// Copyright 2013 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include #include #include #include #include #include "v8.h" #include "macro-assembler.h" #include "arm64/simulator-arm64.h" #include "arm64/decoder-arm64-inl.h" #include "arm64/disasm-arm64.h" #include "arm64/utils-arm64.h" #include "cctest.h" #include "test-utils-arm64.h" using namespace v8::internal; // Test infrastructure. // // Tests are functions which accept no parameters and have no return values. // The testing code should not perform an explicit return once completed. For // example to test the mov immediate instruction a very simple test would be: // // TEST(mov_x0_one) { // SETUP(); // // START(); // __ mov(x0, Operand(1)); // END(); // // RUN(); // // ASSERT_EQUAL_64(1, x0); // // TEARDOWN(); // } // // Within a START ... END block all registers but sp can be modified. sp has to // be explicitly saved/restored. The END() macro replaces the function return // so it may appear multiple times in a test if the test has multiple exit // points. // // Once the test has been run all integer and floating point registers as well // as flags are accessible through a RegisterDump instance, see // utils-arm64.cc for more info on RegisterDump. // // We provide some helper assert to handle common cases: // // ASSERT_EQUAL_32(int32_t, int_32t) // ASSERT_EQUAL_FP32(float, float) // ASSERT_EQUAL_32(int32_t, W register) // ASSERT_EQUAL_FP32(float, S register) // ASSERT_EQUAL_64(int64_t, int_64t) // ASSERT_EQUAL_FP64(double, double) // ASSERT_EQUAL_64(int64_t, X register) // ASSERT_EQUAL_64(X register, X register) // ASSERT_EQUAL_FP64(double, D register) // // e.g. ASSERT_EQUAL_64(0.5, d30); // // If more advance computation is required before the assert then access the // RegisterDump named core directly: // // ASSERT_EQUAL_64(0x1234, core.xreg(0) & 0xffff); #if 0 // TODO(all): enable. static v8::Persistent env; static void InitializeVM() { if (env.IsEmpty()) { env = v8::Context::New(); } } #endif #define __ masm. #define BUF_SIZE 8192 #define SETUP() SETUP_SIZE(BUF_SIZE) #define INIT_V8() \ CcTest::InitializeVM(); \ #ifdef USE_SIMULATOR // Run tests with the simulator. #define SETUP_SIZE(buf_size) \ Isolate* isolate = Isolate::Current(); \ HandleScope scope(isolate); \ ASSERT(isolate != NULL); \ byte* buf = new byte[buf_size]; \ MacroAssembler masm(isolate, buf, buf_size); \ Decoder* decoder = \ new Decoder(); \ Simulator simulator(decoder); \ PrintDisassembler* pdis = NULL; \ RegisterDump core; /* if (Cctest::trace_sim()) { \ pdis = new PrintDisassembler(stdout); \ decoder.PrependVisitor(pdis); \ } \ */ // Reset the assembler and simulator, so that instructions can be generated, // but don't actually emit any code. This can be used by tests that need to // emit instructions at the start of the buffer. Note that START_AFTER_RESET // must be called before any callee-saved register is modified, and before an // END is encountered. // // Most tests should call START, rather than call RESET directly. #define RESET() \ __ Reset(); \ simulator.ResetState(); #define START_AFTER_RESET() \ __ SetStackPointer(csp); \ __ PushCalleeSavedRegisters(); \ __ Debug("Start test.", __LINE__, TRACE_ENABLE | LOG_ALL); #define START() \ RESET(); \ START_AFTER_RESET(); #define RUN() \ simulator.RunFrom(reinterpret_cast(buf)) #define END() \ __ Debug("End test.", __LINE__, TRACE_DISABLE | LOG_ALL); \ core.Dump(&masm); \ __ PopCalleeSavedRegisters(); \ __ Ret(); \ __ GetCode(NULL); #define TEARDOWN() \ delete pdis; \ delete[] buf; #else // ifdef USE_SIMULATOR. // Run the test on real hardware or models. #define SETUP_SIZE(buf_size) \ Isolate* isolate = Isolate::Current(); \ HandleScope scope(isolate); \ ASSERT(isolate != NULL); \ byte* buf = new byte[buf_size]; \ MacroAssembler masm(isolate, buf, buf_size); \ RegisterDump core; \ CPU::SetUp(); #define RESET() \ __ Reset(); #define START_AFTER_RESET() \ __ SetStackPointer(csp); \ __ PushCalleeSavedRegisters(); #define START() \ RESET(); \ START_AFTER_RESET(); #define RUN() \ CPU::FlushICache(buf, masm.SizeOfGeneratedCode()); \ { \ void (*test_function)(void); \ memcpy(&test_function, &buf, sizeof(buf)); \ test_function(); \ } #define END() \ core.Dump(&masm); \ __ PopCalleeSavedRegisters(); \ __ Ret(); \ __ GetCode(NULL); #define TEARDOWN() \ delete[] buf; #endif // ifdef USE_SIMULATOR. #define ASSERT_EQUAL_NZCV(expected) \ CHECK(EqualNzcv(expected, core.flags_nzcv())) #define ASSERT_EQUAL_REGISTERS(expected) \ CHECK(EqualRegisters(&expected, &core)) #define ASSERT_EQUAL_32(expected, result) \ CHECK(Equal32(static_cast(expected), &core, result)) #define ASSERT_EQUAL_FP32(expected, result) \ CHECK(EqualFP32(expected, &core, result)) #define ASSERT_EQUAL_64(expected, result) \ CHECK(Equal64(expected, &core, result)) #define ASSERT_EQUAL_FP64(expected, result) \ CHECK(EqualFP64(expected, &core, result)) #ifdef DEBUG #define ASSERT_LITERAL_POOL_SIZE(expected) \ CHECK((expected) == (__ LiteralPoolSize())) #else #define ASSERT_LITERAL_POOL_SIZE(expected) \ ((void) 0) #endif TEST(stack_ops) { INIT_V8(); SETUP(); START(); // save csp. __ Mov(x29, csp); // Set the csp to a known value. __ Mov(x16, 0x1000); __ Mov(csp, x16); __ Mov(x0, csp); // Add immediate to the csp, and move the result to a normal register. __ Add(csp, csp, Operand(0x50)); __ Mov(x1, csp); // Add extended to the csp, and move the result to a normal register. __ Mov(x17, 0xfff); __ Add(csp, csp, Operand(x17, SXTB)); __ Mov(x2, csp); // Create an csp using a logical instruction, and move to normal register. __ Orr(csp, xzr, Operand(0x1fff)); __ Mov(x3, csp); // Write wcsp using a logical instruction. __ Orr(wcsp, wzr, Operand(0xfffffff8L)); __ Mov(x4, csp); // Write csp, and read back wcsp. __ Orr(csp, xzr, Operand(0xfffffff8L)); __ Mov(w5, wcsp); // restore csp. __ Mov(csp, x29); END(); RUN(); ASSERT_EQUAL_64(0x1000, x0); ASSERT_EQUAL_64(0x1050, x1); ASSERT_EQUAL_64(0x104f, x2); ASSERT_EQUAL_64(0x1fff, x3); ASSERT_EQUAL_64(0xfffffff8, x4); ASSERT_EQUAL_64(0xfffffff8, x5); TEARDOWN(); } TEST(mvn) { INIT_V8(); SETUP(); START(); __ Mvn(w0, 0xfff); __ Mvn(x1, 0xfff); __ Mvn(w2, Operand(w0, LSL, 1)); __ Mvn(x3, Operand(x1, LSL, 2)); __ Mvn(w4, Operand(w0, LSR, 3)); __ Mvn(x5, Operand(x1, LSR, 4)); __ Mvn(w6, Operand(w0, ASR, 11)); __ Mvn(x7, Operand(x1, ASR, 12)); __ Mvn(w8, Operand(w0, ROR, 13)); __ Mvn(x9, Operand(x1, ROR, 14)); __ Mvn(w10, Operand(w2, UXTB)); __ Mvn(x11, Operand(x2, SXTB, 1)); __ Mvn(w12, Operand(w2, UXTH, 2)); __ Mvn(x13, Operand(x2, SXTH, 3)); __ Mvn(x14, Operand(w2, UXTW, 4)); __ Mvn(x15, Operand(w2, SXTW, 4)); END(); RUN(); ASSERT_EQUAL_64(0xfffff000, x0); ASSERT_EQUAL_64(0xfffffffffffff000UL, x1); ASSERT_EQUAL_64(0x00001fff, x2); ASSERT_EQUAL_64(0x0000000000003fffUL, x3); ASSERT_EQUAL_64(0xe00001ff, x4); ASSERT_EQUAL_64(0xf0000000000000ffUL, x5); ASSERT_EQUAL_64(0x00000001, x6); ASSERT_EQUAL_64(0x0, x7); ASSERT_EQUAL_64(0x7ff80000, x8); ASSERT_EQUAL_64(0x3ffc000000000000UL, x9); ASSERT_EQUAL_64(0xffffff00, x10); ASSERT_EQUAL_64(0x0000000000000001UL, x11); ASSERT_EQUAL_64(0xffff8003, x12); ASSERT_EQUAL_64(0xffffffffffff0007UL, x13); ASSERT_EQUAL_64(0xfffffffffffe000fUL, x14); ASSERT_EQUAL_64(0xfffffffffffe000fUL, x15); TEARDOWN(); } TEST(mov) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xffffffffffffffffL); __ Mov(x1, 0xffffffffffffffffL); __ Mov(x2, 0xffffffffffffffffL); __ Mov(x3, 0xffffffffffffffffL); __ Mov(x0, 0x0123456789abcdefL); __ movz(x1, 0xabcdL << 16); __ movk(x2, 0xabcdL << 32); __ movn(x3, 0xabcdL << 48); __ Mov(x4, 0x0123456789abcdefL); __ Mov(x5, x4); __ Mov(w6, -1); // Test that moves back to the same register have the desired effect. This // is a no-op for X registers, and a truncation for W registers. __ Mov(x7, 0x0123456789abcdefL); __ Mov(x7, x7); __ Mov(x8, 0x0123456789abcdefL); __ Mov(w8, w8); __ Mov(x9, 0x0123456789abcdefL); __ Mov(x9, Operand(x9)); __ Mov(x10, 0x0123456789abcdefL); __ Mov(w10, Operand(w10)); __ Mov(w11, 0xfff); __ Mov(x12, 0xfff); __ Mov(w13, Operand(w11, LSL, 1)); __ Mov(x14, Operand(x12, LSL, 2)); __ Mov(w15, Operand(w11, LSR, 3)); __ Mov(x18, Operand(x12, LSR, 4)); __ Mov(w19, Operand(w11, ASR, 11)); __ Mov(x20, Operand(x12, ASR, 12)); __ Mov(w21, Operand(w11, ROR, 13)); __ Mov(x22, Operand(x12, ROR, 14)); __ Mov(w23, Operand(w13, UXTB)); __ Mov(x24, Operand(x13, SXTB, 1)); __ Mov(w25, Operand(w13, UXTH, 2)); __ Mov(x26, Operand(x13, SXTH, 3)); __ Mov(x27, Operand(w13, UXTW, 4)); END(); RUN(); ASSERT_EQUAL_64(0x0123456789abcdefL, x0); ASSERT_EQUAL_64(0x00000000abcd0000L, x1); ASSERT_EQUAL_64(0xffffabcdffffffffL, x2); ASSERT_EQUAL_64(0x5432ffffffffffffL, x3); ASSERT_EQUAL_64(x4, x5); ASSERT_EQUAL_32(-1, w6); ASSERT_EQUAL_64(0x0123456789abcdefL, x7); ASSERT_EQUAL_32(0x89abcdefL, w8); ASSERT_EQUAL_64(0x0123456789abcdefL, x9); ASSERT_EQUAL_32(0x89abcdefL, w10); ASSERT_EQUAL_64(0x00000fff, x11); ASSERT_EQUAL_64(0x0000000000000fffUL, x12); ASSERT_EQUAL_64(0x00001ffe, x13); ASSERT_EQUAL_64(0x0000000000003ffcUL, x14); ASSERT_EQUAL_64(0x000001ff, x15); ASSERT_EQUAL_64(0x00000000000000ffUL, x18); ASSERT_EQUAL_64(0x00000001, x19); ASSERT_EQUAL_64(0x0, x20); ASSERT_EQUAL_64(0x7ff80000, x21); ASSERT_EQUAL_64(0x3ffc000000000000UL, x22); ASSERT_EQUAL_64(0x000000fe, x23); ASSERT_EQUAL_64(0xfffffffffffffffcUL, x24); ASSERT_EQUAL_64(0x00007ff8, x25); ASSERT_EQUAL_64(0x000000000000fff0UL, x26); ASSERT_EQUAL_64(0x000000000001ffe0UL, x27); TEARDOWN(); } TEST(mov_imm_w) { INIT_V8(); SETUP(); START(); __ Mov(w0, 0xffffffffL); __ Mov(w1, 0xffff1234L); __ Mov(w2, 0x1234ffffL); __ Mov(w3, 0x00000000L); __ Mov(w4, 0x00001234L); __ Mov(w5, 0x12340000L); __ Mov(w6, 0x12345678L); END(); RUN(); ASSERT_EQUAL_64(0xffffffffL, x0); ASSERT_EQUAL_64(0xffff1234L, x1); ASSERT_EQUAL_64(0x1234ffffL, x2); ASSERT_EQUAL_64(0x00000000L, x3); ASSERT_EQUAL_64(0x00001234L, x4); ASSERT_EQUAL_64(0x12340000L, x5); ASSERT_EQUAL_64(0x12345678L, x6); TEARDOWN(); } TEST(mov_imm_x) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xffffffffffffffffL); __ Mov(x1, 0xffffffffffff1234L); __ Mov(x2, 0xffffffff12345678L); __ Mov(x3, 0xffff1234ffff5678L); __ Mov(x4, 0x1234ffffffff5678L); __ Mov(x5, 0x1234ffff5678ffffL); __ Mov(x6, 0x12345678ffffffffL); __ Mov(x7, 0x1234ffffffffffffL); __ Mov(x8, 0x123456789abcffffL); __ Mov(x9, 0x12345678ffff9abcL); __ Mov(x10, 0x1234ffff56789abcL); __ Mov(x11, 0xffff123456789abcL); __ Mov(x12, 0x0000000000000000L); __ Mov(x13, 0x0000000000001234L); __ Mov(x14, 0x0000000012345678L); __ Mov(x15, 0x0000123400005678L); __ Mov(x18, 0x1234000000005678L); __ Mov(x19, 0x1234000056780000L); __ Mov(x20, 0x1234567800000000L); __ Mov(x21, 0x1234000000000000L); __ Mov(x22, 0x123456789abc0000L); __ Mov(x23, 0x1234567800009abcL); __ Mov(x24, 0x1234000056789abcL); __ Mov(x25, 0x0000123456789abcL); __ Mov(x26, 0x123456789abcdef0L); __ Mov(x27, 0xffff000000000001L); __ Mov(x28, 0x8000ffff00000000L); END(); RUN(); ASSERT_EQUAL_64(0xffffffffffff1234L, x1); ASSERT_EQUAL_64(0xffffffff12345678L, x2); ASSERT_EQUAL_64(0xffff1234ffff5678L, x3); ASSERT_EQUAL_64(0x1234ffffffff5678L, x4); ASSERT_EQUAL_64(0x1234ffff5678ffffL, x5); ASSERT_EQUAL_64(0x12345678ffffffffL, x6); ASSERT_EQUAL_64(0x1234ffffffffffffL, x7); ASSERT_EQUAL_64(0x123456789abcffffL, x8); ASSERT_EQUAL_64(0x12345678ffff9abcL, x9); ASSERT_EQUAL_64(0x1234ffff56789abcL, x10); ASSERT_EQUAL_64(0xffff123456789abcL, x11); ASSERT_EQUAL_64(0x0000000000000000L, x12); ASSERT_EQUAL_64(0x0000000000001234L, x13); ASSERT_EQUAL_64(0x0000000012345678L, x14); ASSERT_EQUAL_64(0x0000123400005678L, x15); ASSERT_EQUAL_64(0x1234000000005678L, x18); ASSERT_EQUAL_64(0x1234000056780000L, x19); ASSERT_EQUAL_64(0x1234567800000000L, x20); ASSERT_EQUAL_64(0x1234000000000000L, x21); ASSERT_EQUAL_64(0x123456789abc0000L, x22); ASSERT_EQUAL_64(0x1234567800009abcL, x23); ASSERT_EQUAL_64(0x1234000056789abcL, x24); ASSERT_EQUAL_64(0x0000123456789abcL, x25); ASSERT_EQUAL_64(0x123456789abcdef0L, x26); ASSERT_EQUAL_64(0xffff000000000001L, x27); ASSERT_EQUAL_64(0x8000ffff00000000L, x28); TEARDOWN(); } TEST(orr) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xf0f0); __ Mov(x1, 0xf00000ff); __ Orr(x2, x0, Operand(x1)); __ Orr(w3, w0, Operand(w1, LSL, 28)); __ Orr(x4, x0, Operand(x1, LSL, 32)); __ Orr(x5, x0, Operand(x1, LSR, 4)); __ Orr(w6, w0, Operand(w1, ASR, 4)); __ Orr(x7, x0, Operand(x1, ASR, 4)); __ Orr(w8, w0, Operand(w1, ROR, 12)); __ Orr(x9, x0, Operand(x1, ROR, 12)); __ Orr(w10, w0, Operand(0xf)); __ Orr(x11, x0, Operand(0xf0000000f0000000L)); END(); RUN(); ASSERT_EQUAL_64(0xf000f0ff, x2); ASSERT_EQUAL_64(0xf000f0f0, x3); ASSERT_EQUAL_64(0xf00000ff0000f0f0L, x4); ASSERT_EQUAL_64(0x0f00f0ff, x5); ASSERT_EQUAL_64(0xff00f0ff, x6); ASSERT_EQUAL_64(0x0f00f0ff, x7); ASSERT_EQUAL_64(0x0ffff0f0, x8); ASSERT_EQUAL_64(0x0ff00000000ff0f0L, x9); ASSERT_EQUAL_64(0xf0ff, x10); ASSERT_EQUAL_64(0xf0000000f000f0f0L, x11); TEARDOWN(); } TEST(orr_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 1); __ Mov(x1, 0x8000000080008080UL); __ Orr(w6, w0, Operand(w1, UXTB)); __ Orr(x7, x0, Operand(x1, UXTH, 1)); __ Orr(w8, w0, Operand(w1, UXTW, 2)); __ Orr(x9, x0, Operand(x1, UXTX, 3)); __ Orr(w10, w0, Operand(w1, SXTB)); __ Orr(x11, x0, Operand(x1, SXTH, 1)); __ Orr(x12, x0, Operand(x1, SXTW, 2)); __ Orr(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); ASSERT_EQUAL_64(0x00000081, x6); ASSERT_EQUAL_64(0x00010101, x7); ASSERT_EQUAL_64(0x00020201, x8); ASSERT_EQUAL_64(0x0000000400040401UL, x9); ASSERT_EQUAL_64(0x00000000ffffff81UL, x10); ASSERT_EQUAL_64(0xffffffffffff0101UL, x11); ASSERT_EQUAL_64(0xfffffffe00020201UL, x12); ASSERT_EQUAL_64(0x0000000400040401UL, x13); TEARDOWN(); } TEST(bitwise_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0xf0f0f0f0f0f0f0f0UL); __ Orr(x10, x0, Operand(0x1234567890abcdefUL)); __ Orr(w11, w1, Operand(0x90abcdef)); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(0xf0f0f0f0f0f0f0f0UL, x1); ASSERT_EQUAL_64(0x1234567890abcdefUL, x10); ASSERT_EQUAL_64(0xf0fbfdffUL, x11); TEARDOWN(); } TEST(orn) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xf0f0); __ Mov(x1, 0xf00000ff); __ Orn(x2, x0, Operand(x1)); __ Orn(w3, w0, Operand(w1, LSL, 4)); __ Orn(x4, x0, Operand(x1, LSL, 4)); __ Orn(x5, x0, Operand(x1, LSR, 1)); __ Orn(w6, w0, Operand(w1, ASR, 1)); __ Orn(x7, x0, Operand(x1, ASR, 1)); __ Orn(w8, w0, Operand(w1, ROR, 16)); __ Orn(x9, x0, Operand(x1, ROR, 16)); __ Orn(w10, w0, Operand(0xffff)); __ Orn(x11, x0, Operand(0xffff0000ffffL)); END(); RUN(); ASSERT_EQUAL_64(0xffffffff0ffffff0L, x2); ASSERT_EQUAL_64(0xfffff0ff, x3); ASSERT_EQUAL_64(0xfffffff0fffff0ffL, x4); ASSERT_EQUAL_64(0xffffffff87fffff0L, x5); ASSERT_EQUAL_64(0x07fffff0, x6); ASSERT_EQUAL_64(0xffffffff87fffff0L, x7); ASSERT_EQUAL_64(0xff00ffff, x8); ASSERT_EQUAL_64(0xff00ffffffffffffL, x9); ASSERT_EQUAL_64(0xfffff0f0, x10); ASSERT_EQUAL_64(0xffff0000fffff0f0L, x11); TEARDOWN(); } TEST(orn_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 1); __ Mov(x1, 0x8000000080008081UL); __ Orn(w6, w0, Operand(w1, UXTB)); __ Orn(x7, x0, Operand(x1, UXTH, 1)); __ Orn(w8, w0, Operand(w1, UXTW, 2)); __ Orn(x9, x0, Operand(x1, UXTX, 3)); __ Orn(w10, w0, Operand(w1, SXTB)); __ Orn(x11, x0, Operand(x1, SXTH, 1)); __ Orn(x12, x0, Operand(x1, SXTW, 2)); __ Orn(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); ASSERT_EQUAL_64(0xffffff7f, x6); ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7); ASSERT_EQUAL_64(0xfffdfdfb, x8); ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9); ASSERT_EQUAL_64(0x0000007f, x10); ASSERT_EQUAL_64(0x0000fefd, x11); ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12); ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13); TEARDOWN(); } TEST(and_) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xfff0); __ Mov(x1, 0xf00000ff); __ And(x2, x0, Operand(x1)); __ And(w3, w0, Operand(w1, LSL, 4)); __ And(x4, x0, Operand(x1, LSL, 4)); __ And(x5, x0, Operand(x1, LSR, 1)); __ And(w6, w0, Operand(w1, ASR, 20)); __ And(x7, x0, Operand(x1, ASR, 20)); __ And(w8, w0, Operand(w1, ROR, 28)); __ And(x9, x0, Operand(x1, ROR, 28)); __ And(w10, w0, Operand(0xff00)); __ And(x11, x0, Operand(0xff)); END(); RUN(); ASSERT_EQUAL_64(0x000000f0, x2); ASSERT_EQUAL_64(0x00000ff0, x3); ASSERT_EQUAL_64(0x00000ff0, x4); ASSERT_EQUAL_64(0x00000070, x5); ASSERT_EQUAL_64(0x0000ff00, x6); ASSERT_EQUAL_64(0x00000f00, x7); ASSERT_EQUAL_64(0x00000ff0, x8); ASSERT_EQUAL_64(0x00000000, x9); ASSERT_EQUAL_64(0x0000ff00, x10); ASSERT_EQUAL_64(0x000000f0, x11); TEARDOWN(); } TEST(and_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xffffffffffffffffUL); __ Mov(x1, 0x8000000080008081UL); __ And(w6, w0, Operand(w1, UXTB)); __ And(x7, x0, Operand(x1, UXTH, 1)); __ And(w8, w0, Operand(w1, UXTW, 2)); __ And(x9, x0, Operand(x1, UXTX, 3)); __ And(w10, w0, Operand(w1, SXTB)); __ And(x11, x0, Operand(x1, SXTH, 1)); __ And(x12, x0, Operand(x1, SXTW, 2)); __ And(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); ASSERT_EQUAL_64(0x00000081, x6); ASSERT_EQUAL_64(0x00010102, x7); ASSERT_EQUAL_64(0x00020204, x8); ASSERT_EQUAL_64(0x0000000400040408UL, x9); ASSERT_EQUAL_64(0xffffff81, x10); ASSERT_EQUAL_64(0xffffffffffff0102UL, x11); ASSERT_EQUAL_64(0xfffffffe00020204UL, x12); ASSERT_EQUAL_64(0x0000000400040408UL, x13); TEARDOWN(); } TEST(ands) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0xf00000ff); __ Ands(w0, w1, Operand(w1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0xf00000ff, x0); START(); __ Mov(x0, 0xfff0); __ Mov(x1, 0xf00000ff); __ Ands(w0, w0, Operand(w1, LSR, 4)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0x8000000000000000L); __ Mov(x1, 0x00000001); __ Ands(x0, x0, Operand(x1, ROR, 1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x8000000000000000L, x0); START(); __ Mov(x0, 0xfff0); __ Ands(w0, w0, Operand(0xf)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0xff000000); __ Ands(w0, w0, Operand(0x80000000)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x80000000, x0); TEARDOWN(); } TEST(bic) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xfff0); __ Mov(x1, 0xf00000ff); __ Bic(x2, x0, Operand(x1)); __ Bic(w3, w0, Operand(w1, LSL, 4)); __ Bic(x4, x0, Operand(x1, LSL, 4)); __ Bic(x5, x0, Operand(x1, LSR, 1)); __ Bic(w6, w0, Operand(w1, ASR, 20)); __ Bic(x7, x0, Operand(x1, ASR, 20)); __ Bic(w8, w0, Operand(w1, ROR, 28)); __ Bic(x9, x0, Operand(x1, ROR, 24)); __ Bic(x10, x0, Operand(0x1f)); __ Bic(x11, x0, Operand(0x100)); // Test bic into csp when the constant cannot be encoded in the immediate // field. // Use x20 to preserve csp. We check for the result via x21 because the // test infrastructure requires that csp be restored to its original value. __ Mov(x20, csp); __ Mov(x0, 0xffffff); __ Bic(csp, x0, Operand(0xabcdef)); __ Mov(x21, csp); __ Mov(csp, x20); END(); RUN(); ASSERT_EQUAL_64(0x0000ff00, x2); ASSERT_EQUAL_64(0x0000f000, x3); ASSERT_EQUAL_64(0x0000f000, x4); ASSERT_EQUAL_64(0x0000ff80, x5); ASSERT_EQUAL_64(0x000000f0, x6); ASSERT_EQUAL_64(0x0000f0f0, x7); ASSERT_EQUAL_64(0x0000f000, x8); ASSERT_EQUAL_64(0x0000ff00, x9); ASSERT_EQUAL_64(0x0000ffe0, x10); ASSERT_EQUAL_64(0x0000fef0, x11); ASSERT_EQUAL_64(0x543210, x21); TEARDOWN(); } TEST(bic_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xffffffffffffffffUL); __ Mov(x1, 0x8000000080008081UL); __ Bic(w6, w0, Operand(w1, UXTB)); __ Bic(x7, x0, Operand(x1, UXTH, 1)); __ Bic(w8, w0, Operand(w1, UXTW, 2)); __ Bic(x9, x0, Operand(x1, UXTX, 3)); __ Bic(w10, w0, Operand(w1, SXTB)); __ Bic(x11, x0, Operand(x1, SXTH, 1)); __ Bic(x12, x0, Operand(x1, SXTW, 2)); __ Bic(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); ASSERT_EQUAL_64(0xffffff7e, x6); ASSERT_EQUAL_64(0xfffffffffffefefdUL, x7); ASSERT_EQUAL_64(0xfffdfdfb, x8); ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x9); ASSERT_EQUAL_64(0x0000007e, x10); ASSERT_EQUAL_64(0x0000fefd, x11); ASSERT_EQUAL_64(0x00000001fffdfdfbUL, x12); ASSERT_EQUAL_64(0xfffffffbfffbfbf7UL, x13); TEARDOWN(); } TEST(bics) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0xffff); __ Bics(w0, w1, Operand(w1)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0xffffffff); __ Bics(w0, w0, Operand(w0, LSR, 1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x80000000, x0); START(); __ Mov(x0, 0x8000000000000000L); __ Mov(x1, 0x00000001); __ Bics(x0, x0, Operand(x1, ROR, 1)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0x00000000, x0); START(); __ Mov(x0, 0xffffffffffffffffL); __ Bics(x0, x0, Operand(0x7fffffffffffffffL)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x8000000000000000L, x0); START(); __ Mov(w0, 0xffff0000); __ Bics(w0, w0, Operand(0xfffffff0)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0x00000000, x0); TEARDOWN(); } TEST(eor) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xfff0); __ Mov(x1, 0xf00000ff); __ Eor(x2, x0, Operand(x1)); __ Eor(w3, w0, Operand(w1, LSL, 4)); __ Eor(x4, x0, Operand(x1, LSL, 4)); __ Eor(x5, x0, Operand(x1, LSR, 1)); __ Eor(w6, w0, Operand(w1, ASR, 20)); __ Eor(x7, x0, Operand(x1, ASR, 20)); __ Eor(w8, w0, Operand(w1, ROR, 28)); __ Eor(x9, x0, Operand(x1, ROR, 28)); __ Eor(w10, w0, Operand(0xff00ff00)); __ Eor(x11, x0, Operand(0xff00ff00ff00ff00L)); END(); RUN(); ASSERT_EQUAL_64(0xf000ff0f, x2); ASSERT_EQUAL_64(0x0000f000, x3); ASSERT_EQUAL_64(0x0000000f0000f000L, x4); ASSERT_EQUAL_64(0x7800ff8f, x5); ASSERT_EQUAL_64(0xffff00f0, x6); ASSERT_EQUAL_64(0x0000f0f0, x7); ASSERT_EQUAL_64(0x0000f00f, x8); ASSERT_EQUAL_64(0x00000ff00000ffffL, x9); ASSERT_EQUAL_64(0xff0000f0, x10); ASSERT_EQUAL_64(0xff00ff00ff0000f0L, x11); TEARDOWN(); } TEST(eor_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x1111111111111111UL); __ Mov(x1, 0x8000000080008081UL); __ Eor(w6, w0, Operand(w1, UXTB)); __ Eor(x7, x0, Operand(x1, UXTH, 1)); __ Eor(w8, w0, Operand(w1, UXTW, 2)); __ Eor(x9, x0, Operand(x1, UXTX, 3)); __ Eor(w10, w0, Operand(w1, SXTB)); __ Eor(x11, x0, Operand(x1, SXTH, 1)); __ Eor(x12, x0, Operand(x1, SXTW, 2)); __ Eor(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); ASSERT_EQUAL_64(0x11111190, x6); ASSERT_EQUAL_64(0x1111111111101013UL, x7); ASSERT_EQUAL_64(0x11131315, x8); ASSERT_EQUAL_64(0x1111111511151519UL, x9); ASSERT_EQUAL_64(0xeeeeee90, x10); ASSERT_EQUAL_64(0xeeeeeeeeeeee1013UL, x11); ASSERT_EQUAL_64(0xeeeeeeef11131315UL, x12); ASSERT_EQUAL_64(0x1111111511151519UL, x13); TEARDOWN(); } TEST(eon) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xfff0); __ Mov(x1, 0xf00000ff); __ Eon(x2, x0, Operand(x1)); __ Eon(w3, w0, Operand(w1, LSL, 4)); __ Eon(x4, x0, Operand(x1, LSL, 4)); __ Eon(x5, x0, Operand(x1, LSR, 1)); __ Eon(w6, w0, Operand(w1, ASR, 20)); __ Eon(x7, x0, Operand(x1, ASR, 20)); __ Eon(w8, w0, Operand(w1, ROR, 28)); __ Eon(x9, x0, Operand(x1, ROR, 28)); __ Eon(w10, w0, Operand(0x03c003c0)); __ Eon(x11, x0, Operand(0x0000100000001000L)); END(); RUN(); ASSERT_EQUAL_64(0xffffffff0fff00f0L, x2); ASSERT_EQUAL_64(0xffff0fff, x3); ASSERT_EQUAL_64(0xfffffff0ffff0fffL, x4); ASSERT_EQUAL_64(0xffffffff87ff0070L, x5); ASSERT_EQUAL_64(0x0000ff0f, x6); ASSERT_EQUAL_64(0xffffffffffff0f0fL, x7); ASSERT_EQUAL_64(0xffff0ff0, x8); ASSERT_EQUAL_64(0xfffff00fffff0000L, x9); ASSERT_EQUAL_64(0xfc3f03cf, x10); ASSERT_EQUAL_64(0xffffefffffff100fL, x11); TEARDOWN(); } TEST(eon_extend) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x1111111111111111UL); __ Mov(x1, 0x8000000080008081UL); __ Eon(w6, w0, Operand(w1, UXTB)); __ Eon(x7, x0, Operand(x1, UXTH, 1)); __ Eon(w8, w0, Operand(w1, UXTW, 2)); __ Eon(x9, x0, Operand(x1, UXTX, 3)); __ Eon(w10, w0, Operand(w1, SXTB)); __ Eon(x11, x0, Operand(x1, SXTH, 1)); __ Eon(x12, x0, Operand(x1, SXTW, 2)); __ Eon(x13, x0, Operand(x1, SXTX, 3)); END(); RUN(); ASSERT_EQUAL_64(0xeeeeee6f, x6); ASSERT_EQUAL_64(0xeeeeeeeeeeefefecUL, x7); ASSERT_EQUAL_64(0xeeececea, x8); ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x9); ASSERT_EQUAL_64(0x1111116f, x10); ASSERT_EQUAL_64(0x111111111111efecUL, x11); ASSERT_EQUAL_64(0x11111110eeececeaUL, x12); ASSERT_EQUAL_64(0xeeeeeeeaeeeaeae6UL, x13); TEARDOWN(); } TEST(mul) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x17, 1); __ Mov(x18, 0xffffffff); __ Mov(x19, 0xffffffffffffffffUL); __ Mul(w0, w16, w16); __ Mul(w1, w16, w17); __ Mul(w2, w17, w18); __ Mul(w3, w18, w19); __ Mul(x4, x16, x16); __ Mul(x5, x17, x18); __ Mul(x6, x18, x19); __ Mul(x7, x19, x19); __ Smull(x8, w17, w18); __ Smull(x9, w18, w18); __ Smull(x10, w19, w19); __ Mneg(w11, w16, w16); __ Mneg(w12, w16, w17); __ Mneg(w13, w17, w18); __ Mneg(w14, w18, w19); __ Mneg(x20, x16, x16); __ Mneg(x21, x17, x18); __ Mneg(x22, x18, x19); __ Mneg(x23, x19, x19); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(0, x1); ASSERT_EQUAL_64(0xffffffff, x2); ASSERT_EQUAL_64(1, x3); ASSERT_EQUAL_64(0, x4); ASSERT_EQUAL_64(0xffffffff, x5); ASSERT_EQUAL_64(0xffffffff00000001UL, x6); ASSERT_EQUAL_64(1, x7); ASSERT_EQUAL_64(0xffffffffffffffffUL, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(1, x10); ASSERT_EQUAL_64(0, x11); ASSERT_EQUAL_64(0, x12); ASSERT_EQUAL_64(1, x13); ASSERT_EQUAL_64(0xffffffff, x14); ASSERT_EQUAL_64(0, x20); ASSERT_EQUAL_64(0xffffffff00000001UL, x21); ASSERT_EQUAL_64(0xffffffff, x22); ASSERT_EQUAL_64(0xffffffffffffffffUL, x23); TEARDOWN(); } static void SmullHelper(int64_t expected, int64_t a, int64_t b) { SETUP(); START(); __ Mov(w0, a); __ Mov(w1, b); __ Smull(x2, w0, w1); END(); RUN(); ASSERT_EQUAL_64(expected, x2); TEARDOWN(); } TEST(smull) { INIT_V8(); SmullHelper(0, 0, 0); SmullHelper(1, 1, 1); SmullHelper(-1, -1, 1); SmullHelper(1, -1, -1); SmullHelper(0xffffffff80000000, 0x80000000, 1); SmullHelper(0x0000000080000000, 0x00010000, 0x00008000); } TEST(madd) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x17, 1); __ Mov(x18, 0xffffffff); __ Mov(x19, 0xffffffffffffffffUL); __ Madd(w0, w16, w16, w16); __ Madd(w1, w16, w16, w17); __ Madd(w2, w16, w16, w18); __ Madd(w3, w16, w16, w19); __ Madd(w4, w16, w17, w17); __ Madd(w5, w17, w17, w18); __ Madd(w6, w17, w17, w19); __ Madd(w7, w17, w18, w16); __ Madd(w8, w17, w18, w18); __ Madd(w9, w18, w18, w17); __ Madd(w10, w18, w19, w18); __ Madd(w11, w19, w19, w19); __ Madd(x12, x16, x16, x16); __ Madd(x13, x16, x16, x17); __ Madd(x14, x16, x16, x18); __ Madd(x15, x16, x16, x19); __ Madd(x20, x16, x17, x17); __ Madd(x21, x17, x17, x18); __ Madd(x22, x17, x17, x19); __ Madd(x23, x17, x18, x16); __ Madd(x24, x17, x18, x18); __ Madd(x25, x18, x18, x17); __ Madd(x26, x18, x19, x18); __ Madd(x27, x19, x19, x19); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(0xffffffff, x2); ASSERT_EQUAL_64(0xffffffff, x3); ASSERT_EQUAL_64(1, x4); ASSERT_EQUAL_64(0, x5); ASSERT_EQUAL_64(0, x6); ASSERT_EQUAL_64(0xffffffff, x7); ASSERT_EQUAL_64(0xfffffffe, x8); ASSERT_EQUAL_64(2, x9); ASSERT_EQUAL_64(0, x10); ASSERT_EQUAL_64(0, x11); ASSERT_EQUAL_64(0, x12); ASSERT_EQUAL_64(1, x13); ASSERT_EQUAL_64(0xffffffff, x14); ASSERT_EQUAL_64(0xffffffffffffffff, x15); ASSERT_EQUAL_64(1, x20); ASSERT_EQUAL_64(0x100000000UL, x21); ASSERT_EQUAL_64(0, x22); ASSERT_EQUAL_64(0xffffffff, x23); ASSERT_EQUAL_64(0x1fffffffe, x24); ASSERT_EQUAL_64(0xfffffffe00000002UL, x25); ASSERT_EQUAL_64(0, x26); ASSERT_EQUAL_64(0, x27); TEARDOWN(); } TEST(msub) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x17, 1); __ Mov(x18, 0xffffffff); __ Mov(x19, 0xffffffffffffffffUL); __ Msub(w0, w16, w16, w16); __ Msub(w1, w16, w16, w17); __ Msub(w2, w16, w16, w18); __ Msub(w3, w16, w16, w19); __ Msub(w4, w16, w17, w17); __ Msub(w5, w17, w17, w18); __ Msub(w6, w17, w17, w19); __ Msub(w7, w17, w18, w16); __ Msub(w8, w17, w18, w18); __ Msub(w9, w18, w18, w17); __ Msub(w10, w18, w19, w18); __ Msub(w11, w19, w19, w19); __ Msub(x12, x16, x16, x16); __ Msub(x13, x16, x16, x17); __ Msub(x14, x16, x16, x18); __ Msub(x15, x16, x16, x19); __ Msub(x20, x16, x17, x17); __ Msub(x21, x17, x17, x18); __ Msub(x22, x17, x17, x19); __ Msub(x23, x17, x18, x16); __ Msub(x24, x17, x18, x18); __ Msub(x25, x18, x18, x17); __ Msub(x26, x18, x19, x18); __ Msub(x27, x19, x19, x19); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(0xffffffff, x2); ASSERT_EQUAL_64(0xffffffff, x3); ASSERT_EQUAL_64(1, x4); ASSERT_EQUAL_64(0xfffffffe, x5); ASSERT_EQUAL_64(0xfffffffe, x6); ASSERT_EQUAL_64(1, x7); ASSERT_EQUAL_64(0, x8); ASSERT_EQUAL_64(0, x9); ASSERT_EQUAL_64(0xfffffffe, x10); ASSERT_EQUAL_64(0xfffffffe, x11); ASSERT_EQUAL_64(0, x12); ASSERT_EQUAL_64(1, x13); ASSERT_EQUAL_64(0xffffffff, x14); ASSERT_EQUAL_64(0xffffffffffffffffUL, x15); ASSERT_EQUAL_64(1, x20); ASSERT_EQUAL_64(0xfffffffeUL, x21); ASSERT_EQUAL_64(0xfffffffffffffffeUL, x22); ASSERT_EQUAL_64(0xffffffff00000001UL, x23); ASSERT_EQUAL_64(0, x24); ASSERT_EQUAL_64(0x200000000UL, x25); ASSERT_EQUAL_64(0x1fffffffeUL, x26); ASSERT_EQUAL_64(0xfffffffffffffffeUL, x27); TEARDOWN(); } TEST(smulh) { INIT_V8(); SETUP(); START(); __ Mov(x20, 0); __ Mov(x21, 1); __ Mov(x22, 0x0000000100000000L); __ Mov(x23, 0x12345678); __ Mov(x24, 0x0123456789abcdefL); __ Mov(x25, 0x0000000200000000L); __ Mov(x26, 0x8000000000000000UL); __ Mov(x27, 0xffffffffffffffffUL); __ Mov(x28, 0x5555555555555555UL); __ Mov(x29, 0xaaaaaaaaaaaaaaaaUL); __ Smulh(x0, x20, x24); __ Smulh(x1, x21, x24); __ Smulh(x2, x22, x23); __ Smulh(x3, x22, x24); __ Smulh(x4, x24, x25); __ Smulh(x5, x23, x27); __ Smulh(x6, x26, x26); __ Smulh(x7, x26, x27); __ Smulh(x8, x27, x27); __ Smulh(x9, x28, x28); __ Smulh(x10, x28, x29); __ Smulh(x11, x29, x29); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(0, x1); ASSERT_EQUAL_64(0, x2); ASSERT_EQUAL_64(0x01234567, x3); ASSERT_EQUAL_64(0x02468acf, x4); ASSERT_EQUAL_64(0xffffffffffffffffUL, x5); ASSERT_EQUAL_64(0x4000000000000000UL, x6); ASSERT_EQUAL_64(0, x7); ASSERT_EQUAL_64(0, x8); ASSERT_EQUAL_64(0x1c71c71c71c71c71UL, x9); ASSERT_EQUAL_64(0xe38e38e38e38e38eUL, x10); ASSERT_EQUAL_64(0x1c71c71c71c71c72UL, x11); TEARDOWN(); } TEST(smaddl_umaddl) { INIT_V8(); SETUP(); START(); __ Mov(x17, 1); __ Mov(x18, 0xffffffff); __ Mov(x19, 0xffffffffffffffffUL); __ Mov(x20, 4); __ Mov(x21, 0x200000000UL); __ Smaddl(x9, w17, w18, x20); __ Smaddl(x10, w18, w18, x20); __ Smaddl(x11, w19, w19, x20); __ Smaddl(x12, w19, w19, x21); __ Umaddl(x13, w17, w18, x20); __ Umaddl(x14, w18, w18, x20); __ Umaddl(x15, w19, w19, x20); __ Umaddl(x22, w19, w19, x21); END(); RUN(); ASSERT_EQUAL_64(3, x9); ASSERT_EQUAL_64(5, x10); ASSERT_EQUAL_64(5, x11); ASSERT_EQUAL_64(0x200000001UL, x12); ASSERT_EQUAL_64(0x100000003UL, x13); ASSERT_EQUAL_64(0xfffffffe00000005UL, x14); ASSERT_EQUAL_64(0xfffffffe00000005UL, x15); ASSERT_EQUAL_64(0x1, x22); TEARDOWN(); } TEST(smsubl_umsubl) { INIT_V8(); SETUP(); START(); __ Mov(x17, 1); __ Mov(x18, 0xffffffff); __ Mov(x19, 0xffffffffffffffffUL); __ Mov(x20, 4); __ Mov(x21, 0x200000000UL); __ Smsubl(x9, w17, w18, x20); __ Smsubl(x10, w18, w18, x20); __ Smsubl(x11, w19, w19, x20); __ Smsubl(x12, w19, w19, x21); __ Umsubl(x13, w17, w18, x20); __ Umsubl(x14, w18, w18, x20); __ Umsubl(x15, w19, w19, x20); __ Umsubl(x22, w19, w19, x21); END(); RUN(); ASSERT_EQUAL_64(5, x9); ASSERT_EQUAL_64(3, x10); ASSERT_EQUAL_64(3, x11); ASSERT_EQUAL_64(0x1ffffffffUL, x12); ASSERT_EQUAL_64(0xffffffff00000005UL, x13); ASSERT_EQUAL_64(0x200000003UL, x14); ASSERT_EQUAL_64(0x200000003UL, x15); ASSERT_EQUAL_64(0x3ffffffffUL, x22); TEARDOWN(); } TEST(div) { INIT_V8(); SETUP(); START(); __ Mov(x16, 1); __ Mov(x17, 0xffffffff); __ Mov(x18, 0xffffffffffffffffUL); __ Mov(x19, 0x80000000); __ Mov(x20, 0x8000000000000000UL); __ Mov(x21, 2); __ Udiv(w0, w16, w16); __ Udiv(w1, w17, w16); __ Sdiv(w2, w16, w16); __ Sdiv(w3, w16, w17); __ Sdiv(w4, w17, w18); __ Udiv(x5, x16, x16); __ Udiv(x6, x17, x18); __ Sdiv(x7, x16, x16); __ Sdiv(x8, x16, x17); __ Sdiv(x9, x17, x18); __ Udiv(w10, w19, w21); __ Sdiv(w11, w19, w21); __ Udiv(x12, x19, x21); __ Sdiv(x13, x19, x21); __ Udiv(x14, x20, x21); __ Sdiv(x15, x20, x21); __ Udiv(w22, w19, w17); __ Sdiv(w23, w19, w17); __ Udiv(x24, x20, x18); __ Sdiv(x25, x20, x18); __ Udiv(x26, x16, x21); __ Sdiv(x27, x16, x21); __ Udiv(x28, x18, x21); __ Sdiv(x29, x18, x21); __ Mov(x17, 0); __ Udiv(w18, w16, w17); __ Sdiv(w19, w16, w17); __ Udiv(x20, x16, x17); __ Sdiv(x21, x16, x17); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(0xffffffff, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0xffffffff, x3); ASSERT_EQUAL_64(1, x4); ASSERT_EQUAL_64(1, x5); ASSERT_EQUAL_64(0, x6); ASSERT_EQUAL_64(1, x7); ASSERT_EQUAL_64(0, x8); ASSERT_EQUAL_64(0xffffffff00000001UL, x9); ASSERT_EQUAL_64(0x40000000, x10); ASSERT_EQUAL_64(0xC0000000, x11); ASSERT_EQUAL_64(0x40000000, x12); ASSERT_EQUAL_64(0x40000000, x13); ASSERT_EQUAL_64(0x4000000000000000UL, x14); ASSERT_EQUAL_64(0xC000000000000000UL, x15); ASSERT_EQUAL_64(0, x22); ASSERT_EQUAL_64(0x80000000, x23); ASSERT_EQUAL_64(0, x24); ASSERT_EQUAL_64(0x8000000000000000UL, x25); ASSERT_EQUAL_64(0, x26); ASSERT_EQUAL_64(0, x27); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x28); ASSERT_EQUAL_64(0, x29); ASSERT_EQUAL_64(0, x18); ASSERT_EQUAL_64(0, x19); ASSERT_EQUAL_64(0, x20); ASSERT_EQUAL_64(0, x21); TEARDOWN(); } TEST(rbit_rev) { INIT_V8(); SETUP(); START(); __ Mov(x24, 0xfedcba9876543210UL); __ Rbit(w0, w24); __ Rbit(x1, x24); __ Rev16(w2, w24); __ Rev16(x3, x24); __ Rev(w4, w24); __ Rev32(x5, x24); __ Rev(x6, x24); END(); RUN(); ASSERT_EQUAL_64(0x084c2a6e, x0); ASSERT_EQUAL_64(0x084c2a6e195d3b7fUL, x1); ASSERT_EQUAL_64(0x54761032, x2); ASSERT_EQUAL_64(0xdcfe98ba54761032UL, x3); ASSERT_EQUAL_64(0x10325476, x4); ASSERT_EQUAL_64(0x98badcfe10325476UL, x5); ASSERT_EQUAL_64(0x1032547698badcfeUL, x6); TEARDOWN(); } TEST(clz_cls) { INIT_V8(); SETUP(); START(); __ Mov(x24, 0x0008000000800000UL); __ Mov(x25, 0xff800000fff80000UL); __ Mov(x26, 0); __ Clz(w0, w24); __ Clz(x1, x24); __ Clz(w2, w25); __ Clz(x3, x25); __ Clz(w4, w26); __ Clz(x5, x26); __ Cls(w6, w24); __ Cls(x7, x24); __ Cls(w8, w25); __ Cls(x9, x25); __ Cls(w10, w26); __ Cls(x11, x26); END(); RUN(); ASSERT_EQUAL_64(8, x0); ASSERT_EQUAL_64(12, x1); ASSERT_EQUAL_64(0, x2); ASSERT_EQUAL_64(0, x3); ASSERT_EQUAL_64(32, x4); ASSERT_EQUAL_64(64, x5); ASSERT_EQUAL_64(7, x6); ASSERT_EQUAL_64(11, x7); ASSERT_EQUAL_64(12, x8); ASSERT_EQUAL_64(8, x9); ASSERT_EQUAL_64(31, x10); ASSERT_EQUAL_64(63, x11); TEARDOWN(); } TEST(label) { INIT_V8(); SETUP(); Label label_1, label_2, label_3, label_4; START(); __ Mov(x0, 0x1); __ Mov(x1, 0x0); __ Mov(x22, lr); // Save lr. __ B(&label_1); __ B(&label_1); __ B(&label_1); // Multiple branches to the same label. __ Mov(x0, 0x0); __ Bind(&label_2); __ B(&label_3); // Forward branch. __ Mov(x0, 0x0); __ Bind(&label_1); __ B(&label_2); // Backward branch. __ Mov(x0, 0x0); __ Bind(&label_3); __ Bl(&label_4); END(); __ Bind(&label_4); __ Mov(x1, 0x1); __ Mov(lr, x22); END(); RUN(); ASSERT_EQUAL_64(0x1, x0); ASSERT_EQUAL_64(0x1, x1); TEARDOWN(); } TEST(branch_at_start) { INIT_V8(); SETUP(); Label good, exit; // Test that branches can exist at the start of the buffer. (This is a // boundary condition in the label-handling code.) To achieve this, we have // to work around the code generated by START. RESET(); __ B(&good); START_AFTER_RESET(); __ Mov(x0, 0x0); END(); __ Bind(&exit); START_AFTER_RESET(); __ Mov(x0, 0x1); END(); __ Bind(&good); __ B(&exit); END(); RUN(); ASSERT_EQUAL_64(0x1, x0); TEARDOWN(); } TEST(adr) { INIT_V8(); SETUP(); Label label_1, label_2, label_3, label_4; START(); __ Mov(x0, 0x0); // Set to non-zero to indicate failure. __ Adr(x1, &label_3); // Set to zero to indicate success. __ Adr(x2, &label_1); // Multiple forward references to the same label. __ Adr(x3, &label_1); __ Adr(x4, &label_1); __ Bind(&label_2); __ Eor(x5, x2, Operand(x3)); // Ensure that x2,x3 and x4 are identical. __ Eor(x6, x2, Operand(x4)); __ Orr(x0, x0, Operand(x5)); __ Orr(x0, x0, Operand(x6)); __ Br(x2); // label_1, label_3 __ Bind(&label_3); __ Adr(x2, &label_3); // Self-reference (offset 0). __ Eor(x1, x1, Operand(x2)); __ Adr(x2, &label_4); // Simple forward reference. __ Br(x2); // label_4 __ Bind(&label_1); __ Adr(x2, &label_3); // Multiple reverse references to the same label. __ Adr(x3, &label_3); __ Adr(x4, &label_3); __ Adr(x5, &label_2); // Simple reverse reference. __ Br(x5); // label_2 __ Bind(&label_4); END(); RUN(); ASSERT_EQUAL_64(0x0, x0); ASSERT_EQUAL_64(0x0, x1); TEARDOWN(); } TEST(branch_cond) { INIT_V8(); SETUP(); Label wrong; START(); __ Mov(x0, 0x1); __ Mov(x1, 0x1); __ Mov(x2, 0x8000000000000000L); // For each 'cmp' instruction below, condition codes other than the ones // following it would branch. __ Cmp(x1, 0); __ B(&wrong, eq); __ B(&wrong, lo); __ B(&wrong, mi); __ B(&wrong, vs); __ B(&wrong, ls); __ B(&wrong, lt); __ B(&wrong, le); Label ok_1; __ B(&ok_1, ne); __ Mov(x0, 0x0); __ Bind(&ok_1); __ Cmp(x1, 1); __ B(&wrong, ne); __ B(&wrong, lo); __ B(&wrong, mi); __ B(&wrong, vs); __ B(&wrong, hi); __ B(&wrong, lt); __ B(&wrong, gt); Label ok_2; __ B(&ok_2, pl); __ Mov(x0, 0x0); __ Bind(&ok_2); __ Cmp(x1, 2); __ B(&wrong, eq); __ B(&wrong, hs); __ B(&wrong, pl); __ B(&wrong, vs); __ B(&wrong, hi); __ B(&wrong, ge); __ B(&wrong, gt); Label ok_3; __ B(&ok_3, vc); __ Mov(x0, 0x0); __ Bind(&ok_3); __ Cmp(x2, 1); __ B(&wrong, eq); __ B(&wrong, lo); __ B(&wrong, mi); __ B(&wrong, vc); __ B(&wrong, ls); __ B(&wrong, ge); __ B(&wrong, gt); Label ok_4; __ B(&ok_4, le); __ Mov(x0, 0x0); __ Bind(&ok_4); Label ok_5; __ b(&ok_5, al); __ Mov(x0, 0x0); __ Bind(&ok_5); Label ok_6; __ b(&ok_6, nv); __ Mov(x0, 0x0); __ Bind(&ok_6); END(); __ Bind(&wrong); __ Mov(x0, 0x0); END(); RUN(); ASSERT_EQUAL_64(0x1, x0); TEARDOWN(); } TEST(branch_to_reg) { INIT_V8(); SETUP(); // Test br. Label fn1, after_fn1; START(); __ Mov(x29, lr); __ Mov(x1, 0); __ B(&after_fn1); __ Bind(&fn1); __ Mov(x0, lr); __ Mov(x1, 42); __ Br(x0); __ Bind(&after_fn1); __ Bl(&fn1); // Test blr. Label fn2, after_fn2; __ Mov(x2, 0); __ B(&after_fn2); __ Bind(&fn2); __ Mov(x0, lr); __ Mov(x2, 84); __ Blr(x0); __ Bind(&after_fn2); __ Bl(&fn2); __ Mov(x3, lr); __ Mov(lr, x29); END(); RUN(); ASSERT_EQUAL_64(core.xreg(3) + kInstructionSize, x0); ASSERT_EQUAL_64(42, x1); ASSERT_EQUAL_64(84, x2); TEARDOWN(); } TEST(compare_branch) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0); __ Mov(x2, 0); __ Mov(x3, 0); __ Mov(x4, 0); __ Mov(x5, 0); __ Mov(x16, 0); __ Mov(x17, 42); Label zt, zt_end; __ Cbz(w16, &zt); __ B(&zt_end); __ Bind(&zt); __ Mov(x0, 1); __ Bind(&zt_end); Label zf, zf_end; __ Cbz(x17, &zf); __ B(&zf_end); __ Bind(&zf); __ Mov(x1, 1); __ Bind(&zf_end); Label