && SSL_CTX_use_certificate(sc->ctx_, cert) && SSL_CTX_use_PrivateKey(sc->ctx_, pkey)) { // set extra certs while (X509* x509 = sk_X509_pop(extraCerts)) { if (!sc->ca_store_) { sc->ca_store_ = X509_STORE_new(); SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_); } X509_STORE_add_cert(sc->ca_store_, x509); SSL_CTX_add_client_CA(sc->ctx_, x509); X509_free(x509); } EVP_PKEY_free(pkey); X509_free(cert); sk_X509_free(extraCerts); ret = true; } PKCS12_free(p12); BIO_free_all(in); delete[] pass; if (!ret) { unsigned long err = ERR_get_error(); const char* str = ERR_reason_error_string(err); return ThrowError(str); } } void SecureContext::GetTicketKeys(const FunctionCallbackInfo& args) { #if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys) HandleScope handle_scope(args.GetIsolate()); SecureContext* wrap = Unwrap(args.This()); Local buff = Buffer::New(wrap->env(), 48); if (SSL_CTX_get_tlsext_ticket_keys(wrap->ctx_, Buffer::Data(buff), Buffer::Length(buff)) != 1) { return ThrowError("Failed to fetch tls ticket keys"); } args.GetReturnValue().Set(buff); #endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys) } void SecureContext::SetTicketKeys(const FunctionCallbackInfo& args) { #if !defined(OPENSSL_NO_TLSEXT) && defined(SSL_CTX_get_tlsext_ticket_keys) HandleScope scope(node_isolate); if (args.Length() < 1 || !Buffer::HasInstance(args[0]) || Buffer::Length(args[0]) != 48) { return ThrowTypeError("Bad argument"); } SecureContext* wrap = Unwrap(args.This()); if (SSL_CTX_set_tlsext_ticket_keys(wrap->ctx_, Buffer::Data(args[0]), Buffer::Length(args[0])) != 1) { return ThrowError("Failed to fetch tls ticket keys"); } args.GetReturnValue().Set(true); #endif // !def(OPENSSL_NO_TLSEXT) && def(SSL_CTX_get_tlsext_ticket_keys) } template void SSLWrap::AddMethods(Handle t) { HandleScope scope(node_isolate); NODE_SET_PROTOTYPE_METHOD(t, "getPeerCertificate", GetPeerCertificate); NODE_SET_PROTOTYPE_METHOD(t, "getSession", GetSession); NODE_SET_PROTOTYPE_METHOD(t, "setSession", SetSession); NODE_SET_PROTOTYPE_METHOD(t, "loadSession", LoadSession); NODE_SET_PROTOTYPE_METHOD(t, "isSessionReused", IsSessionReused); NODE_SET_PROTOTYPE_METHOD(t, "isInitFinished", IsInitFinished); NODE_SET_PROTOTYPE_METHOD(t, "verifyError", VerifyError); NODE_SET_PROTOTYPE_METHOD(t, "getCurrentCipher", GetCurrentCipher); NODE_SET_PROTOTYPE_METHOD(t, "receivedShutdown", ReceivedShutdown); NODE_SET_PROTOTYPE_METHOD(t, "endParser", EndParser); NODE_SET_PROTOTYPE_METHOD(t, "renegotiate", Renegotiate); #ifdef OPENSSL_NPN_NEGOTIATED NODE_SET_PROTOTYPE_METHOD(t, "getNegotiatedProtocol", GetNegotiatedProto); NODE_SET_PROTOTYPE_METHOD(t, "setNPNProtocols", SetNPNProtocols); #endif // OPENSSL_NPN_NEGOTIATED } template SSL_SESSION* SSLWrap::GetSessionCallback(SSL* s, unsigned char* key, int len, int* copy) { HandleScope scope(node_isolate); Base* w = static_cast(SSL_get_app_data(s)); *copy = 0; SSL_SESSION* sess = w->next_sess_; w->next_sess_ = NULL; return sess; } template int SSLWrap::NewSessionCallback(SSL* s, SSL_SESSION* sess) { HandleScope scope(node_isolate); Base* w = static_cast(SSL_get_app_data(s)); Environment* env = w->ssl_env(); if (!w->session_callbacks_) return 0; // Check if session is small enough to be stored int size = i2d_SSL_SESSION(sess, NULL); if (size > SecureContext::kMaxSessionSize) return 0; // Serialize session Local buff = Buffer::New(env, size); unsigned char* serialized = reinterpret_cast( Buffer::Data(buff)); memset(serialized, 0, size); i2d_SSL_SESSION(sess, &serialized); Local session = Buffer::New(env, reinterpret_cast(sess->session_id), sess->session_id_length); Local argv[] = { session, buff }; w->MakeCallback(env->onnewsession_string(), ARRAY_SIZE(argv), argv); return 0; } template void SSLWrap::OnClientHello(void* arg, const ClientHelloParser::ClientHello& hello) { HandleScope scope(node_isolate); Base* w = static_cast(arg); Environment* env = w->ssl_env(); Local hello_obj = Object::New(); Local buff = Buffer::New( env, reinterpret_cast(hello.session_id()), hello.session_size()); hello_obj->Set(env->session_id_string(), buff); if (hello.servername() == NULL) { hello_obj->Set(env->servername_string(), String::Empty(node_isolate)); } else { Local servername = OneByteString(node_isolate, hello.servername(), hello.servername_size()); hello_obj->Set(env->servername_string(), servername); } hello_obj->Set(env->tls_ticket_string(), Boolean::New(hello.has_ticket())); Local argv[] = { hello_obj }; w->MakeCallback(env->onclienthello_string(), ARRAY_SIZE(argv), argv); } // TODO(indutny): Split it into multiple smaller functions template void SSLWrap::GetPeerCertificate( const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); Environment* env = w->ssl_env(); Local info = Object::New(); X509* peer_cert = SSL_get_peer_certificate(w->ssl_); if (peer_cert != NULL) { BIO* bio = BIO_new(BIO_s_mem()); BUF_MEM* mem; if (X509_NAME_print_ex(bio, X509_get_subject_name(peer_cert), 0, X509_NAME_FLAGS) > 0) { BIO_get_mem_ptr(bio, &mem); info->Set(env->subject_string(), OneByteString(node_isolate, mem->data, mem->length)); } (void) BIO_reset(bio); X509_NAME* issuer_name = X509_get_issuer_name(peer_cert); if (X509_NAME_print_ex(bio, issuer_name, 0, X509_NAME_FLAGS) > 0) { BIO_get_mem_ptr(bio, &mem); info->Set(env->issuer_string(), OneByteString(node_isolate, mem->data, mem->length)); } (void) BIO_reset(bio); int index = X509_get_ext_by_NID(peer_cert, NID_subject_alt_name, -1); if (index >= 0) { X509_EXTENSION* ext; int rv; ext = X509_get_ext(peer_cert, index); assert(ext != NULL); rv = X509V3_EXT_print(bio, ext, 0, 0); assert(rv == 1); BIO_get_mem_ptr(bio, &mem); info->Set(env->subjectaltname_string(), OneByteString(node_isolate, mem->data, mem->length)); (void) BIO_reset(bio); } EVP_PKEY* pkey = X509_get_pubkey(peer_cert); RSA* rsa = NULL; if (pkey != NULL) rsa = EVP_PKEY_get1_RSA(pkey); if (rsa != NULL) { BN_print(bio, rsa->n); BIO_get_mem_ptr(bio, &mem); info->Set(env->modulus_string(), OneByteString(node_isolate, mem->data, mem->length)); (void) BIO_reset(bio); BN_print(bio, rsa->e); BIO_get_mem_ptr(bio, &mem); info->Set(env->exponent_string(), OneByteString(node_isolate, mem->data, mem->length)); (void) BIO_reset(bio); } if (pkey != NULL) { EVP_PKEY_free(pkey); pkey = NULL; } if (rsa != NULL) { RSA_free(rsa); rsa = NULL; } ASN1_TIME_print(bio, X509_get_notBefore(peer_cert)); BIO_get_mem_ptr(bio, &mem); info->Set(env->valid_from_string(), OneByteString(node_isolate, mem->data, mem->length)); (void) BIO_reset(bio); ASN1_TIME_print(bio, X509_get_notAfter(peer_cert)); BIO_get_mem_ptr(bio, &mem); info->Set(env->valid_to_string(), OneByteString(node_isolate, mem->data, mem->length)); BIO_free_all(bio); unsigned int md_size, i; unsigned char md[EVP_MAX_MD_SIZE]; if (X509_digest(peer_cert, EVP_sha1(), md, &md_size)) { const char hex[] = "0123456789ABCDEF"; char fingerprint[EVP_MAX_MD_SIZE * 3]; // TODO(indutny): Unify it with buffer's code for (i = 0; i < md_size; i++) { fingerprint[3*i] = hex[(md[i] & 0xf0) >> 4]; fingerprint[(3*i)+1] = hex[(md[i] & 0x0f)]; fingerprint[(3*i)+2] = ':'; } if (md_size > 0) { fingerprint[(3*(md_size-1))+2] = '\0'; } else { fingerprint[0] = '\0'; } info->Set(env->fingerprint_string(), OneByteString(node_isolate, fingerprint)); } STACK_OF(ASN1_OBJECT)* eku = static_cast( X509_get_ext_d2i(peer_cert, NID_ext_key_usage, NULL, NULL)); if (eku != NULL) { Local ext_key_usage = Array::New(); char buf[256]; int j = 0; for (int i = 0; i < sk_ASN1_OBJECT_num(eku); i++) { if (OBJ_obj2txt(buf, sizeof(buf), sk_ASN1_OBJECT_value(eku, i), 1) >= 0) ext_key_usage->Set(j++, OneByteString(node_isolate, buf)); } sk_ASN1_OBJECT_pop_free(eku, ASN1_OBJECT_free); info->Set(env->ext_key_usage_string(), ext_key_usage); } X509_free(peer_cert); } args.GetReturnValue().Set(info); } template void SSLWrap::GetSession(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); SSL_SESSION* sess = SSL_get_session(w->ssl_); if (sess == NULL) return; int slen = i2d_SSL_SESSION(sess, NULL); assert(slen > 0); unsigned char* sbuf = new unsigned char[slen]; unsigned char* p = sbuf; i2d_SSL_SESSION(sess, &p); args.GetReturnValue().Set(Encode(sbuf, slen, BINARY)); delete[] sbuf; } template void SSLWrap::SetSession(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); if (args.Length() < 1 || (!args[0]->IsString() && !Buffer::HasInstance(args[0]))) { return ThrowTypeError("Bad argument"); } ASSERT_IS_BUFFER(args[0]); ssize_t slen = Buffer::Length(args[0]); if (slen < 0) return ThrowTypeError("Bad argument"); char* sbuf = new char[slen]; ssize_t wlen = DecodeWrite(sbuf, slen, args[0], BINARY); assert(wlen == slen); const unsigned char* p = reinterpret_cast(sbuf); SSL_SESSION* sess = d2i_SSL_SESSION(NULL, &p, wlen); delete[] sbuf; if (sess == NULL) return; int r = SSL_set_session(w->ssl_, sess); SSL_SESSION_free(sess); if (!r) return ThrowError("SSL_set_session error"); } template void SSLWrap::LoadSession(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); Environment* env = w->ssl_env(); if (args.Length() >= 1 && Buffer::HasInstance(args[0])) { ssize_t slen = Buffer::Length(args[0]); char* sbuf = Buffer::Data(args[0]); const unsigned char* p = reinterpret_cast(sbuf); SSL_SESSION* sess = d2i_SSL_SESSION(NULL, &p, slen); // Setup next session and move hello to the BIO buffer if (w->next_sess_ != NULL) SSL_SESSION_free(w->next_sess_); w->next_sess_ = sess; Local info = Object::New(); #ifndef OPENSSL_NO_TLSEXT if (sess->tlsext_hostname == NULL) { info->Set(env->servername_string(), False(node_isolate)); } else { info->Set(env->servername_string(), OneByteString(node_isolate, sess->tlsext_hostname)); } #endif args.GetReturnValue().Set(info); } } template void SSLWrap::IsSessionReused(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); bool yes = SSL_session_reused(w->ssl_); args.GetReturnValue().Set(yes); } template void SSLWrap::ReceivedShutdown(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); bool yes = SSL_get_shutdown(w->ssl_) == SSL_RECEIVED_SHUTDOWN; args.GetReturnValue().Set(yes); } template void SSLWrap::EndParser(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); w->hello_parser_.End(); } template void SSLWrap::Renegotiate(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence unused variable warning. bool yes = SSL_renegotiate(w->ssl_) == 1; args.GetReturnValue().Set(yes); } template void SSLWrap::IsInitFinished(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); bool yes = SSL_is_init_finished(w->ssl_); args.GetReturnValue().Set(yes); } #define CASE_X509_ERR(CODE) case X509_V_ERR_##CODE: reason = #CODE; break; template void SSLWrap::VerifyError(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); // XXX(indutny) Do this check in JS land? X509* peer_cert = SSL_get_peer_certificate(w->ssl_); if (peer_cert == NULL) { // We requested a certificate and they did not send us one. // Definitely an error. // XXX(indutny) is this the right error message? Local s = FIXED_ONE_BYTE_STRING(node_isolate, "UNABLE_TO_GET_ISSUER_CERT"); return args.GetReturnValue().Set(Exception::Error(s)); } X509_free(peer_cert); long x509_verify_error = SSL_get_verify_result(w->ssl_); const char* reason = NULL; Local s; switch (x509_verify_error) { case X509_V_OK: return args.GetReturnValue().SetNull(); CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT) CASE_X509_ERR(UNABLE_TO_GET_CRL) CASE_X509_ERR(UNABLE_TO_DECRYPT_CERT_SIGNATURE) CASE_X509_ERR(UNABLE_TO_DECRYPT_CRL_SIGNATURE) CASE_X509_ERR(UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY) CASE_X509_ERR(CERT_SIGNATURE_FAILURE) CASE_X509_ERR(CRL_SIGNATURE_FAILURE) CASE_X509_ERR(CERT_NOT_YET_VALID) CASE_X509_ERR(CERT_HAS_EXPIRED) CASE_X509_ERR(CRL_NOT_YET_VALID) CASE_X509_ERR(CRL_HAS_EXPIRED) CASE_X509_ERR(ERROR_IN_CERT_NOT_BEFORE_FIELD) CASE_X509_ERR(ERROR_IN_CERT_NOT_AFTER_FIELD) CASE_X509_ERR(ERROR_IN_CRL_LAST_UPDATE_FIELD) CASE_X509_ERR(ERROR_IN_CRL_NEXT_UPDATE_FIELD) CASE_X509_ERR(OUT_OF_MEM) CASE_X509_ERR(DEPTH_ZERO_SELF_SIGNED_CERT) CASE_X509_ERR(SELF_SIGNED_CERT_IN_CHAIN) CASE_X509_ERR(UNABLE_TO_GET_ISSUER_CERT_LOCALLY) CASE_X509_ERR(UNABLE_TO_VERIFY_LEAF_SIGNATURE) CASE_X509_ERR(CERT_CHAIN_TOO_LONG) CASE_X509_ERR(CERT_REVOKED) CASE_X509_ERR(INVALID_CA) CASE_X509_ERR(PATH_LENGTH_EXCEEDED) CASE_X509_ERR(INVALID_PURPOSE) CASE_X509_ERR(CERT_UNTRUSTED) CASE_X509_ERR(CERT_REJECTED) default: s = OneByteString(node_isolate, X509_verify_cert_error_string(x509_verify_error)); break; } if (s.IsEmpty()) s = OneByteString(node_isolate, reason); args.GetReturnValue().Set(Exception::Error(s)); } #undef CASE_X509_ERR template void SSLWrap::GetCurrentCipher(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); Environment* env = w->ssl_env(); OPENSSL_CONST SSL_CIPHER* c = SSL_get_current_cipher(w->ssl_); if (c == NULL) return; Local info = Object::New(); const char* cipher_name = SSL_CIPHER_get_name(c); info->Set(env->name_string(), OneByteString(node_isolate, cipher_name)); const char* cipher_version = SSL_CIPHER_get_version(c); info->Set(env->version_string(), OneByteString(node_isolate, cipher_version)); args.GetReturnValue().Set(info); } #ifdef OPENSSL_NPN_NEGOTIATED template int SSLWrap::AdvertiseNextProtoCallback(SSL* s, const unsigned char** data, unsigned int* len, void* arg) { Base* w = static_cast(arg); if (w->npn_protos_.IsEmpty()) { // No initialization - no NPN protocols *data = reinterpret_cast(""); *len = 0; } else { Local obj = PersistentToLocal(node_isolate, w->npn_protos_); *data = reinterpret_cast(Buffer::Data(obj)); *len = Buffer::Length(obj); } return SSL_TLSEXT_ERR_OK; } template int SSLWrap::SelectNextProtoCallback(SSL* s, unsigned char** out, unsigned char* outlen, const unsigned char* in, unsigned int inlen, void* arg) { Base* w = static_cast(arg); // Release old protocol handler if present w->selected_npn_proto_.Dispose(); if (w->npn_protos_.IsEmpty()) { // We should at least select one protocol // If server is using NPN *out = reinterpret_cast(const_cast("http/1.1")); *outlen = 8; // set status: unsupported w->selected_npn_proto_.Reset(node_isolate, False(node_isolate)); return SSL_TLSEXT_ERR_OK; } Local obj = PersistentToLocal(node_isolate, w->npn_protos_); const unsigned char* npn_protos = reinterpret_cast(Buffer::Data(obj)); size_t len = Buffer::Length(obj); int status = SSL_select_next_proto(out, outlen, in, inlen, npn_protos, len); Handle result; switch (status) { case OPENSSL_NPN_UNSUPPORTED: result = Null(node_isolate); break; case OPENSSL_NPN_NEGOTIATED: result = OneByteString(node_isolate, *out, *outlen); break; case OPENSSL_NPN_NO_OVERLAP: result = False(node_isolate); break; default: break; } if (!result.IsEmpty()) w->selected_npn_proto_.Reset(node_isolate, result); return SSL_TLSEXT_ERR_OK; } template void SSLWrap::GetNegotiatedProto( const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); if (w->is_client()) { if (w->selected_npn_proto_.IsEmpty() == false) { args.GetReturnValue().Set(w->selected_npn_proto_); } return; } const unsigned char* npn_proto; unsigned int npn_proto_len; SSL_get0_next_proto_negotiated(w->ssl_, &npn_proto, &npn_proto_len); if (!npn_proto) return args.GetReturnValue().Set(false); args.GetReturnValue().Set( OneByteString(node_isolate, npn_proto, npn_proto_len)); } template void SSLWrap::SetNPNProtocols(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Base* w = Unwrap(args.This()); if (args.Length() < 1 || !Buffer::HasInstance(args[0])) return ThrowTypeError("Must give a Buffer as first argument"); w->npn_protos_.Reset(node_isolate, args[0].As()); } #endif // OPENSSL_NPN_NEGOTIATED void Connection::OnClientHelloParseEnd(void* arg) { Connection* conn = static_cast(arg); // Write all accumulated data int r = BIO_write(conn->bio_read_, reinterpret_cast(conn->hello_data_), conn->hello_offset_); conn->HandleBIOError(conn->bio_read_, "BIO_write", r); conn->SetShutdownFlags(); } #ifdef SSL_PRINT_DEBUG # define DEBUG_PRINT(...) fprintf (stderr, __VA_ARGS__) #else # define DEBUG_PRINT(...) #endif int Connection::HandleBIOError(BIO *bio, const char* func, int rv) { if (rv >= 0) return rv; int retry = BIO_should_retry(bio); (void) retry; // unused if !defined(SSL_PRINT_DEBUG) if (BIO_should_write(bio)) { DEBUG_PRINT("[%p] BIO: %s want write. should retry %d\n", ssl_, func, retry); return 0; } else if (BIO_should_read(bio)) { DEBUG_PRINT("[%p] BIO: %s want read. should retry %d\n", ssl_, func, retry); return 0; } else { char ssl_error_buf[512]; ERR_error_string_n(rv, ssl_error_buf, sizeof(ssl_error_buf)); HandleScope scope(node_isolate); Local exception = Exception::Error(OneByteString(node_isolate, ssl_error_buf)); object()->Set(FIXED_ONE_BYTE_STRING(node_isolate, "error"), exception); DEBUG_PRINT("[%p] BIO: %s failed: (%d) %s\n", ssl_, func, rv, ssl_error_buf); return rv; } return 0; } int Connection::HandleSSLError(const char* func, int rv, ZeroStatus zs, SyscallStatus ss) { ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence unused variable warning. if (rv > 0) return rv; if (rv == 0 && zs == kZeroIsNotAnError) return rv; int err = SSL_get_error(ssl_, rv); if (err == SSL_ERROR_NONE) { return 0; } else if (err == SSL_ERROR_WANT_WRITE) { DEBUG_PRINT("[%p] SSL: %s want write\n", ssl_, func); return 0; } else if (err == SSL_ERROR_WANT_READ) { DEBUG_PRINT("[%p] SSL: %s want read\n", ssl_, func); return 0; } else if (err == SSL_ERROR_ZERO_RETURN) { Local exception = Exception::Error(FIXED_ONE_BYTE_STRING(node_isolate, "ZERO_RETURN")); object()->Set(FIXED_ONE_BYTE_STRING(node_isolate, "error"), exception); return rv; } else if (err == SSL_ERROR_SYSCALL && ss == kIgnoreSyscall) { return 0; } else { HandleScope scope(node_isolate); BUF_MEM* mem; BIO *bio; assert(err == SSL_ERROR_SSL || err == SSL_ERROR_SYSCALL); // XXX We need to drain the error queue for this thread or else OpenSSL // has the possibility of blocking connections? This problem is not well // understood. And we should be somehow propagating these errors up // into JavaScript. There is no test which demonstrates this problem. // https://github.com/joyent/node/issues/1719 bio = BIO_new(BIO_s_mem()); if (bio != NULL) { ERR_print_errors(bio); BIO_get_mem_ptr(bio, &mem); Local exception = Exception::Error(OneByteString(node_isolate, mem->data, mem->length)); object()->Set(FIXED_ONE_BYTE_STRING(node_isolate, "error"), exception); BIO_free_all(bio); } return rv; } return 0; } void Connection::ClearError() { #ifndef NDEBUG HandleScope scope(node_isolate); // We should clear the error in JS-land Local error_key = FIXED_ONE_BYTE_STRING(node_isolate, "error"); Local error = object()->Get(error_key); assert(error->BooleanValue() == false); #endif // NDEBUG } void Connection::SetShutdownFlags() { HandleScope scope(node_isolate); int flags = SSL_get_shutdown(ssl_); if (flags & SSL_SENT_SHUTDOWN) { Local sent_shutdown_key = FIXED_ONE_BYTE_STRING(node_isolate, "sentShutdown"); object()->Set(sent_shutdown_key, True(node_isolate)); } if (flags & SSL_RECEIVED_SHUTDOWN) { Local received_shutdown_key = FIXED_ONE_BYTE_STRING(node_isolate, "receivedShutdown"); object()->Set(received_shutdown_key, True(node_isolate)); } } void Connection::Initialize(Environment* env, Handle target) { Local t = FunctionTemplate::New(Connection::New); t->InstanceTemplate()->SetInternalFieldCount(1); t->SetClassName(FIXED_ONE_BYTE_STRING(node_isolate, "Connection")); NODE_SET_PROTOTYPE_METHOD(t, "encIn", Connection::EncIn); NODE_SET_PROTOTYPE_METHOD(t, "clearOut", Connection::ClearOut); NODE_SET_PROTOTYPE_METHOD(t, "clearIn", Connection::ClearIn); NODE_SET_PROTOTYPE_METHOD(t, "encOut", Connection::EncOut); NODE_SET_PROTOTYPE_METHOD(t, "clearPending", Connection::ClearPending); NODE_SET_PROTOTYPE_METHOD(t, "encPending", Connection::EncPending); NODE_SET_PROTOTYPE_METHOD(t, "start", Connection::Start); NODE_SET_PROTOTYPE_METHOD(t, "shutdown", Connection::Shutdown); NODE_SET_PROTOTYPE_METHOD(t, "close", Connection::Close); SSLWrap::AddMethods(t); #ifdef OPENSSL_NPN_NEGOTIATED NODE_SET_PROTOTYPE_METHOD(t, "getNegotiatedProtocol", Connection::GetNegotiatedProto); NODE_SET_PROTOTYPE_METHOD(t, "setNPNProtocols", Connection::SetNPNProtocols); #endif #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB NODE_SET_PROTOTYPE_METHOD(t, "getServername", Connection::GetServername); NODE_SET_PROTOTYPE_METHOD(t, "setSNICallback", Connection::SetSNICallback); #endif target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Connection"), t->GetFunction()); } int VerifyCallback(int preverify_ok, X509_STORE_CTX* ctx) { // Quoting SSL_set_verify(3ssl): // // The VerifyCallback function is used to control the behaviour when // the SSL_VERIFY_PEER flag is set. It must be supplied by the // application and receives two arguments: preverify_ok indicates, // whether the verification of the certificate in question was passed // (preverify_ok=1) or not (preverify_ok=0). x509_ctx is a pointer to // the complete context used for the certificate chain verification. // // The certificate chain is checked starting with the deepest nesting // level (the root CA certificate) and worked upward to the peer's // certificate. At each level signatures and issuer attributes are // checked. Whenever a verification error is found, the error number is // stored in x509_ctx and VerifyCallback is called with preverify_ok=0. // By applying X509_CTX_store_* functions VerifyCallback can locate the // certificate in question and perform additional steps (see EXAMPLES). // If no error is found for a certificate, VerifyCallback is called // with preverify_ok=1 before advancing to the next level. // // The return value of VerifyCallback controls the strategy of the // further verification process. If VerifyCallback returns 0, the // verification process is immediately stopped with "verification // failed" state. If SSL_VERIFY_PEER is set, a verification failure // alert is sent to the peer and the TLS/SSL handshake is terminated. If // VerifyCallback returns 1, the verification process is continued. If // VerifyCallback always returns 1, the TLS/SSL handshake will not be // terminated with respect to verification failures and the connection // will be established. The calling process can however retrieve the // error code of the last verification error using // SSL_get_verify_result(3) or by maintaining its own error storage // managed by VerifyCallback. // // If no VerifyCallback is specified, the default callback will be // used. Its return value is identical to preverify_ok, so that any // verification failure will lead to a termination of the TLS/SSL // handshake with an alert message, if SSL_VERIFY_PEER is set. // // Since we cannot perform I/O quickly enough in this callback, we ignore // all preverify_ok errors and let the handshake continue. It is // imparative that the user use Connection::VerifyError after the // 'secure' callback has been made. return 1; } #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB int Connection::SelectSNIContextCallback_(SSL *s, int *ad, void* arg) { HandleScope scope(node_isolate); Connection* conn = static_cast(SSL_get_app_data(s)); Environment* env = conn->env(); const char* servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name); if (servername) { conn->servername_.Reset(node_isolate, OneByteString(node_isolate, servername)); // Call the SNI callback and use its return value as context if (!conn->sniObject_.IsEmpty()) { conn->sniContext_.Dispose(); Local arg = PersistentToLocal(node_isolate, conn->servername_); Local ret = conn->MakeCallback(env->onselect_string(), 1, &arg); // If ret is SecureContext Local secure_context_constructor_template = env->secure_context_constructor_template(); if (secure_context_constructor_template->HasInstance(ret)) { conn->sniContext_.Reset(node_isolate, ret); SecureContext* sc = Unwrap(ret.As()); SSL_set_SSL_CTX(s, sc->ctx_); } else { return SSL_TLSEXT_ERR_NOACK; } } } return SSL_TLSEXT_ERR_OK; } #endif void Connection::New(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); if (args.Length() < 1 || !args[0]->IsObject()) { return ThrowError("First argument must be a crypto module Credentials"); } SecureContext* sc = Unwrap(args[0]->ToObject()); Environment* env = sc->env(); bool is_server = args[1]->BooleanValue(); SSLWrap::Kind kind = is_server ? SSLWrap::kServer : SSLWrap::kClient; Connection* conn = new Connection(env, args.This(), sc, kind); conn->ssl_ = SSL_new(sc->ctx_); conn->bio_read_ = NodeBIO::New(); conn->bio_write_ = NodeBIO::New(); SSL_set_app_data(conn->ssl_, conn); if (is_server) SSL_set_info_callback(conn->ssl_, SSLInfoCallback); #ifdef OPENSSL_NPN_NEGOTIATED if (is_server) { // Server should advertise NPN protocols SSL_CTX_set_next_protos_advertised_cb( sc->ctx_, SSLWrap::AdvertiseNextProtoCallback, conn); } else { // Client should select protocol from advertised // If server supports NPN SSL_CTX_set_next_proto_select_cb( sc->ctx_, SSLWrap::SelectNextProtoCallback, conn); } #endif #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB if (is_server) { SSL_CTX_set_tlsext_servername_callback(sc->ctx_, SelectSNIContextCallback_); } else if (args[2]->IsString()) { const String::Utf8Value servername(args[2]); SSL_set_tlsext_host_name(conn->ssl_, *servername); } #endif SSL_set_bio(conn->ssl_, conn->bio_read_, conn->bio_write_); #ifdef SSL_MODE_RELEASE_BUFFERS long mode = SSL_get_mode(conn->ssl_); SSL_set_mode(conn->ssl_, mode | SSL_MODE_RELEASE_BUFFERS); #endif int verify_mode; if (is_server) { bool request_cert = args[2]->BooleanValue(); if (!request_cert) { // Note reject_unauthorized ignored. verify_mode = SSL_VERIFY_NONE; } else { bool reject_unauthorized = args[3]->BooleanValue(); verify_mode = SSL_VERIFY_PEER; if (reject_unauthorized) verify_mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT; } } else { // Note request_cert and reject_unauthorized are ignored for clients. verify_mode = SSL_VERIFY_NONE; } // Always allow a connection. We'll reject in javascript. SSL_set_verify(conn->ssl_, verify_mode, VerifyCallback); if (is_server) { SSL_set_accept_state(conn->ssl_); } else { SSL_set_connect_state(conn->ssl_); } } void Connection::SSLInfoCallback(const SSL *ssl_, int where, int ret) { if (!(where & (SSL_CB_HANDSHAKE_START | SSL_CB_HANDSHAKE_DONE))) return; // Be compatible with older versions of OpenSSL. SSL_get_app_data() wants // a non-const SSL* in OpenSSL <= 0.9.7e. SSL* ssl = const_cast(ssl_); Connection* conn = static_cast(SSL_get_app_data(ssl)); Environment* env = conn->env(); Context::Scope context_scope(env->context()); HandleScope handle_scope(env->isolate()); if (where & SSL_CB_HANDSHAKE_START) { conn->MakeCallback(env->onhandshakestart_string(), 0, NULL); } if (where & SSL_CB_HANDSHAKE_DONE) { conn->MakeCallback(env->onhandshakedone_string(), 0, NULL); } } void Connection::EncIn(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (args.Length() < 3) { return ThrowTypeError("Takes 3 parameters"); } if (!Buffer::HasInstance(args[0])) { return ThrowTypeError("Second argument should be a buffer"); } char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowError("off + len > buffer.length"); } int bytes_written; char* data = buffer_data + off; if (conn->is_server() && !conn->hello_parser_.IsEnded()) { // Just accumulate data, everything will be pushed to BIO later if (conn->hello_parser_.IsPaused()) { bytes_written = 0; } else { // Copy incoming data to the internal buffer // (which has a size of the biggest possible TLS frame) size_t available = sizeof(conn->hello_data_) - conn->hello_offset_; size_t copied = len < available ? len : available; memcpy(conn->hello_data_ + conn->hello_offset_, data, copied); conn->hello_offset_ += copied; conn->hello_parser_.Parse(conn->hello_data_, conn->hello_offset_); bytes_written = copied; } } else { bytes_written = BIO_write(conn->bio_read_, data, len); conn->HandleBIOError(conn->bio_read_, "BIO_write", bytes_written); conn->SetShutdownFlags(); } args.GetReturnValue().Set(bytes_written); } void Connection::ClearOut(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (args.Length() < 3) { return ThrowTypeError("Takes 3 parameters"); } if (!Buffer::HasInstance(args[0])) { return ThrowTypeError("Second argument should be a buffer"); } char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowError("off + len > buffer.length"); } if (!SSL_is_init_finished(conn->ssl_)) { int rv; if (conn->is_server()) { rv = SSL_accept(conn->ssl_); conn->HandleSSLError("SSL_accept:ClearOut", rv, kZeroIsAnError, kSyscallError); } else { rv = SSL_connect(conn->ssl_); conn->HandleSSLError("SSL_connect:ClearOut", rv, kZeroIsAnError, kSyscallError); } if (rv < 0) { return args.GetReturnValue().Set(rv); } } int bytes_read = SSL_read(conn->ssl_, buffer_data + off, len); conn->HandleSSLError("SSL_read:ClearOut", bytes_read, kZeroIsNotAnError, kSyscallError); conn->SetShutdownFlags(); args.GetReturnValue().Set(bytes_read); } void Connection::ClearPending(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); int bytes_pending = BIO_pending(conn->bio_read_); args.GetReturnValue().Set(bytes_pending); } void Connection::EncPending(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); int bytes_pending = BIO_pending(conn->bio_write_); args.GetReturnValue().Set(bytes_pending); } void Connection::EncOut(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (args.Length() < 3) { return ThrowTypeError("Takes 3 parameters"); } if (!Buffer::HasInstance(args[0])) { return ThrowTypeError("Second argument should be a buffer"); } char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowError("off + len > buffer.length"); } int bytes_read = BIO_read(conn->bio_write_, buffer_data + off, len); conn->HandleBIOError(conn->bio_write_, "BIO_read:EncOut", bytes_read); conn->SetShutdownFlags(); args.GetReturnValue().Set(bytes_read); } void Connection::ClearIn(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (args.Length() < 3) { return ThrowTypeError("Takes 3 parameters"); } if (!Buffer::HasInstance(args[0])) { return ThrowTypeError("Second argument should be a buffer"); } char* buffer_data = Buffer::Data(args[0]); size_t buffer_length = Buffer::Length(args[0]); size_t off = args[1]->Int32Value(); size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowError("off + len > buffer.length"); } if (!SSL_is_init_finished(conn->ssl_)) { int rv; if (conn->is_server()) { rv = SSL_accept(conn->ssl_); conn->HandleSSLError("SSL_accept:ClearIn", rv, kZeroIsAnError, kSyscallError); } else { rv = SSL_connect(conn->ssl_); conn->HandleSSLError("SSL_connect:ClearIn", rv, kZeroIsAnError, kSyscallError); } if (rv < 0) { return args.GetReturnValue().Set(rv); } } int bytes_written = SSL_write(conn->ssl_, buffer_data + off, len); conn->HandleSSLError("SSL_write:ClearIn", bytes_written, len == 0 ? kZeroIsNotAnError : kZeroIsAnError, kSyscallError); conn->SetShutdownFlags(); args.GetReturnValue().Set(bytes_written); } void Connection::Start(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); int rv = 0; if (!SSL_is_init_finished(conn->ssl_)) { if (conn->is_server()) { rv = SSL_accept(conn->ssl_); conn->HandleSSLError("SSL_accept:Start", rv, kZeroIsAnError, kSyscallError); } else { rv = SSL_connect(conn->ssl_); conn->HandleSSLError("SSL_connect:Start", rv, kZeroIsAnError, kSyscallError); } } args.GetReturnValue().Set(rv); } void Connection::Shutdown(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (conn->ssl_ == NULL) { return args.GetReturnValue().Set(false); } int rv = SSL_shutdown(conn->ssl_); conn->HandleSSLError("SSL_shutdown", rv, kZeroIsNotAnError, kIgnoreSyscall); conn->SetShutdownFlags(); args.GetReturnValue().Set(rv); } void Connection::Close(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (conn->ssl_ != NULL) { SSL_free(conn->ssl_); conn->ssl_ = NULL; } } #ifdef SSL_CTRL_SET_TLSEXT_SERVERNAME_CB void Connection::GetServername(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (conn->is_server() && !conn->servername_.IsEmpty()) { args.GetReturnValue().Set(conn->servername_); } else { args.GetReturnValue().Set(false); } } void Connection::SetSNICallback(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Connection* conn = Unwrap(args.This()); if (args.Length() < 1 || !args[0]->IsFunction()) { return ThrowError("Must give a Function as first argument"); } Local obj = Object::New(); obj->Set(FIXED_ONE_BYTE_STRING(node_isolate, "onselect"), args[0]); conn->sniObject_.Reset(node_isolate, obj); } #endif void CipherBase::Initialize(Environment* env, Handle target) { Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", Init); NODE_SET_PROTOTYPE_METHOD(t, "initiv", InitIv); NODE_SET_PROTOTYPE_METHOD(t, "update", Update); NODE_SET_PROTOTYPE_METHOD(t, "final", Final); NODE_SET_PROTOTYPE_METHOD(t, "setAutoPadding", SetAutoPadding); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "CipherBase"), t->GetFunction()); } void CipherBase::New(const FunctionCallbackInfo& args) { assert(args.IsConstructCall() == true); CipherKind kind = args[0]->IsTrue() ? kCipher : kDecipher; Environment* env = Environment::GetCurrent(args.GetIsolate()); new CipherBase(env, args.This(), kind); } void CipherBase::Init(const char* cipher_type, const char* key_buf, int key_buf_len) { HandleScope scope(node_isolate); assert(cipher_ == NULL); cipher_ = EVP_get_cipherbyname(cipher_type); if (cipher_ == NULL) { return ThrowError("Unknown cipher"); } unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; int key_len = EVP_BytesToKey(cipher_, EVP_md5(), NULL, reinterpret_cast(key_buf), key_buf_len, 1, key, iv); EVP_CIPHER_CTX_init(&ctx_); EVP_CipherInit_ex(&ctx_, cipher_, NULL, NULL, NULL, kind_ == kCipher); if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) { EVP_CIPHER_CTX_cleanup(&ctx_); return ThrowError("Invalid key length"); } EVP_CipherInit_ex(&ctx_, NULL, NULL, reinterpret_cast(key), reinterpret_cast(iv), kind_ == kCipher); initialised_ = true; } void CipherBase::Init(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); CipherBase* cipher = Unwrap(args.This()); if (args.Length() < 2 || !(args[0]->IsString() && Buffer::HasInstance(args[1]))) { return ThrowError("Must give cipher-type, key"); } const String::Utf8Value cipher_type(args[0]); const char* key_buf = Buffer::Data(args[1]); ssize_t key_buf_len = Buffer::Length(args[1]); cipher->Init(*cipher_type, key_buf, key_buf_len); } void CipherBase::InitIv(const char* cipher_type, const char* key, int key_len, const char* iv, int iv_len) { HandleScope scope(node_isolate); cipher_ = EVP_get_cipherbyname(cipher_type); if (cipher_ == NULL) { return ThrowError("Unknown cipher"); } /* OpenSSL versions up to 0.9.8l failed to return the correct iv_length (0) for ECB ciphers */ if (EVP_CIPHER_iv_length(cipher_) != iv_len && !(EVP_CIPHER_mode(cipher_) == EVP_CIPH_ECB_MODE && iv_len == 0)) { return ThrowError("Invalid IV length"); } EVP_CIPHER_CTX_init(&ctx_); EVP_CipherInit_ex(&ctx_, cipher_, NULL, NULL, NULL, kind_ == kCipher); if (!EVP_CIPHER_CTX_set_key_length(&ctx_, key_len)) { EVP_CIPHER_CTX_cleanup(&ctx_); return ThrowError("Invalid key length"); } EVP_CipherInit_ex(&ctx_, NULL, NULL, reinterpret_cast(key), reinterpret_cast(iv), kind_ == kCipher); initialised_ = true; } void CipherBase::InitIv(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); CipherBase* cipher = Unwrap(args.This()); if (args.Length() < 3 || !args[0]->IsString()) { return ThrowError("Must give cipher-type, key, and iv as argument"); } ASSERT_IS_BUFFER(args[1]); ASSERT_IS_BUFFER(args[2]); const String::Utf8Value cipher_type(args[0]); ssize_t key_len = Buffer::Length(args[1]); const char* key_buf = Buffer::Data(args[1]); ssize_t iv_len = Buffer::Length(args[2]); const char* iv_buf = Buffer::Data(args[2]); cipher->InitIv(*cipher_type, key_buf, key_len, iv_buf, iv_len); } bool CipherBase::Update(const char* data, int len, unsigned char** out, int* out_len) { if (!initialised_) return 0; *out_len = len + EVP_CIPHER_CTX_block_size(&ctx_); *out = new unsigned char[*out_len]; return EVP_CipherUpdate(&ctx_, *out, out_len, reinterpret_cast(data), len); } void CipherBase::Update(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); HandleScope handle_scope(args.GetIsolate()); CipherBase* cipher = Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); unsigned char* out = NULL; bool r; int out_len = 0; // Only copy the data if we have to, because it's a string if (args[0]->IsString()) { Local string = args[0].As(); enum encoding encoding = ParseEncoding(args[1], BINARY); if (!StringBytes::IsValidString(string, encoding)) return ThrowTypeError("Bad input string"); size_t buflen = StringBytes::StorageSize(string, encoding); char* buf = new char[buflen]; size_t written = StringBytes::Write(buf, buflen, string, encoding); r = cipher->Update(buf, written, &out, &out_len); delete[] buf; } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = cipher->Update(buf, buflen, &out, &out_len); } if (!r) { delete[] out; return ThrowCryptoTypeError(ERR_get_error()); } Local buf = Buffer::New(env, reinterpret_cast(out), out_len); if (out) delete[] out; args.GetReturnValue().Set(buf); } bool CipherBase::SetAutoPadding(bool auto_padding) { if (!initialised_) return false; return EVP_CIPHER_CTX_set_padding(&ctx_, auto_padding); } void CipherBase::SetAutoPadding(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); CipherBase* cipher = Unwrap(args.This()); cipher->SetAutoPadding(args.Length() < 1 || args[0]->BooleanValue()); } bool CipherBase::Final(unsigned char** out, int *out_len) { if (!initialised_) return false; *out = new unsigned char[EVP_CIPHER_CTX_block_size(&ctx_)]; bool r = EVP_CipherFinal_ex(&ctx_, *out, out_len); EVP_CIPHER_CTX_cleanup(&ctx_); initialised_ = false; return r; } void CipherBase::Final(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); HandleScope handle_scope(args.GetIsolate()); CipherBase* cipher = Unwrap(args.This()); unsigned char* out_value = NULL; int out_len = -1; Local outString; bool r = cipher->Final(&out_value, &out_len); if (out_len <= 0 || !r) { delete[] out_value; out_value = NULL; out_len = 0; if (!r) return ThrowCryptoTypeError(ERR_get_error()); } args.GetReturnValue().Set( Buffer::New(env, reinterpret_cast(out_value), out_len)); } void Hmac::Initialize(Environment* env, v8::Handle target) { Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", HmacInit); NODE_SET_PROTOTYPE_METHOD(t, "update", HmacUpdate); NODE_SET_PROTOTYPE_METHOD(t, "digest", HmacDigest); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Hmac"), t->GetFunction()); } void Hmac::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); new Hmac(env, args.This()); } void Hmac::HmacInit(const char* hash_type, const char* key, int key_len) { HandleScope scope(node_isolate); assert(md_ == NULL); md_ = EVP_get_digestbyname(hash_type); if (md_ == NULL) { return ThrowError("Unknown message digest"); } HMAC_CTX_init(&ctx_); if (key_len == 0) { HMAC_Init(&ctx_, "", 0, md_); } else { HMAC_Init(&ctx_, key, key_len, md_); } initialised_ = true; } void Hmac::HmacInit(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Hmac* hmac = Unwrap(args.This()); if (args.Length() < 2 || !args[0]->IsString()) { return ThrowError("Must give hashtype string, key as arguments"); } ASSERT_IS_BUFFER(args[1]); const String::Utf8Value hash_type(args[0]); const char* buffer_data = Buffer::Data(args[1]); size_t buffer_length = Buffer::Length(args[1]); hmac->HmacInit(*hash_type, buffer_data, buffer_length); } bool Hmac::HmacUpdate(const char* data, int len) { if (!initialised_) return false; HMAC_Update(&ctx_, reinterpret_cast(data), len); return true; } void Hmac::HmacUpdate(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Hmac* hmac = Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); // Only copy the data if we have to, because it's a string bool r; if (args[0]->IsString()) { Local string = args[0].As(); enum encoding encoding = ParseEncoding(args[1], BINARY); if (!StringBytes::IsValidString(string, encoding)) return ThrowTypeError("Bad input string"); size_t buflen = StringBytes::StorageSize(string, encoding); char* buf = new char[buflen]; size_t written = StringBytes::Write(buf, buflen, string, encoding); r = hmac->HmacUpdate(buf, written); delete[] buf; } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = hmac->HmacUpdate(buf, buflen); } if (!r) { return ThrowTypeError("HmacUpdate fail"); } } bool Hmac::HmacDigest(unsigned char** md_value, unsigned int* md_len) { if (!initialised_) return false; *md_value = new unsigned char[EVP_MAX_MD_SIZE]; HMAC_Final(&ctx_, *md_value, md_len); HMAC_CTX_cleanup(&ctx_); initialised_ = false; return true; } void Hmac::HmacDigest(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Hmac* hmac = Unwrap(args.This()); enum encoding encoding = BUFFER; if (args.Length() >= 1) { encoding = ParseEncoding(args[0]->ToString(), BUFFER); } unsigned char* md_value = NULL; unsigned int md_len = 0; bool r = hmac->HmacDigest(&md_value, &md_len); if (!r) { md_value = NULL; md_len = 0; } Local rc = StringBytes::Encode( reinterpret_cast(md_value), md_len, encoding); delete[] md_value; args.GetReturnValue().Set(rc); } void Hash::Initialize(Environment* env, v8::Handle target) { Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "update", HashUpdate); NODE_SET_PROTOTYPE_METHOD(t, "digest", HashDigest); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Hash"), t->GetFunction()); } void Hash::New(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); if (args.Length() == 0 || !args[0]->IsString()) { return ThrowError("Must give hashtype string as argument"); } const String::Utf8Value hash_type(args[0]); Environment* env = Environment::GetCurrent(args.GetIsolate()); Hash* hash = new Hash(env, args.This()); if (!hash->HashInit(*hash_type)) { return ThrowError("Digest method not supported"); } } bool Hash::HashInit(const char* hash_type) { assert(md_ == NULL); md_ = EVP_get_digestbyname(hash_type); if (md_ == NULL) return false; EVP_MD_CTX_init(&mdctx_); EVP_DigestInit_ex(&mdctx_, md_, NULL); initialised_ = true; return true; } bool Hash::HashUpdate(const char* data, int len) { if (!initialised_) return false; EVP_DigestUpdate(&mdctx_, data, len); return true; } void Hash::HashUpdate(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Hash* hash = Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); // Only copy the data if we have to, because it's a string bool r; if (args[0]->IsString()) { Local string = args[0].As(); enum encoding encoding = ParseEncoding(args[1], BINARY); if (!StringBytes::IsValidString(string, encoding)) return ThrowTypeError("Bad input string"); size_t buflen = StringBytes::StorageSize(string, encoding); char* buf = new char[buflen]; size_t written = StringBytes::Write(buf, buflen, string, encoding); r = hash->HashUpdate(buf, written); delete[] buf; } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = hash->HashUpdate(buf, buflen); } if (!r) { return ThrowTypeError("HashUpdate fail"); } } void Hash::HashDigest(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Hash* hash = Unwrap(args.This()); if (!hash->initialised_) { return ThrowError("Not initialized"); } enum encoding encoding = BUFFER; if (args.Length() >= 1) { encoding = ParseEncoding(args[0]->ToString(), BUFFER); } unsigned char md_value[EVP_MAX_MD_SIZE]; unsigned int md_len; EVP_DigestFinal_ex(&hash->mdctx_, md_value, &md_len); EVP_MD_CTX_cleanup(&hash->mdctx_); hash->initialised_ = false; Local rc = StringBytes::Encode( reinterpret_cast(md_value), md_len, encoding); args.GetReturnValue().Set(rc); } void Sign::Initialize(Environment* env, v8::Handle target) { Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", SignInit); NODE_SET_PROTOTYPE_METHOD(t, "update", SignUpdate); NODE_SET_PROTOTYPE_METHOD(t, "sign", SignFinal); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Sign"), t->GetFunction()); } void Sign::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); new Sign(env, args.This()); } void Sign::SignInit(const char* sign_type) { HandleScope scope(node_isolate); assert(md_ == NULL); md_ = EVP_get_digestbyname(sign_type); if (!md_) { return ThrowError("Uknown message digest"); } EVP_MD_CTX_init(&mdctx_); EVP_SignInit_ex(&mdctx_, md_, NULL); initialised_ = true; } void Sign::SignInit(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Sign* sign = Unwrap(args.This()); if (args.Length() == 0 || !args[0]->IsString()) { return ThrowError("Must give signtype string as argument"); } const String::Utf8Value sign_type(args[0]); sign->SignInit(*sign_type); } bool Sign::SignUpdate(const char* data, int len) { if (!initialised_) return false; EVP_SignUpdate(&mdctx_, data, len); return true; } void Sign::SignUpdate(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Sign* sign = Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); // Only copy the data if we have to, because it's a string int r; if (args[0]->IsString()) { Local string = args[0].As(); enum encoding encoding = ParseEncoding(args[1], BINARY); if (!StringBytes::IsValidString(string, encoding)) return ThrowTypeError("Bad input string"); size_t buflen = StringBytes::StorageSize(string, encoding); char* buf = new char[buflen]; size_t written = StringBytes::Write(buf, buflen, string, encoding); r = sign->SignUpdate(buf, written); delete[] buf; } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = sign->SignUpdate(buf, buflen); } if (!r) { return ThrowTypeError("SignUpdate fail"); } } bool Sign::SignFinal(const char* key_pem, int key_pem_len, const char* passphrase, unsigned char** sig, unsigned int *sig_len) { if (!initialised_) { ThrowError("Sign not initalised"); return false; } BIO* bp = NULL; EVP_PKEY* pkey = NULL; bool fatal = true; bp = BIO_new(BIO_s_mem()); if (bp == NULL) goto exit; if (!BIO_write(bp, key_pem, key_pem_len)) goto exit; pkey = PEM_read_bio_PrivateKey(bp, NULL, CryptoPemCallback, const_cast(passphrase)); if (pkey == NULL) goto exit; if (EVP_SignFinal(&mdctx_, *sig, sig_len, pkey)) fatal = false; initialised_ = false; exit: if (pkey != NULL) EVP_PKEY_free(pkey); if (bp != NULL) BIO_free_all(bp); EVP_MD_CTX_cleanup(&mdctx_); if (fatal) { unsigned long err = ERR_get_error(); if (err) { ThrowCryptoError(err); } else { ThrowError("PEM_read_bio_PrivateKey"); } return false; } return true; } void Sign::SignFinal(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Sign* sign = Unwrap(args.This()); unsigned char* md_value; unsigned int md_len; unsigned int len = args.Length(); enum encoding encoding = BUFFER; if (len >= 2 && args[1]->IsString()) { encoding = ParseEncoding(args[1]->ToString(), BUFFER); } String::Utf8Value passphrase(args[2]); ASSERT_IS_BUFFER(args[0]); size_t buf_len = Buffer::Length(args[0]); char* buf = Buffer::Data(args[0]); md_len = 8192; // Maximum key size is 8192 bits md_value = new unsigned char[md_len]; bool r = sign->SignFinal(buf, buf_len, len >= 3 && !args[2]->IsNull() ? *passphrase : NULL, &md_value, &md_len); if (!r) { delete[] md_value; md_value = NULL; md_len = 0; } Local rc = StringBytes::Encode( reinterpret_cast(md_value), md_len, encoding); delete[] md_value; args.GetReturnValue().Set(rc); } void Verify::Initialize(Environment* env, v8::Handle target) { Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", VerifyInit); NODE_SET_PROTOTYPE_METHOD(t, "update", VerifyUpdate); NODE_SET_PROTOTYPE_METHOD(t, "verify", VerifyFinal); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Verify"), t->GetFunction()); } void Verify::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); new Verify(env, args.This()); } void Verify::VerifyInit(const char* verify_type) { HandleScope scope(node_isolate); assert(md_ == NULL); md_ = EVP_get_digestbyname(verify_type); if (md_ == NULL) { return ThrowError("Unknown message digest"); } EVP_MD_CTX_init(&mdctx_); EVP_VerifyInit_ex(&mdctx_, md_, NULL); initialised_ = true; } void Verify::VerifyInit(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Verify* verify = Unwrap(args.This()); if (args.Length() == 0 || !args[0]->IsString()) { return ThrowError("Must give verifytype string as argument"); } const String::Utf8Value verify_type(args[0]); verify->VerifyInit(*verify_type); } bool Verify::VerifyUpdate(const char* data, int len) { if (!initialised_) return false; EVP_VerifyUpdate(&mdctx_, data, len); return true; } void Verify::VerifyUpdate(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Verify* verify = Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); // Only copy the data if we have to, because it's a string bool r; if (args[0]->IsString()) { Local string = args[0].As(); enum encoding encoding = ParseEncoding(args[1], BINARY); if (!StringBytes::IsValidString(string, encoding)) return ThrowTypeError("Bad input string"); size_t buflen = StringBytes::StorageSize(string, encoding); char* buf = new char[buflen]; size_t written = StringBytes::Write(buf, buflen, string, encoding); r = verify->VerifyUpdate(buf, written); delete[] buf; } else { char* buf = Buffer::Data(args[0]); size_t buflen = Buffer::Length(args[0]); r = verify->VerifyUpdate(buf, buflen); } if (!r) { return ThrowTypeError("VerifyUpdate fail"); } } bool Verify::VerifyFinal(const char* key_pem, int key_pem_len, const char* sig, int siglen) { HandleScope scope(node_isolate); if (!initialised_) { ThrowError("Verify not initalised"); return false; } ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. EVP_PKEY* pkey = NULL; BIO* bp = NULL; X509* x509 = NULL; bool fatal = true; int r = 0; bp = BIO_new(BIO_s_mem()); if (bp == NULL) goto exit; if (!BIO_write(bp, key_pem, key_pem_len)) goto exit; // Check if this is a PKCS#8 or RSA public key before trying as X.509. // Split this out into a separate function once we have more than one // consumer of public keys. if (strncmp(key_pem, PUBLIC_KEY_PFX, PUBLIC_KEY_PFX_LEN) == 0) { pkey = PEM_read_bio_PUBKEY(bp, NULL, CryptoPemCallback, NULL); if (pkey == NULL) goto exit; } else if (strncmp(key_pem, PUBRSA_KEY_PFX, PUBRSA_KEY_PFX_LEN) == 0) { RSA* rsa = PEM_read_bio_RSAPublicKey(bp, NULL, CryptoPemCallback, NULL); if (rsa) { pkey = EVP_PKEY_new(); if (pkey) EVP_PKEY_set1_RSA(pkey, rsa); RSA_free(rsa); } if (pkey == NULL) goto exit; } else { // X.509 fallback x509 = PEM_read_bio_X509(bp, NULL, CryptoPemCallback, NULL); if (x509 == NULL) goto exit; pkey = X509_get_pubkey(x509); if (pkey == NULL) goto exit; } fatal = false; r = EVP_VerifyFinal(&mdctx_, reinterpret_cast(sig), siglen, pkey); exit: if (pkey != NULL) EVP_PKEY_free(pkey); if (bp != NULL) BIO_free_all(bp); if (x509 != NULL) X509_free(x509); EVP_MD_CTX_cleanup(&mdctx_); initialised_ = false; if (fatal) { unsigned long err = ERR_get_error(); ThrowCryptoError(err); return false; } return r == 1; } void Verify::VerifyFinal(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Verify* verify = Unwrap(args.This()); ASSERT_IS_BUFFER(args[0]); char* kbuf = Buffer::Data(args[0]); ssize_t klen = Buffer::Length(args[0]); ASSERT_IS_STRING_OR_BUFFER(args[1]); // BINARY works for both buffers and binary strings. enum encoding encoding = BINARY; if (args.Length() >= 3) { encoding = ParseEncoding(args[2]->ToString(), BINARY); } ssize_t hlen = StringBytes::Size(args[1], encoding); // only copy if we need to, because it's a string. char* hbuf; if (args[1]->IsString()) { hbuf = new char[hlen]; ssize_t hwritten = StringBytes::Write(hbuf, hlen, args[1], encoding); assert(hwritten == hlen); } else { hbuf = Buffer::Data(args[1]); } bool rc = verify->VerifyFinal(kbuf, klen, hbuf, hlen); if (args[1]->IsString()) { delete[] hbuf; } args.GetReturnValue().Set(rc); } void DiffieHellman::Initialize(Environment* env, Handle target) { Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "generateKeys", GenerateKeys); NODE_SET_PROTOTYPE_METHOD(t, "computeSecret", ComputeSecret); NODE_SET_PROTOTYPE_METHOD(t, "getPrime", GetPrime); NODE_SET_PROTOTYPE_METHOD(t, "getGenerator", GetGenerator); NODE_SET_PROTOTYPE_METHOD(t, "getPublicKey", GetPublicKey); NODE_SET_PROTOTYPE_METHOD(t, "getPrivateKey", GetPrivateKey); NODE_SET_PROTOTYPE_METHOD(t, "setPublicKey", SetPublicKey); NODE_SET_PROTOTYPE_METHOD(t, "setPrivateKey", SetPrivateKey); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "DiffieHellman"), t->GetFunction()); Local t2 = FunctionTemplate::New(DiffieHellmanGroup); t2->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t2, "generateKeys", GenerateKeys); NODE_SET_PROTOTYPE_METHOD(t2, "computeSecret", ComputeSecret); NODE_SET_PROTOTYPE_METHOD(t2, "getPrime", GetPrime); NODE_SET_PROTOTYPE_METHOD(t2, "getGenerator", GetGenerator); NODE_SET_PROTOTYPE_METHOD(t2, "getPublicKey", GetPublicKey); NODE_SET_PROTOTYPE_METHOD(t2, "getPrivateKey", GetPrivateKey); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "DiffieHellmanGroup"), t2->GetFunction()); } bool DiffieHellman::Init(int primeLength) { dh = DH_new(); DH_generate_parameters_ex(dh, primeLength, DH_GENERATOR_2, 0); bool result = VerifyContext(); if (!result) return false; initialised_ = true; return true; } bool DiffieHellman::Init(const char* p, int p_len) { dh = DH_new(); dh->p = BN_bin2bn(reinterpret_cast(p), p_len, 0); dh->g = BN_new(); if (!BN_set_word(dh->g, 2)) return false; bool result = VerifyContext(); if (!result) return false; initialised_ = true; return true; } bool DiffieHellman::Init(const char* p, int p_len, const char* g, int g_len) { dh = DH_new(); dh->p = BN_bin2bn(reinterpret_cast(p), p_len, 0); dh->g = BN_bin2bn(reinterpret_cast(g), g_len, 0); initialised_ = true; return true; } void DiffieHellman::DiffieHellmanGroup( const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Environment* env = Environment::GetCurrent(args.GetIsolate()); DiffieHellman* diffieHellman = new DiffieHellman(env, args.This()); if (args.Length() != 1 || !args[0]->IsString()) { return ThrowError("No group name given"); } const String::Utf8Value group_name(args[0]); for (unsigned int i = 0; i < ARRAY_SIZE(modp_groups); ++i) { const modp_group* it = modp_groups + i; if (strcasecmp(*group_name, it->name) != 0) continue; diffieHellman->Init(it->prime, it->prime_size, it->gen, it->gen_size); return; } ThrowError("Unknown group"); } void DiffieHellman::New(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Environment* env = Environment::GetCurrent(args.GetIsolate()); DiffieHellman* diffieHellman = new DiffieHellman(env, args.This()); bool initialized = false; if (args.Length() > 0) { if (args[0]->IsInt32()) { initialized = diffieHellman->Init(args[0]->Int32Value()); } else { initialized = diffieHellman->Init(Buffer::Data(args[0]), Buffer::Length(args[0])); } } if (!initialized) { return ThrowError("Initialization failed"); } } void DiffieHellman::GenerateKeys(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } if (!DH_generate_key(diffieHellman->dh)) { return ThrowError("Key