nzt, nzt_end; __ Cbnz(w17, &nzt); __ B(&nzt_end); __ Bind(&nzt); __ Mov(x2, 1); __ Bind(&nzt_end); Label nzf, nzf_end; __ Cbnz(x16, &nzf); __ B(&nzf_end); __ Bind(&nzf); __ Mov(x3, 1); __ Bind(&nzf_end); __ Mov(x18, 0xffffffff00000000UL); Label a, a_end; __ Cbz(w18, &a); __ B(&a_end); __ Bind(&a); __ Mov(x4, 1); __ Bind(&a_end); Label b, b_end; __ Cbnz(w18, &b); __ B(&b_end); __ Bind(&b); __ Mov(x5, 1); __ Bind(&b_end); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(0, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0, x3); ASSERT_EQUAL_64(1, x4); ASSERT_EQUAL_64(0, x5); TEARDOWN(); } TEST(test_branch) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0); __ Mov(x2, 0); __ Mov(x3, 0); __ Mov(x16, 0xaaaaaaaaaaaaaaaaUL); Label bz, bz_end; __ Tbz(w16, 0, &bz); __ B(&bz_end); __ Bind(&bz); __ Mov(x0, 1); __ Bind(&bz_end); Label bo, bo_end; __ Tbz(x16, 63, &bo); __ B(&bo_end); __ Bind(&bo); __ Mov(x1, 1); __ Bind(&bo_end); Label nbz, nbz_end; __ Tbnz(x16, 61, &nbz); __ B(&nbz_end); __ Bind(&nbz); __ Mov(x2, 1); __ Bind(&nbz_end); Label nbo, nbo_end; __ Tbnz(w16, 2, &nbo); __ B(&nbo_end); __ Bind(&nbo); __ Mov(x3, 1); __ Bind(&nbo_end); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(0, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0, x3); TEARDOWN(); } TEST(far_branch_backward) { INIT_V8(); // Test that the MacroAssembler correctly resolves backward branches to labels // that are outside the immediate range of branch instructions. int max_range = std::max(Instruction::ImmBranchRange(TestBranchType), std::max(Instruction::ImmBranchRange(CompareBranchType), Instruction::ImmBranchRange(CondBranchType))); SETUP_SIZE(max_range + 1000 * kInstructionSize); START(); Label done, fail; Label test_tbz, test_cbz, test_bcond; Label success_tbz, success_cbz, success_bcond; __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x10, 0); __ B(&test_tbz); __ Bind(&success_tbz); __ Orr(x0, x0, 1 << 0); __ B(&test_cbz); __ Bind(&success_cbz); __ Orr(x0, x0, 1 << 1); __ B(&test_bcond); __ Bind(&success_bcond); __ Orr(x0, x0, 1 << 2); __ B(&done); // Generate enough code to overflow the immediate range of the three types of // branches below. for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) { if (i % 100 == 0) { // If we do land in this code, we do not want to execute so many nops // before reaching the end of test (especially if tracing is activated). __ B(&fail); } else { __ Nop(); } } __ B(&fail); __ Bind(&test_tbz); __ Tbz(x10, 7, &success_tbz); __ Bind(&test_cbz); __ Cbz(x10, &success_cbz); __ Bind(&test_bcond); __ Cmp(x10, 0); __ B(eq, &success_bcond); // For each out-of-range branch instructions, at least two instructions should // have been generated. CHECK_GE(7 * kInstructionSize, __ SizeOfCodeGeneratedSince(&test_tbz)); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x7, x0); ASSERT_EQUAL_64(0x1, x1); TEARDOWN(); } TEST(far_branch_simple_veneer) { INIT_V8(); // Test that the MacroAssembler correctly emits veneers for forward branches // to labels that are outside the immediate range of branch instructions. int max_range = std::max(Instruction::ImmBranchRange(TestBranchType), std::max(Instruction::ImmBranchRange(CompareBranchType), Instruction::ImmBranchRange(CondBranchType))); SETUP_SIZE(max_range + 1000 * kInstructionSize); START(); Label done, fail; Label test_tbz, test_cbz, test_bcond; Label success_tbz, success_cbz, success_bcond; __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x10, 0); __ Bind(&test_tbz); __ Tbz(x10, 7, &success_tbz); __ Bind(&test_cbz); __ Cbz(x10, &success_cbz); __ Bind(&test_bcond); __ Cmp(x10, 0); __ B(eq, &success_bcond); // Generate enough code to overflow the immediate range of the three types of // branches below. for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) { if (i % 100 == 0) { // If we do land in this code, we do not want to execute so many nops // before reaching the end of test (especially if tracing is activated). // Also, the branches give the MacroAssembler the opportunity to emit the // veneers. __ B(&fail); } else { __ Nop(); } } __ B(&fail); __ Bind(&success_tbz); __ Orr(x0, x0, 1 << 0); __ B(&test_cbz); __ Bind(&success_cbz); __ Orr(x0, x0, 1 << 1); __ B(&test_bcond); __ Bind(&success_bcond); __ Orr(x0, x0, 1 << 2); __ B(&done); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x7, x0); ASSERT_EQUAL_64(0x1, x1); TEARDOWN(); } TEST(far_branch_veneer_link_chain) { INIT_V8(); // Test that the MacroAssembler correctly emits veneers for forward branches // that target out-of-range labels and are part of multiple instructions // jumping to that label. // // We test the three situations with the different types of instruction: // (1)- When the branch is at the start of the chain with tbz. // (2)- When the branch is in the middle of the chain with cbz. // (3)- When the branch is at the end of the chain with bcond. int max_range = std::max(Instruction::ImmBranchRange(TestBranchType), std::max(Instruction::ImmBranchRange(CompareBranchType), Instruction::ImmBranchRange(CondBranchType))); SETUP_SIZE(max_range + 1000 * kInstructionSize); START(); Label skip, fail, done; Label test_tbz, test_cbz, test_bcond; Label success_tbz, success_cbz, success_bcond; __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x10, 0); __ B(&skip); // Branches at the start of the chain for situations (2) and (3). __ B(&success_cbz); __ B(&success_bcond); __ Nop(); __ B(&success_bcond); __ B(&success_cbz); __ Bind(&skip); __ Bind(&test_tbz); __ Tbz(x10, 7, &success_tbz); __ Bind(&test_cbz); __ Cbz(x10, &success_cbz); __ Bind(&test_bcond); __ Cmp(x10, 0); __ B(eq, &success_bcond); skip.Unuse(); __ B(&skip); // Branches at the end of the chain for situations (1) and (2). __ B(&success_cbz); __ B(&success_tbz); __ Nop(); __ B(&success_tbz); __ B(&success_cbz); __ Bind(&skip); // Generate enough code to overflow the immediate range of the three types of // branches below. for (unsigned i = 0; i < max_range / kInstructionSize + 1; ++i) { if (i % 100 == 0) { // If we do land in this code, we do not want to execute so many nops // before reaching the end of test (especially if tracing is activated). // Also, the branches give the MacroAssembler the opportunity to emit the // veneers. __ B(&fail); } else { __ Nop(); } } __ B(&fail); __ Bind(&success_tbz); __ Orr(x0, x0, 1 << 0); __ B(&test_cbz); __ Bind(&success_cbz); __ Orr(x0, x0, 1 << 1); __ B(&test_bcond); __ Bind(&success_bcond); __ Orr(x0, x0, 1 << 2); __ B(&done); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x7, x0); ASSERT_EQUAL_64(0x1, x1); TEARDOWN(); } TEST(far_branch_veneer_broken_link_chain) { INIT_V8(); // Check that the MacroAssembler correctly handles the situation when removing // a branch from the link chain of a label and the two links on each side of // the removed branch cannot be linked together (out of range). // // We test with tbz because it has a small range. int max_range = Instruction::ImmBranchRange(TestBranchType); int inter_range = max_range / 2 + max_range / 10; SETUP_SIZE(3 * inter_range + 1000 * kInstructionSize); START(); Label skip, fail, done; Label test_1, test_2, test_3; Label far_target; __ Mov(x0, 0); // Indicates the origin of the branch. __ Mov(x1, 1); __ Mov(x10, 0); // First instruction in the label chain. __ Bind(&test_1); __ Mov(x0, 1); __ B(&far_target); for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) { if (i % 100 == 0) { // Do not allow generating veneers. They should not be needed. __ b(&fail); } else { __ Nop(); } } // Will need a veneer to point to reach the target. __ Bind(&test_2); __ Mov(x0, 2); __ Tbz(x10, 7, &far_target); for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) { if (i % 100 == 0) { // Do not allow generating veneers. They should not be needed. __ b(&fail); } else { __ Nop(); } } // Does not need a veneer to reach the target, but the initial branch // instruction is out of range. __ Bind(&test_3); __ Mov(x0, 3); __ Tbz(x10, 7, &far_target); for (unsigned i = 0; i < inter_range / kInstructionSize; ++i) { if (i % 100 == 0) { // Allow generating veneers. __ B(&fail); } else { __ Nop(); } } __ B(&fail); __ Bind(&far_target); __ Cmp(x0, 1); __ B(eq, &test_2); __ Cmp(x0, 2); __ B(eq, &test_3); __ B(&done); __ Bind(&fail); __ Mov(x1, 0); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x3, x0); ASSERT_EQUAL_64(0x1, x1); TEARDOWN(); } TEST(branch_type) { INIT_V8(); SETUP(); Label fail, done; START(); __ Mov(x0, 0x0); __ Mov(x10, 0x7); __ Mov(x11, 0x0); // Test non taken branches. __ Cmp(x10, 0x7); __ B(&fail, ne); __ B(&fail, never); __ B(&fail, reg_zero, x10); __ B(&fail, reg_not_zero, x11); __ B(&fail, reg_bit_clear, x10, 0); __ B(&fail, reg_bit_set, x10, 3); // Test taken branches. Label l1, l2, l3, l4, l5; __ Cmp(x10, 0x7); __ B(&l1, eq); __ B(&fail); __ Bind(&l1); __ B(&l2, always); __ B(&fail); __ Bind(&l2); __ B(&l3, reg_not_zero, x10); __ B(&fail); __ Bind(&l3); __ B(&l4, reg_bit_clear, x10, 15); __ B(&fail); __ Bind(&l4); __ B(&l5, reg_bit_set, x10, 1); __ B(&fail); __ Bind(&l5); __ B(&done); __ Bind(&fail); __ Mov(x0, 0x1); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x0, x0); TEARDOWN(); } TEST(ldr_str_offset) { INIT_V8(); SETUP(); uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x18, dst_base); __ Ldr(w0, MemOperand(x17)); __ Str(w0, MemOperand(x18)); __ Ldr(w1, MemOperand(x17, 4)); __ Str(w1, MemOperand(x18, 12)); __ Ldr(x2, MemOperand(x17, 8)); __ Str(x2, MemOperand(x18, 16)); __ Ldrb(w3, MemOperand(x17, 1)); __ Strb(w3, MemOperand(x18, 25)); __ Ldrh(w4, MemOperand(x17, 2)); __ Strh(w4, MemOperand(x18, 33)); END(); RUN(); ASSERT_EQUAL_64(0x76543210, x0); ASSERT_EQUAL_64(0x76543210, dst[0]); ASSERT_EQUAL_64(0xfedcba98, x1); ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); ASSERT_EQUAL_64(0x0123456789abcdefUL, x2); ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); ASSERT_EQUAL_64(0x32, x3); ASSERT_EQUAL_64(0x3200, dst[3]); ASSERT_EQUAL_64(0x7654, x4); ASSERT_EQUAL_64(0x765400, dst[4]); ASSERT_EQUAL_64(src_base, x17); ASSERT_EQUAL_64(dst_base, x18); TEARDOWN(); } TEST(ldr_str_wide) { INIT_V8(); SETUP(); uint32_t src[8192]; uint32_t dst[8192]; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); memset(src, 0xaa, 8192 * sizeof(src[0])); memset(dst, 0xaa, 8192 * sizeof(dst[0])); src[0] = 0; src[6144] = 6144; src[8191] = 8191; START(); __ Mov(x22, src_base); __ Mov(x23, dst_base); __ Mov(x24, src_base); __ Mov(x25, dst_base); __ Mov(x26, src_base); __ Mov(x27, dst_base); __ Ldr(w0, MemOperand(x22, 8191 * sizeof(src[0]))); __ Str(w0, MemOperand(x23, 8191 * sizeof(dst[0]))); __ Ldr(w1, MemOperand(x24, 4096 * sizeof(src[0]), PostIndex)); __ Str(w1, MemOperand(x25, 4096 * sizeof(dst[0]), PostIndex)); __ Ldr(w2, MemOperand(x26, 6144 * sizeof(src[0]), PreIndex)); __ Str(w2, MemOperand(x27, 6144 * sizeof(dst[0]), PreIndex)); END(); RUN(); ASSERT_EQUAL_32(8191, w0); ASSERT_EQUAL_32(8191, dst[8191]); ASSERT_EQUAL_64(src_base, x22); ASSERT_EQUAL_64(dst_base, x23); ASSERT_EQUAL_32(0, w1); ASSERT_EQUAL_32(0, dst[0]); ASSERT_EQUAL_64(src_base + 4096 * sizeof(src[0]), x24); ASSERT_EQUAL_64(dst_base + 4096 * sizeof(dst[0]), x25); ASSERT_EQUAL_32(6144, w2); ASSERT_EQUAL_32(6144, dst[6144]); ASSERT_EQUAL_64(src_base + 6144 * sizeof(src[0]), x26); ASSERT_EQUAL_64(dst_base + 6144 * sizeof(dst[0]), x27); TEARDOWN(); } TEST(ldr_str_preindex) { INIT_V8(); SETUP(); uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x18, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base + 16); __ Mov(x22, dst_base + 40); __ Mov(x23, src_base); __ Mov(x24, dst_base); __ Mov(x25, src_base); __ Mov(x26, dst_base); __ Ldr(w0, MemOperand(x17, 4, PreIndex)); __ Str(w0, MemOperand(x18, 12, PreIndex)); __ Ldr(x1, MemOperand(x19, 8, PreIndex)); __ Str(x1, MemOperand(x20, 16, PreIndex)); __ Ldr(w2, MemOperand(x21, -4, PreIndex)); __ Str(w2, MemOperand(x22, -4, PreIndex)); __ Ldrb(w3, MemOperand(x23, 1, PreIndex)); __ Strb(w3, MemOperand(x24, 25, PreIndex)); __ Ldrh(w4, MemOperand(x25, 3, PreIndex)); __ Strh(w4, MemOperand(x26, 41, PreIndex)); END(); RUN(); ASSERT_EQUAL_64(0xfedcba98, x0); ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); ASSERT_EQUAL_64(0x0123456789abcdefUL, x1); ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); ASSERT_EQUAL_64(0x01234567, x2); ASSERT_EQUAL_64(0x0123456700000000UL, dst[4]); ASSERT_EQUAL_64(0x32, x3); ASSERT_EQUAL_64(0x3200, dst[3]); ASSERT_EQUAL_64(0x9876, x4); ASSERT_EQUAL_64(0x987600, dst[5]); ASSERT_EQUAL_64(src_base + 4, x17); ASSERT_EQUAL_64(dst_base + 12, x18); ASSERT_EQUAL_64(src_base + 8, x19); ASSERT_EQUAL_64(dst_base + 16, x20); ASSERT_EQUAL_64(src_base + 12, x21); ASSERT_EQUAL_64(dst_base + 36, x22); ASSERT_EQUAL_64(src_base + 1, x23); ASSERT_EQUAL_64(dst_base + 25, x24); ASSERT_EQUAL_64(src_base + 3, x25); ASSERT_EQUAL_64(dst_base + 41, x26); TEARDOWN(); } TEST(ldr_str_postindex) { INIT_V8(); SETUP(); uint64_t src[2] = {0xfedcba9876543210UL, 0x0123456789abcdefUL}; uint64_t dst[6] = {0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base + 4); __ Mov(x18, dst_base + 12); __ Mov(x19, src_base + 8); __ Mov(x20, dst_base + 16); __ Mov(x21, src_base + 8); __ Mov(x22, dst_base + 32); __ Mov(x23, src_base + 1); __ Mov(x24, dst_base + 25); __ Mov(x25, src_base + 3); __ Mov(x26, dst_base + 41); __ Ldr(w0, MemOperand(x17, 4, PostIndex)); __ Str(w0, MemOperand(x18, 12, PostIndex)); __ Ldr(x1, MemOperand(x19, 8, PostIndex)); __ Str(x1, MemOperand(x20, 16, PostIndex)); __ Ldr(x2, MemOperand(x21, -8, PostIndex)); __ Str(x2, MemOperand(x22, -32, PostIndex)); __ Ldrb(w3, MemOperand(x23, 1, PostIndex)); __ Strb(w3, MemOperand(x24, 5, PostIndex)); __ Ldrh(w4, MemOperand(x25, -3, PostIndex)); __ Strh(w4, MemOperand(x26, -41, PostIndex)); END(); RUN(); ASSERT_EQUAL_64(0xfedcba98, x0); ASSERT_EQUAL_64(0xfedcba9800000000UL, dst[1]); ASSERT_EQUAL_64(0x0123456789abcdefUL, x1); ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[2]); ASSERT_EQUAL_64(0x0123456789abcdefUL, x2); ASSERT_EQUAL_64(0x0123456789abcdefUL, dst[4]); ASSERT_EQUAL_64(0x32, x3); ASSERT_EQUAL_64(0x3200, dst[3]); ASSERT_EQUAL_64(0x9876, x4); ASSERT_EQUAL_64(0x987600, dst[5]); ASSERT_EQUAL_64(src_base + 8, x17); ASSERT_EQUAL_64(dst_base + 24, x18); ASSERT_EQUAL_64(src_base + 16, x19); ASSERT_EQUAL_64(dst_base + 32, x20); ASSERT_EQUAL_64(src_base, x21); ASSERT_EQUAL_64(dst_base, x22); ASSERT_EQUAL_64(src_base + 2, x23); ASSERT_EQUAL_64(dst_base + 30, x24); ASSERT_EQUAL_64(src_base, x25); ASSERT_EQUAL_64(dst_base, x26); TEARDOWN(); } TEST(load_signed) { INIT_V8(); SETUP(); uint32_t src[2] = {0x80008080, 0x7fff7f7f}; uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x24, src_base); __ Ldrsb(w0, MemOperand(x24)); __ Ldrsb(w1, MemOperand(x24, 4)); __ Ldrsh(w2, MemOperand(x24)); __ Ldrsh(w3, MemOperand(x24, 4)); __ Ldrsb(x4, MemOperand(x24)); __ Ldrsb(x5, MemOperand(x24, 4)); __ Ldrsh(x6, MemOperand(x24)); __ Ldrsh(x7, MemOperand(x24, 4)); __ Ldrsw(x8, MemOperand(x24)); __ Ldrsw(x9, MemOperand(x24, 4)); END(); RUN(); ASSERT_EQUAL_64(0xffffff80, x0); ASSERT_EQUAL_64(0x0000007f, x1); ASSERT_EQUAL_64(0xffff8080, x2); ASSERT_EQUAL_64(0x00007f7f, x3); ASSERT_EQUAL_64(0xffffffffffffff80UL, x4); ASSERT_EQUAL_64(0x000000000000007fUL, x5); ASSERT_EQUAL_64(0xffffffffffff8080UL, x6); ASSERT_EQUAL_64(0x0000000000007f7fUL, x7); ASSERT_EQUAL_64(0xffffffff80008080UL, x8); ASSERT_EQUAL_64(0x000000007fff7f7fUL, x9); TEARDOWN(); } TEST(load_store_regoffset) { INIT_V8(); SETUP(); uint32_t src[3] = {1, 2, 3}; uint32_t dst[4] = {0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x18, src_base + 3 * sizeof(src[0])); __ Mov(x19, dst_base + 3 * sizeof(dst[0])); __ Mov(x20, dst_base + 4 * sizeof(dst[0])); __ Mov(x24, 0); __ Mov(x25, 4); __ Mov(x26, -4); __ Mov(x27, 0xfffffffc); // 32-bit -4. __ Mov(x28, 0xfffffffe); // 32-bit -2. __ Mov(x29, 0xffffffff); // 32-bit -1. __ Ldr(w0, MemOperand(x16, x24)); __ Ldr(x1, MemOperand(x16, x25)); __ Ldr(w2, MemOperand(x18, x26)); __ Ldr(w3, MemOperand(x18, x27, SXTW)); __ Ldr(w4, MemOperand(x18, x28, SXTW, 2)); __ Str(w0, MemOperand(x17, x24)); __ Str(x1, MemOperand(x17, x25)); __ Str(w2, MemOperand(x20, x29, SXTW, 2)); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(0x0000000300000002UL, x1); ASSERT_EQUAL_64(3, x2); ASSERT_EQUAL_64(3, x3); ASSERT_EQUAL_64(2, x4); ASSERT_EQUAL_32(1, dst[0]); ASSERT_EQUAL_32(2, dst[1]); ASSERT_EQUAL_32(3, dst[2]); ASSERT_EQUAL_32(3, dst[3]); TEARDOWN(); } TEST(load_store_float) { INIT_V8(); SETUP(); float src[3] = {1.0, 2.0, 3.0}; float dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x18, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(s0, MemOperand(x17, sizeof(src[0]))); __ Str(s0, MemOperand(x18, sizeof(dst[0]), PostIndex)); __ Ldr(s1, MemOperand(x19, sizeof(src[0]), PostIndex)); __ Str(s1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); __ Ldr(s2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); __ Str(s2, MemOperand(x22, sizeof(dst[0]))); END(); RUN(); ASSERT_EQUAL_FP32(2.0, s0); ASSERT_EQUAL_FP32(2.0, dst[0]); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(1.0, dst[2]); ASSERT_EQUAL_FP32(3.0, s2); ASSERT_EQUAL_FP32(3.0, dst[1]); ASSERT_EQUAL_64(src_base, x17); ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18); ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19); ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); ASSERT_EQUAL_64(dst_base, x22); TEARDOWN(); } TEST(load_store_double) { INIT_V8(); SETUP(); double src[3] = {1.0, 2.0, 3.0}; double dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x18, dst_base); __ Mov(x19, src_base); __ Mov(x20, dst_base); __ Mov(x21, src_base); __ Mov(x22, dst_base); __ Ldr(d0, MemOperand(x17, sizeof(src[0]))); __ Str(d0, MemOperand(x18, sizeof(dst[0]), PostIndex)); __ Ldr(d1, MemOperand(x19, sizeof(src[0]), PostIndex)); __ Str(d1, MemOperand(x20, 2 * sizeof(dst[0]), PreIndex)); __ Ldr(d2, MemOperand(x21, 2 * sizeof(src[0]), PreIndex)); __ Str(d2, MemOperand(x22, sizeof(dst[0]))); END(); RUN(); ASSERT_EQUAL_FP64(2.0, d0); ASSERT_EQUAL_FP64(2.0, dst[0]); ASSERT_EQUAL_FP64(1.0, d1); ASSERT_EQUAL_FP64(1.0, dst[2]); ASSERT_EQUAL_FP64(3.0, d2); ASSERT_EQUAL_FP64(3.0, dst[1]); ASSERT_EQUAL_64(src_base, x17); ASSERT_EQUAL_64(dst_base + sizeof(dst[0]), x18); ASSERT_EQUAL_64(src_base + sizeof(src[0]), x19); ASSERT_EQUAL_64(dst_base + 2 * sizeof(dst[0]), x20); ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x21); ASSERT_EQUAL_64(dst_base, x22); TEARDOWN(); } TEST(ldp_stp_float) { INIT_V8(); SETUP(); float src[2] = {1.0, 2.0}; float dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Ldp(s31, s0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); __ Stp(s0, s31, MemOperand(x17, sizeof(dst[1]), PreIndex)); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s31); ASSERT_EQUAL_FP32(2.0, s0); ASSERT_EQUAL_FP32(0.0, dst[0]); ASSERT_EQUAL_FP32(2.0, dst[1]); ASSERT_EQUAL_FP32(1.0, dst[2]); ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17); TEARDOWN(); } TEST(ldp_stp_double) { INIT_V8(); SETUP(); double src[2] = {1.0, 2.0}; double dst[3] = {0.0, 0.0, 0.0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Ldp(d31, d0, MemOperand(x16, 2 * sizeof(src[0]), PostIndex)); __ Stp(d0, d31, MemOperand(x17, sizeof(dst[1]), PreIndex)); END(); RUN(); ASSERT_EQUAL_FP64(1.0, d31); ASSERT_EQUAL_FP64(2.0, d0); ASSERT_EQUAL_FP64(0.0, dst[0]); ASSERT_EQUAL_FP64(2.0, dst[1]); ASSERT_EQUAL_FP64(1.0, dst[2]); ASSERT_EQUAL_64(src_base + 2 * sizeof(src[0]), x16); ASSERT_EQUAL_64(dst_base + sizeof(dst[1]), x17); TEARDOWN(); } TEST(ldp_stp_offset) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, 0xffeeddccbbaa9988UL}; uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x18, src_base + 24); __ Mov(x19, dst_base + 56); __ Ldp(w0, w1, MemOperand(x16)); __ Ldp(w2, w3, MemOperand(x16, 4)); __ Ldp(x4, x5, MemOperand(x16, 8)); __ Ldp(w6, w7, MemOperand(x18, -12)); __ Ldp(x8, x9, MemOperand(x18, -16)); __ Stp(w0, w1, MemOperand(x17)); __ Stp(w2, w3, MemOperand(x17, 8)); __ Stp(x4, x5, MemOperand(x17, 16)); __ Stp(w6, w7, MemOperand(x19, -24)); __ Stp(x8, x9, MemOperand(x19, -16)); END(); RUN(); ASSERT_EQUAL_64(0x44556677, x0); ASSERT_EQUAL_64(0x00112233, x1); ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]); ASSERT_EQUAL_64(0x00112233, x2); ASSERT_EQUAL_64(0xccddeeff, x3); ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]); ASSERT_EQUAL_64(0x8899aabb, x6); ASSERT_EQUAL_64(0xbbaa9988, x7); ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]); ASSERT_EQUAL_64(src_base, x16); ASSERT_EQUAL_64(dst_base, x17); ASSERT_EQUAL_64(src_base + 24, x18); ASSERT_EQUAL_64(dst_base + 56, x19); TEARDOWN(); } TEST(ldnp_stnp_offset) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, 0xffeeddccbbaa9988UL}; uint64_t dst[7] = {0, 0, 0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x18, src_base + 24); __ Mov(x19, dst_base + 56); __ Ldnp(w0, w1, MemOperand(x16)); __ Ldnp(w2, w3, MemOperand(x16, 4)); __ Ldnp(x4, x5, MemOperand(x16, 8)); __ Ldnp(w6, w7, MemOperand(x18, -12)); __ Ldnp(x8, x9, MemOperand(x18, -16)); __ Stnp(w0, w1, MemOperand(x17)); __ Stnp(w2, w3, MemOperand(x17, 8)); __ Stnp(x4, x5, MemOperand(x17, 16)); __ Stnp(w6, w7, MemOperand(x19, -24)); __ Stnp(x8, x9, MemOperand(x19, -16)); END(); RUN(); ASSERT_EQUAL_64(0x44556677, x0); ASSERT_EQUAL_64(0x00112233, x1); ASSERT_EQUAL_64(0x0011223344556677UL, dst[0]); ASSERT_EQUAL_64(0x00112233, x2); ASSERT_EQUAL_64(0xccddeeff, x3); ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[1]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[2]); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[3]); ASSERT_EQUAL_64(0x8899aabb, x6); ASSERT_EQUAL_64(0xbbaa9988, x7); ASSERT_EQUAL_64(0xbbaa99888899aabbUL, dst[4]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x8); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[5]); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x9); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[6]); ASSERT_EQUAL_64(src_base, x16); ASSERT_EQUAL_64(dst_base, x17); ASSERT_EQUAL_64(src_base + 24, x18); ASSERT_EQUAL_64(dst_base + 56, x19); TEARDOWN(); } TEST(ldp_stp_preindex) { INIT_V8(); SETUP(); uint64_t src[3] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, 0xffeeddccbbaa9988UL}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x18, dst_base + 16); __ Ldp(w0, w1, MemOperand(x16, 4, PreIndex)); __ Mov(x19, x16); __ Ldp(w2, w3, MemOperand(x16, -4, PreIndex)); __ Stp(w2, w3, MemOperand(x17, 4, PreIndex)); __ Mov(x20, x17); __ Stp(w0, w1, MemOperand(x17, -4, PreIndex)); __ Ldp(x4, x5, MemOperand(x16, 8, PreIndex)); __ Mov(x21, x16); __ Ldp(x6, x7, MemOperand(x16, -8, PreIndex)); __ Stp(x7, x6, MemOperand(x18, 8, PreIndex)); __ Mov(x22, x18); __ Stp(x5, x4, MemOperand(x18, -8, PreIndex)); END(); RUN(); ASSERT_EQUAL_64(0x00112233, x0); ASSERT_EQUAL_64(0xccddeeff, x1); ASSERT_EQUAL_64(0x44556677, x2); ASSERT_EQUAL_64(0x00112233, x3); ASSERT_EQUAL_64(0xccddeeff00112233UL, dst[0]); ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x4); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x5); ASSERT_EQUAL_64(0x0011223344556677UL, x6); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x7); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]); ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]); ASSERT_EQUAL_64(src_base, x16); ASSERT_EQUAL_64(dst_base, x17); ASSERT_EQUAL_64(dst_base + 16, x18); ASSERT_EQUAL_64(src_base + 4, x19); ASSERT_EQUAL_64(dst_base + 4, x20); ASSERT_EQUAL_64(src_base + 8, x21); ASSERT_EQUAL_64(dst_base + 24, x22); TEARDOWN(); } TEST(ldp_stp_postindex) { INIT_V8(); SETUP(); uint64_t src[4] = {0x0011223344556677UL, 0x8899aabbccddeeffUL, 0xffeeddccbbaa9988UL, 0x7766554433221100UL}; uint64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x16, src_base); __ Mov(x17, dst_base); __ Mov(x18, dst_base + 16); __ Ldp(w0, w1, MemOperand(x16, 4, PostIndex)); __ Mov(x19, x16); __ Ldp(w2, w3, MemOperand(x16, -4, PostIndex)); __ Stp(w2, w3, MemOperand(x17, 4, PostIndex)); __ Mov(x20, x17); __ Stp(w0, w1, MemOperand(x17, -4, PostIndex)); __ Ldp(x4, x5, MemOperand(x16, 8, PostIndex)); __ Mov(x21, x16); __ Ldp(x6, x7, MemOperand(x16, -8, PostIndex)); __ Stp(x7, x6, MemOperand(x18, 8, PostIndex)); __ Mov(x22, x18); __ Stp(x5, x4, MemOperand(x18, -8, PostIndex)); END(); RUN(); ASSERT_EQUAL_64(0x44556677, x0); ASSERT_EQUAL_64(0x00112233, x1); ASSERT_EQUAL_64(0x00112233, x2); ASSERT_EQUAL_64(0xccddeeff, x3); ASSERT_EQUAL_64(0x4455667700112233UL, dst[0]); ASSERT_EQUAL_64(0x0000000000112233UL, dst[1]); ASSERT_EQUAL_64(0x0011223344556677UL, x4); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x5); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, x6); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, x7); ASSERT_EQUAL_64(0xffeeddccbbaa9988UL, dst[2]); ASSERT_EQUAL_64(0x8899aabbccddeeffUL, dst[3]); ASSERT_EQUAL_64(0x0011223344556677UL, dst[4]); ASSERT_EQUAL_64(src_base, x16); ASSERT_EQUAL_64(dst_base, x17); ASSERT_EQUAL_64(dst_base + 16, x18); ASSERT_EQUAL_64(src_base + 4, x19); ASSERT_EQUAL_64(dst_base + 4, x20); ASSERT_EQUAL_64(src_base + 8, x21); ASSERT_EQUAL_64(dst_base + 24, x22); TEARDOWN(); } TEST(ldp_sign_extend) { INIT_V8(); SETUP(); uint32_t src[2] = {0x80000000, 0x7fffffff}; uintptr_t src_base = reinterpret_cast(src); START(); __ Mov(x24, src_base); __ Ldpsw(x0, x1, MemOperand(x24)); END(); RUN(); ASSERT_EQUAL_64(0xffffffff80000000UL, x0); ASSERT_EQUAL_64(0x000000007fffffffUL, x1); TEARDOWN(); } TEST(ldur_stur) { INIT_V8(); SETUP(); int64_t src[2] = {0x0123456789abcdefUL, 0x0123456789abcdefUL}; int64_t dst[5] = {0, 0, 0, 0, 0}; uintptr_t src_base = reinterpret_cast(src); uintptr_t dst_base = reinterpret_cast(dst); START(); __ Mov(x17, src_base); __ Mov(x18, dst_base); __ Mov(x19, src_base + 16); __ Mov(x20, dst_base + 32); __ Mov(x21, dst_base + 40); __ Ldr(w0, MemOperand(x17, 1)); __ Str(w0, MemOperand(x18, 2)); __ Ldr(x1, MemOperand(x17, 3)); __ Str(x1, MemOperand(x18, 9)); __ Ldr(w2, MemOperand(x19, -9)); __ Str(w2, MemOperand(x20, -5)); __ Ldrb(w3, MemOperand(x19, -1)); __ Strb(w3, MemOperand(x21, -1)); END(); RUN(); ASSERT_EQUAL_64(0x6789abcd, x0); ASSERT_EQUAL_64(0x6789abcd0000L, dst[0]); ASSERT_EQUAL_64(0xabcdef0123456789L, x1); ASSERT_EQUAL_64(0xcdef012345678900L, dst[1]); ASSERT_EQUAL_64(0x000000ab, dst[2]); ASSERT_EQUAL_64(0xabcdef01, x2); ASSERT_EQUAL_64(0x00abcdef01000000L, dst[3]); ASSERT_EQUAL_64(0x00000001, x3); ASSERT_EQUAL_64(0x0100000000000000L, dst[4]); ASSERT_EQUAL_64(src_base, x17); ASSERT_EQUAL_64(dst_base, x18); ASSERT_EQUAL_64(src_base + 16, x19); ASSERT_EQUAL_64(dst_base + 32, x20); TEARDOWN(); } #if 0 // TODO(all) enable. // TODO(rodolph): Adapt w16 Literal tests for RelocInfo. TEST(ldr_literal) { INIT_V8(); SETUP(); START(); __ Ldr(x2, 0x1234567890abcdefUL); __ Ldr(w3, 0xfedcba09); __ Ldr(d13, 1.234); __ Ldr(s25, 2.5); END(); RUN(); ASSERT_EQUAL_64(0x1234567890abcdefUL, x2); ASSERT_EQUAL_64(0xfedcba09, x3); ASSERT_EQUAL_FP64(1.234, d13); ASSERT_EQUAL_FP32(2.5, s25); TEARDOWN(); } static void LdrLiteralRangeHelper(ptrdiff_t range_, LiteralPoolEmitOption option, bool expect_dump) { ASSERT(range_ > 0); SETUP_SIZE(range_ + 1024); Label label_1, label_2; size_t range = static_cast(range_); size_t code_size = 0; size_t pool_guard_size; if (option == NoJumpRequired) { // Space for an explicit branch. pool_guard_size = sizeof(Instr); } else { pool_guard_size = 0; } START(); // Force a pool dump so the pool starts off empty. __ EmitLiteralPool(JumpRequired); ASSERT_LITERAL_POOL_SIZE(0); __ Ldr(x0, 0x1234567890abcdefUL); __ Ldr(w1, 0xfedcba09); __ Ldr(d0, 1.234); __ Ldr(s1, 2.5); ASSERT_LITERAL_POOL_SIZE(4); code_size += 4 * sizeof(Instr); // Check that the requested range (allowing space for a branch over the pool) // can be handled by this test. ASSERT((code_size + pool_guard_size) <= range); // Emit NOPs up to 'range', leaving space for the pool guard. while ((code_size + pool_guard_size) < range) { __ Nop(); code_size += sizeof(Instr); } // Emit the guard sequence before the literal pool. if (option == NoJumpRequired) { __ B(&label_1); code_size += sizeof(Instr); } ASSERT(code_size == range); ASSERT_LITERAL_POOL_SIZE(4); // Possibly generate a literal pool. __ CheckLiteralPool(option); __ Bind(&label_1); if (expect_dump) { ASSERT_LITERAL_POOL_SIZE(0); } else { ASSERT_LITERAL_POOL_SIZE(4); } // Force a pool flush to check that a second pool functions correctly. __ EmitLiteralPool(JumpRequired); ASSERT_LITERAL_POOL_SIZE(0); // These loads should be after the pool (and will require a new one). __ Ldr(x4, 0x34567890abcdef12UL); __ Ldr(w5, 0xdcba09fe); __ Ldr(d4, 123.4); __ Ldr(s5, 250.0); ASSERT_LITERAL_POOL_SIZE(4); END(); RUN(); // Check that the literals loaded