generation failed"); } int dataSize = BN_num_bytes(diffieHellman->dh->pub_key); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->pub_key, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetPrime(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } int dataSize = BN_num_bytes(diffieHellman->dh->p); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->p, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetGenerator(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } int dataSize = BN_num_bytes(diffieHellman->dh->g); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->g, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetPublicKey(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } if (diffieHellman->dh->pub_key == NULL) { return ThrowError("No public key - did you forget to generate one?"); } int dataSize = BN_num_bytes(diffieHellman->dh->pub_key); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->pub_key, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::GetPrivateKey(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } if (diffieHellman->dh->priv_key == NULL) { return ThrowError("No private key - did you forget to generate one?"); } int dataSize = BN_num_bytes(diffieHellman->dh->priv_key); char* data = new char[dataSize]; BN_bn2bin(diffieHellman->dh->priv_key, reinterpret_cast(data)); args.GetReturnValue().Set(Encode(data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::ComputeSecret(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } ClearErrorOnReturn clear_error_on_return; (void) &clear_error_on_return; // Silence compiler warning. BIGNUM* key = NULL; if (args.Length() == 0) { return ThrowError("First argument must be other party's public key"); } else { ASSERT_IS_BUFFER(args[0]); key = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0])), Buffer::Length(args[0]), 0); } int dataSize = DH_size(diffieHellman->dh); char* data = new char[dataSize]; int size = DH_compute_key(reinterpret_cast(data), key, diffieHellman->dh); if (size == -1) { int checkResult; int checked; checked = DH_check_pub_key(diffieHellman->dh, key, &checkResult); BN_free(key); delete[] data; if (!checked) { return ThrowError("Invalid key"); } else if (checkResult) { if (checkResult & DH_CHECK_PUBKEY_TOO_SMALL) { return ThrowError("Supplied key is too small"); } else if (checkResult & DH_CHECK_PUBKEY_TOO_LARGE) { return ThrowError("Supplied key is too large"); } else { return ThrowError("Invalid key"); } } else { return ThrowError("Invalid key"); } } BN_free(key); assert(size >= 0); // DH_size returns number of bytes in a prime number // DH_compute_key returns number of bytes in a remainder of exponent, which // may have less bytes than a prime number. Therefore add 0-padding to the // allocated buffer. if (size != dataSize) { assert(dataSize > size); memmove(data + dataSize - size, data, size); memset(data, 0, dataSize - size); } args.GetReturnValue().Set(Encode(data, dataSize, BUFFER)); delete[] data; } void DiffieHellman::SetPublicKey(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } if (args.Length() == 0) { return ThrowError("First argument must be public key"); } else { ASSERT_IS_BUFFER(args[0]); diffieHellman->dh->pub_key = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0])), Buffer::Length(args[0]), 0); } } void DiffieHellman::SetPrivateKey(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); DiffieHellman* diffieHellman = Unwrap(args.This()); if (!diffieHellman->initialised_) { return ThrowError("Not initialized"); } if (args.Length() == 0) { return ThrowError("First argument must be private key"); } else { ASSERT_IS_BUFFER(args[0]); diffieHellman->dh->priv_key = BN_bin2bn( reinterpret_cast(Buffer::Data(args[0])), Buffer::Length(args[0]), 0); } } bool DiffieHellman::VerifyContext() { int codes; if (!DH_check(dh, &codes)) return false; if (codes & DH_CHECK_P_NOT_SAFE_PRIME) return false; if (codes & DH_CHECK_P_NOT_PRIME) return false; if (codes & DH_UNABLE_TO_CHECK_GENERATOR) return false; if (codes & DH_NOT_SUITABLE_GENERATOR) return false; return true; } class PBKDF2Request : public AsyncWrap { public: PBKDF2Request(Environment* env, Local object, ssize_t passlen, char* pass, ssize_t saltlen, char* salt, ssize_t iter, ssize_t keylen) : AsyncWrap(env, object), error_(0), passlen_(passlen), pass_(pass), saltlen_(saltlen), salt_(salt), keylen_(keylen), key_(static_cast(malloc(keylen))), iter_(iter) { if (key() == NULL) FatalError("node::PBKDF2Request()", "Out of Memory"); } ~PBKDF2Request() { persistent().Dispose(); } uv_work_t* work_req() { return &work_req_; } inline ssize_t passlen() const { return passlen_; } inline char* pass() const { return pass_; } inline ssize_t saltlen() const { return saltlen_; } inline char* salt() const { return salt_; } inline ssize_t keylen() const { return keylen_; } inline char* key() const { return key_; } inline ssize_t iter() const { return iter_; } inline void release() { free(pass_); passlen_ = 0; free(salt_); saltlen_ = 0; free(key_); keylen_ = 0; } inline int error() const { return error_; } inline void set_error(int err) { error_ = err; } // TODO(trevnorris): Make private and make work with container_of macro. uv_work_t work_req_; private: int error_; ssize_t passlen_; char* pass_; ssize_t saltlen_; char* salt_; ssize_t keylen_; char* key_; ssize_t iter_; }; void EIO_PBKDF2(PBKDF2Request* req) { req->set_error(PKCS5_PBKDF2_HMAC_SHA1( req->pass(), req->passlen(), reinterpret_cast(req->salt()), req->saltlen(), req->iter(), req->keylen(), reinterpret_cast(req->key()))); memset(req->pass(), 0, req->passlen()); memset(req->salt(), 0, req->saltlen()); } void EIO_PBKDF2(uv_work_t* work_req) { PBKDF2Request* req = container_of(work_req, PBKDF2Request, work_req_); EIO_PBKDF2(req); } void EIO_PBKDF2After(PBKDF2Request* req, Local argv[2]) { if (req->error()) { argv[0] = Undefined(node_isolate); argv[1] = Encode(req->key(), req->keylen(), BUFFER); memset(req->key(), 0, req->keylen()); } else { argv[0] = Exception::Error( FIXED_ONE_BYTE_STRING(node_isolate, "PBKDF2 error")); argv[1] = Undefined(node_isolate); } } void EIO_PBKDF2After(uv_work_t* work_req, int status) { assert(status == 0); PBKDF2Request* req = container_of(work_req, PBKDF2Request, work_req_); Environment* env = req->env(); Context::Scope context_scope(env->context()); HandleScope handle_scope(env->isolate()); Local argv[2]; EIO_PBKDF2After(req, argv); req->MakeCallback(env->ondone_string(), ARRAY_SIZE(argv), argv); req->release(); delete req; } void PBKDF2(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); HandleScope handle_scope(args.GetIsolate()); const char* type_error = NULL; char* pass = NULL; char* salt = NULL; ssize_t passlen = -1; ssize_t saltlen = -1; ssize_t keylen = -1; ssize_t pass_written = -1; ssize_t salt_written = -1; ssize_t iter = -1; PBKDF2Request* req = NULL; Local obj; if (args.Length() != 4 && args.Length() != 5) { type_error = "Bad parameter"; goto err; } ASSERT_IS_BUFFER(args[0]); passlen = Buffer::Length(args[0]); if (passlen < 0) { type_error = "Bad password"; goto err; } pass = static_cast(malloc(passlen)); if (pass == NULL) { FatalError("node::PBKDF2()", "Out of Memory"); } pass_written = DecodeWrite(pass, passlen, args[0], BINARY); assert(pass_written == passlen); ASSERT_IS_BUFFER(args[1]); saltlen = Buffer::Length(args[1]); if (saltlen < 0) { type_error = "Bad salt"; goto err; } salt = static_cast(malloc(saltlen)); if (salt == NULL) { FatalError("node::PBKDF2()", "Out of Memory"); } salt_written = DecodeWrite(salt, saltlen, args[1], BINARY); assert(salt_written == saltlen); if (!args[2]->IsNumber()) { type_error = "Iterations not a number"; goto err; } iter = args[2]->Int32Value(); if (iter < 0) { type_error = "Bad iterations"; goto err; } if (!args[3]->IsNumber()) { type_error = "Key length not a number"; goto err; } keylen = args[3]->Int32Value(); if (keylen < 0) { type_error = "Bad key length"; goto err; } obj = Object::New(); req = new PBKDF2Request(env, obj, passlen, pass, saltlen, salt, iter, keylen); if (args[4]->IsFunction()) { obj->Set(env->ondone_string(), args[4]); uv_queue_work(env->event_loop(), req->work_req(), EIO_PBKDF2, EIO_PBKDF2After); } else { Local argv[2]; EIO_PBKDF2(req); EIO_PBKDF2After(req, argv); if (argv[0]->IsObject()) ThrowException(argv[0]); else args.GetReturnValue().Set(argv[1]); } return; err: free(salt); free(pass); return ThrowTypeError(type_error); } // Only instantiate within a valid HandleScope. class RandomBytesRequest : public AsyncWrap { public: RandomBytesRequest(Environment* env, Local object, size_t size) : AsyncWrap(env, object), error_(0), size_(size), data_(static_cast(malloc(size))) { if (data() == NULL) FatalError("node::RandomBytesRequest()", "Out of Memory"); } ~RandomBytesRequest() { persistent().Dispose(); } uv_work_t* work_req() { return &work_req_; } inline size_t size() const { return size_; } inline char* data() const { return data_; } inline void release() { free(data_); size_ = 0; } inline void return_memory(char** d, size_t* len) { *d = data_; data_ = NULL; *len = size_; size_ = 0; } inline unsigned long error() const { return error_; } inline void set_error(unsigned long err) { error_ = err; } // TODO(trevnorris): Make private and make work with container_of macro. uv_work_t work_req_; private: unsigned long error_; size_t size_; char* data_; }; template void RandomBytesWork(uv_work_t* work_req) { RandomBytesRequest* req = container_of(work_req, RandomBytesRequest, work_req_); int r; if (pseudoRandom == true) { r = RAND_pseudo_bytes(reinterpret_cast(req->data()), req->size()); } else { r = RAND_bytes(reinterpret_cast(req->data()), req->size()); } // RAND_bytes() returns 0 on error. RAND_pseudo_bytes() returns 0 when the // result is not cryptographically strong - but that's not an error. if (r == 0 && pseudoRandom == false) { req->set_error(ERR_get_error()); } else if (r == -1) { req->set_error(static_cast(-1)); } } // don't call this function without a valid HandleScope void RandomBytesCheck(RandomBytesRequest* req, Local argv[2]) { if (req->error()) { char errmsg[256] = "Operation not supported"; if (req->error() != static_cast(-1)) ERR_error_string_n(req->error(), errmsg, sizeof errmsg); argv[0] = Exception::Error(OneByteString(node_isolate, errmsg)); argv[1] = Null(node_isolate); req->release(); } else { char* data = NULL; size_t size; req->return_memory(&data, &size); argv[0] = Null(node_isolate); argv[1] = Buffer::Use(data, size); } } void RandomBytesAfter(uv_work_t* work_req, int status) { assert(status == 0); RandomBytesRequest* req = container_of(work_req, RandomBytesRequest, work_req_); Environment* env = req->env(); Context::Scope context_scope(env->context()); HandleScope handle_scope(env->isolate()); Local argv[2]; RandomBytesCheck(req, argv); req->MakeCallback(env->ondone_string(), ARRAY_SIZE(argv), argv); delete req; } template void RandomBytes(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); HandleScope handle_scope(args.GetIsolate()); // maybe allow a buffer to write to? cuts down on object creation // when generating random data in a loop if (!args[0]->IsUint32()) { return ThrowTypeError("Argument #1 must be number > 0"); } const uint32_t size = args[0]->Uint32Value(); if (size > Buffer::kMaxLength) { return ThrowTypeError("size > Buffer::kMaxLength"); } Local obj = Object::New(); RandomBytesRequest* req = new RandomBytesRequest(env, obj, size); if (args[1]->IsFunction()) { obj->Set(FIXED_ONE_BYTE_STRING(node_isolate, "ondone"), args[1]); uv_queue_work(env->event_loop(), req->work_req(), RandomBytesWork, RandomBytesAfter); args.GetReturnValue().Set(obj); } else { Local argv[2]; RandomBytesWork(req->work_req()); RandomBytesCheck(req, argv); delete req; if (!argv[0]->IsNull()) ThrowException(argv[0]); else args.GetReturnValue().Set(argv[1]); } } void GetSSLCiphers(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); SSL_CTX* ctx = SSL_CTX_new(TLSv1_server_method()); if (ctx == NULL) { return ThrowError("SSL_CTX_new() failed."); } SSL* ssl = SSL_new(ctx); if (ssl == NULL) { SSL_CTX_free(ctx); return ThrowError("SSL_new() failed."); } Local arr = Array::New(); STACK_OF(SSL_CIPHER)* ciphers = SSL_get_ciphers(ssl); for (int i = 0; i < sk_SSL_CIPHER_num(ciphers); ++i) { SSL_CIPHER* cipher = sk_SSL_CIPHER_value(ciphers, i); arr->Set(i, OneByteString(node_isolate, SSL_CIPHER_get_name(cipher))); } SSL_free(ssl); SSL_CTX_free(ctx); args.GetReturnValue().Set(arr); } template static void array_push_back(const TypeName* md, const char* from, const char* to, void* arg) { Local& arr = *static_cast*>(arg); arr->Set(arr->Length(), OneByteString(node_isolate, from)); } void GetCiphers(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Local arr = Array::New(); EVP_CIPHER_do_all_sorted(array_push_back, &arr); args.GetReturnValue().Set(arr); } void GetHashes(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Local arr = Array::New(); EVP_MD_do_all_sorted(array_push_back, &arr); args.GetReturnValue().Set(arr); } void Certificate::Initialize(Handle target) { HandleScope scope(node_isolate); Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "verifySpkac", VerifySpkac); NODE_SET_PROTOTYPE_METHOD(t, "exportPublicKey", ExportPublicKey); NODE_SET_PROTOTYPE_METHOD(t, "exportChallenge", ExportChallenge); target->Set(FIXED_ONE_BYTE_STRING(node_isolate, "Certificate"), t->GetFunction()); } void Certificate::New(const FunctionCallbackInfo& args) { Environment* env = Environment::GetCurrent(args.GetIsolate()); new Certificate(env, args.This()); } bool Certificate::VerifySpkac(const char* data, unsigned int len) { bool i = 0; EVP_PKEY* pkey = NULL; NETSCAPE_SPKI* spki = NULL; spki = NETSCAPE_SPKI_b64_decode(data, len); if (spki == NULL) goto exit; pkey = X509_PUBKEY_get(spki->spkac->pubkey); if (pkey == NULL) goto exit; i = NETSCAPE_SPKI_verify(spki, pkey) > 0; exit: if (pkey != NULL) EVP_PKEY_free(pkey); if (spki != NULL) NETSCAPE_SPKI_free(spki); return i; } void Certificate::VerifySpkac(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Certificate* certificate = Unwrap(args.This()); bool i = false; if (args.Length() < 1) return ThrowTypeError("Missing argument"); ASSERT_IS_BUFFER(args[0]); size_t length = Buffer::Length(args[0]); if (length == 0) return args.GetReturnValue().Set(i); char* data = Buffer::Data(args[0]); assert(data != NULL); i = certificate->VerifySpkac(data, length) > 0; args.GetReturnValue().Set(i); } const char* Certificate::ExportPublicKey(const char* data, int len) { char* buf = NULL; EVP_PKEY* pkey = NULL; NETSCAPE_SPKI* spki = NULL; BIO* bio = BIO_new(BIO_s_mem()); if (bio == NULL) goto exit; spki = NETSCAPE_SPKI_b64_decode(data, len); if (spki == NULL) goto exit; pkey = NETSCAPE_SPKI_get_pubkey(spki); if (pkey == NULL) goto exit; if (PEM_write_bio_PUBKEY(bio, pkey) <= 0) goto exit; BIO_write(bio, "\0", 1); BUF_MEM* ptr; BIO_get_mem_ptr(bio, &ptr); buf = new char[ptr->length]; memcpy(buf, ptr->data, ptr->length); exit: if (pkey != NULL) EVP_PKEY_free(pkey); if (spki != NULL) NETSCAPE_SPKI_free(spki); if (bio != NULL) BIO_free_all(bio); return buf; } void Certificate::ExportPublicKey(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Certificate* certificate = Unwrap(args.This()); if (args.Length() < 1) return ThrowTypeError("Missing argument"); ASSERT_IS_BUFFER(args[0]); size_t length = Buffer::Length(args[0]); if (length == 0) return args.GetReturnValue().SetEmptyString(); char* data = Buffer::Data(args[0]); assert(data != NULL); const char* pkey = certificate->ExportPublicKey(data, length); if (pkey == NULL) return args.GetReturnValue().SetEmptyString(); Local out = Encode(pkey, strlen(pkey), BUFFER); delete[] pkey; args.GetReturnValue().Set(out); } const char* Certificate::ExportChallenge(const char* data, int len) { NETSCAPE_SPKI* sp = NULL; sp = NETSCAPE_SPKI_b64_decode(data, len); if (sp == NULL) return NULL; const char* buf = NULL; buf = reinterpret_cast(ASN1_STRING_data(sp->spkac->challenge)); return buf; } void Certificate::ExportChallenge(const FunctionCallbackInfo& args) { HandleScope scope(node_isolate); Certificate* crt = Unwrap(args.This()); if (args.Length() < 1) return ThrowTypeError("Missing argument"); ASSERT_IS_BUFFER(args[0]); size_t len = Buffer::Length(args[0]); if (len == 0) return args.GetReturnValue().SetEmptyString(); char* data = Buffer::Data(args[0]); assert(data != NULL); const char* cert = crt->ExportChallenge(data, len); if (cert == NULL) return args.GetReturnValue().SetEmptyString(); Local outString = Encode(cert, strlen(cert), BUFFER); delete[] cert; args.GetReturnValue().Set(outString); } void InitCryptoOnce() { SSL_library_init(); OpenSSL_add_all_algorithms(); OpenSSL_add_all_digests(); SSL_load_error_strings(); ERR_load_crypto_strings(); crypto_lock_init(); CRYPTO_set_locking_callback(crypto_lock_cb); CRYPTO_THREADID_set_callback(crypto_threadid_cb); // Turn off compression. Saves memory and protects against BEAST attacks. #if !defined(OPENSSL_NO_COMP) #if OPENSSL_VERSION_NUMBER < 0x00908000L STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_method(); #else STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_methods(); #endif sk_SSL_COMP_zero(comp_methods); assert(sk_SSL_COMP_num(comp_methods) == 0); #endif } // FIXME(bnoordhuis) Handle global init correctly. void InitCrypto(Handle target, Handle unused, Handle context) { static uv_once_t init_once = UV_ONCE_INIT; uv_once(&init_once, InitCryptoOnce); Environment* env = Environment::GetCurrent(context); SecureContext::Initialize(env, target); Connection::Initialize(env, target); CipherBase::Initialize(env, target); DiffieHellman::Initialize(env, target); Hmac::Initialize(env, target); Hash::Initialize(env, target); Sign::Initialize(env, target); Verify::Initialize(env, target); Certificate::Initialize(target); NODE_SET_METHOD(target, "PBKDF2", PBKDF2); NODE_SET_METHOD(target, "randomBytes", RandomBytes); NODE_SET_METHOD(target, "pseudoRandomBytes", RandomBytes); NODE_SET_METHOD(target, "getSSLCiphers", GetSSLCiphers); NODE_SET_METHOD(target, "getCiphers", GetCiphers); NODE_SET_METHOD(target, "getHashes", GetHashes); } } // namespace crypto } // namespace node NODE_MODULE_CONTEXT_AWARE(node_crypto, node::crypto::InitCrypto)