correctly. ASSERT_EQUAL_64(0x1234567890abcdefUL, x0); ASSERT_EQUAL_64(0xfedcba09, x1); ASSERT_EQUAL_FP64(1.234, d0); ASSERT_EQUAL_FP32(2.5, s1); ASSERT_EQUAL_64(0x34567890abcdef12UL, x4); ASSERT_EQUAL_64(0xdcba09fe, x5); ASSERT_EQUAL_FP64(123.4, d4); ASSERT_EQUAL_FP32(250.0, s5); TEARDOWN(); } TEST(ldr_literal_range_1) { INIT_V8(); LdrLiteralRangeHelper(kRecommendedLiteralPoolRange, NoJumpRequired, true); } TEST(ldr_literal_range_2) { INIT_V8(); LdrLiteralRangeHelper(kRecommendedLiteralPoolRange-sizeof(Instr), NoJumpRequired, false); } TEST(ldr_literal_range_3) { INIT_V8(); LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange, JumpRequired, true); } TEST(ldr_literal_range_4) { INIT_V8(); LdrLiteralRangeHelper(2 * kRecommendedLiteralPoolRange-sizeof(Instr), JumpRequired, false); } TEST(ldr_literal_range_5) { INIT_V8(); LdrLiteralRangeHelper(kLiteralPoolCheckInterval, JumpRequired, false); } TEST(ldr_literal_range_6) { INIT_V8(); LdrLiteralRangeHelper(kLiteralPoolCheckInterval-sizeof(Instr), JumpRequired, false); } #endif TEST(add_sub_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x0); __ Mov(x1, 0x1111); __ Mov(x2, 0xffffffffffffffffL); __ Mov(x3, 0x8000000000000000L); __ Add(x10, x0, Operand(0x123)); __ Add(x11, x1, Operand(0x122000)); __ Add(x12, x0, Operand(0xabc << 12)); __ Add(x13, x2, Operand(1)); __ Add(w14, w0, Operand(0x123)); __ Add(w15, w1, Operand(0x122000)); __ Add(w16, w0, Operand(0xabc << 12)); __ Add(w17, w2, Operand(1)); __ Sub(x20, x0, Operand(0x1)); __ Sub(x21, x1, Operand(0x111)); __ Sub(x22, x1, Operand(0x1 << 12)); __ Sub(x23, x3, Operand(1)); __ Sub(w24, w0, Operand(0x1)); __ Sub(w25, w1, Operand(0x111)); __ Sub(w26, w1, Operand(0x1 << 12)); __ Sub(w27, w3, Operand(1)); END(); RUN(); ASSERT_EQUAL_64(0x123, x10); ASSERT_EQUAL_64(0x123111, x11); ASSERT_EQUAL_64(0xabc000, x12); ASSERT_EQUAL_64(0x0, x13); ASSERT_EQUAL_32(0x123, w14); ASSERT_EQUAL_32(0x123111, w15); ASSERT_EQUAL_32(0xabc000, w16); ASSERT_EQUAL_32(0x0, w17); ASSERT_EQUAL_64(0xffffffffffffffffL, x20); ASSERT_EQUAL_64(0x1000, x21); ASSERT_EQUAL_64(0x111, x22); ASSERT_EQUAL_64(0x7fffffffffffffffL, x23); ASSERT_EQUAL_32(0xffffffff, w24); ASSERT_EQUAL_32(0x1000, w25); ASSERT_EQUAL_32(0x111, w26); ASSERT_EQUAL_32(0xffffffff, w27); TEARDOWN(); } TEST(add_sub_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0x0); __ Mov(x1, 0x1); __ Add(x10, x0, Operand(0x1234567890abcdefUL)); __ Add(x11, x1, Operand(0xffffffff)); __ Add(w12, w0, Operand(0x12345678)); __ Add(w13, w1, Operand(0xffffffff)); __ Sub(x20, x0, Operand(0x1234567890abcdefUL)); __ Sub(w21, w0, Operand(0x12345678)); END(); RUN(); ASSERT_EQUAL_64(0x1234567890abcdefUL, x10); ASSERT_EQUAL_64(0x100000000UL, x11); ASSERT_EQUAL_32(0x12345678, w12); ASSERT_EQUAL_64(0x0, x13); ASSERT_EQUAL_64(-0x1234567890abcdefUL, x20); ASSERT_EQUAL_32(-0x12345678, w21); TEARDOWN(); } TEST(add_sub_shifted) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0x0123456789abcdefL); __ Mov(x2, 0xfedcba9876543210L); __ Mov(x3, 0xffffffffffffffffL); __ Add(x10, x1, Operand(x2)); __ Add(x11, x0, Operand(x1, LSL, 8)); __ Add(x12, x0, Operand(x1, LSR, 8)); __ Add(x13, x0, Operand(x1, ASR, 8)); __ Add(x14, x0, Operand(x2, ASR, 8)); __ Add(w15, w0, Operand(w1, ASR, 8)); __ Add(w18, w3, Operand(w1, ROR, 8)); __ Add(x19, x3, Operand(x1, ROR, 8)); __ Sub(x20, x3, Operand(x2)); __ Sub(x21, x3, Operand(x1, LSL, 8)); __ Sub(x22, x3, Operand(x1, LSR, 8)); __ Sub(x23, x3, Operand(x1, ASR, 8)); __ Sub(x24, x3, Operand(x2, ASR, 8)); __ Sub(w25, w3, Operand(w1, ASR, 8)); __ Sub(w26, w3, Operand(w1, ROR, 8)); __ Sub(x27, x3, Operand(x1, ROR, 8)); END(); RUN(); ASSERT_EQUAL_64(0xffffffffffffffffL, x10); ASSERT_EQUAL_64(0x23456789abcdef00L, x11); ASSERT_EQUAL_64(0x000123456789abcdL, x12); ASSERT_EQUAL_64(0x000123456789abcdL, x13); ASSERT_EQUAL_64(0xfffedcba98765432L, x14); ASSERT_EQUAL_64(0xff89abcd, x15); ASSERT_EQUAL_64(0xef89abcc, x18); ASSERT_EQUAL_64(0xef0123456789abccL, x19); ASSERT_EQUAL_64(0x0123456789abcdefL, x20); ASSERT_EQUAL_64(0xdcba9876543210ffL, x21); ASSERT_EQUAL_64(0xfffedcba98765432L, x22); ASSERT_EQUAL_64(0xfffedcba98765432L, x23); ASSERT_EQUAL_64(0x000123456789abcdL, x24); ASSERT_EQUAL_64(0x00765432, x25); ASSERT_EQUAL_64(0x10765432, x26); ASSERT_EQUAL_64(0x10fedcba98765432L, x27); TEARDOWN(); } TEST(add_sub_extended) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0x0123456789abcdefL); __ Mov(x2, 0xfedcba9876543210L); __ Mov(w3, 0x80); __ Add(x10, x0, Operand(x1, UXTB, 0)); __ Add(x11, x0, Operand(x1, UXTB, 1)); __ Add(x12, x0, Operand(x1, UXTH, 2)); __ Add(x13, x0, Operand(x1, UXTW, 4)); __ Add(x14, x0, Operand(x1, SXTB, 0)); __ Add(x15, x0, Operand(x1, SXTB, 1)); __ Add(x16, x0, Operand(x1, SXTH, 2)); __ Add(x17, x0, Operand(x1, SXTW, 3)); __ Add(x18, x0, Operand(x2, SXTB, 0)); __ Add(x19, x0, Operand(x2, SXTB, 1)); __ Add(x20, x0, Operand(x2, SXTH, 2)); __ Add(x21, x0, Operand(x2, SXTW, 3)); __ Add(x22, x1, Operand(x2, SXTB, 1)); __ Sub(x23, x1, Operand(x2, SXTB, 1)); __ Add(w24, w1, Operand(w2, UXTB, 2)); __ Add(w25, w0, Operand(w1, SXTB, 0)); __ Add(w26, w0, Operand(w1, SXTB, 1)); __ Add(w27, w2, Operand(w1, SXTW, 3)); __ Add(w28, w0, Operand(w1, SXTW, 3)); __ Add(x29, x0, Operand(w1, SXTW, 3)); __ Sub(x30, x0, Operand(w3, SXTB, 1)); END(); RUN(); ASSERT_EQUAL_64(0xefL, x10); ASSERT_EQUAL_64(0x1deL, x11); ASSERT_EQUAL_64(0x337bcL, x12); ASSERT_EQUAL_64(0x89abcdef0L, x13); ASSERT_EQUAL_64(0xffffffffffffffefL, x14); ASSERT_EQUAL_64(0xffffffffffffffdeL, x15); ASSERT_EQUAL_64(0xffffffffffff37bcL, x16); ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x17); ASSERT_EQUAL_64(0x10L, x18); ASSERT_EQUAL_64(0x20L, x19); ASSERT_EQUAL_64(0xc840L, x20); ASSERT_EQUAL_64(0x3b2a19080L, x21); ASSERT_EQUAL_64(0x0123456789abce0fL, x22); ASSERT_EQUAL_64(0x0123456789abcdcfL, x23); ASSERT_EQUAL_32(0x89abce2f, w24); ASSERT_EQUAL_32(0xffffffef, w25); ASSERT_EQUAL_32(0xffffffde, w26); ASSERT_EQUAL_32(0xc3b2a188, w27); ASSERT_EQUAL_32(0x4d5e6f78, w28); ASSERT_EQUAL_64(0xfffffffc4d5e6f78L, x29); ASSERT_EQUAL_64(256, x30); TEARDOWN(); } TEST(add_sub_negative) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 4687); __ Mov(x2, 0x1122334455667788); __ Mov(w3, 0x11223344); __ Mov(w4, 400000); __ Add(x10, x0, -42); __ Add(x11, x1, -687); __ Add(x12, x2, -0x88); __ Sub(x13, x0, -600); __ Sub(x14, x1, -313); __ Sub(x15, x2, -0x555); __ Add(w19, w3, -0x344); __ Add(w20, w4, -2000); __ Sub(w21, w3, -0xbc); __ Sub(w22, w4, -2000); END(); RUN(); ASSERT_EQUAL_64(-42, x10); ASSERT_EQUAL_64(4000, x11); ASSERT_EQUAL_64(0x1122334455667700, x12); ASSERT_EQUAL_64(600, x13); ASSERT_EQUAL_64(5000, x14); ASSERT_EQUAL_64(0x1122334455667cdd, x15); ASSERT_EQUAL_32(0x11223000, w19); ASSERT_EQUAL_32(398000, w20); ASSERT_EQUAL_32(0x11223400, w21); ASSERT_EQUAL_32(402000, w22); TEARDOWN(); } TEST(add_sub_zero) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0); __ Mov(x2, 0); Label blob1; __ Bind(&blob1); __ Add(x0, x0, 0); __ Sub(x1, x1, 0); __ Sub(x2, x2, xzr); CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&blob1)); Label blob2; __ Bind(&blob2); __ Add(w3, w3, 0); CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob2)); Label blob3; __ Bind(&blob3); __ Sub(w3, w3, wzr); CHECK_NE(0, __ SizeOfCodeGeneratedSince(&blob3)); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(0, x1); ASSERT_EQUAL_64(0, x2); TEARDOWN(); } TEST(claim_drop_zero) { INIT_V8(); SETUP(); START(); Label start; __ Bind(&start); __ Claim(0); __ Drop(0); __ Claim(xzr, 8); __ Drop(xzr, 8); __ Claim(xzr, 0); __ Drop(xzr, 0); __ Claim(x7, 0); __ Drop(x7, 0); __ ClaimBySMI(xzr, 8); __ DropBySMI(xzr, 8); __ ClaimBySMI(xzr, 0); __ DropBySMI(xzr, 0); CHECK_EQ(0, __ SizeOfCodeGeneratedSince(&start)); END(); RUN(); TEARDOWN(); } TEST(neg) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0xf123456789abcdefL); // Immediate. __ Neg(x1, 0x123); __ Neg(w2, 0x123); // Shifted. __ Neg(x3, Operand(x0, LSL, 1)); __ Neg(w4, Operand(w0, LSL, 2)); __ Neg(x5, Operand(x0, LSR, 3)); __ Neg(w6, Operand(w0, LSR, 4)); __ Neg(x7, Operand(x0, ASR, 5)); __ Neg(w8, Operand(w0, ASR, 6)); // Extended. __ Neg(w9, Operand(w0, UXTB)); __ Neg(x10, Operand(x0, SXTB, 1)); __ Neg(w11, Operand(w0, UXTH, 2)); __ Neg(x12, Operand(x0, SXTH, 3)); __ Neg(w13, Operand(w0, UXTW, 4)); __ Neg(x14, Operand(x0, SXTW, 4)); END(); RUN(); ASSERT_EQUAL_64(0xfffffffffffffeddUL, x1); ASSERT_EQUAL_64(0xfffffedd, x2); ASSERT_EQUAL_64(0x1db97530eca86422UL, x3); ASSERT_EQUAL_64(0xd950c844, x4); ASSERT_EQUAL_64(0xe1db97530eca8643UL, x5); ASSERT_EQUAL_64(0xf7654322, x6); ASSERT_EQUAL_64(0x0076e5d4c3b2a191UL, x7); ASSERT_EQUAL_64(0x01d950c9, x8); ASSERT_EQUAL_64(0xffffff11, x9); ASSERT_EQUAL_64(0x0000000000000022UL, x10); ASSERT_EQUAL_64(0xfffcc844, x11); ASSERT_EQUAL_64(0x0000000000019088UL, x12); ASSERT_EQUAL_64(0x65432110, x13); ASSERT_EQUAL_64(0x0000000765432110UL, x14); TEARDOWN(); } TEST(adc_sbc_shift) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x2, 0x0123456789abcdefL); __ Mov(x3, 0xfedcba9876543210L); __ Mov(x4, 0xffffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adc(x5, x2, Operand(x3)); __ Adc(x6, x0, Operand(x1, LSL, 60)); __ Sbc(x7, x4, Operand(x3, LSR, 4)); __ Adc(x8, x2, Operand(x3, ASR, 4)); __ Adc(x9, x2, Operand(x3, ROR, 8)); __ Adc(w10, w2, Operand(w3)); __ Adc(w11, w0, Operand(w1, LSL, 30)); __ Sbc(w12, w4, Operand(w3, LSR, 4)); __ Adc(w13, w2, Operand(w3, ASR, 4)); __ Adc(w14, w2, Operand(w3, ROR, 8)); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Adc(x18, x2, Operand(x3)); __ Adc(x19, x0, Operand(x1, LSL, 60)); __ Sbc(x20, x4, Operand(x3, LSR, 4)); __ Adc(x21, x2, Operand(x3, ASR, 4)); __ Adc(x22, x2, Operand(x3, ROR, 8)); __ Adc(w23, w2, Operand(w3)); __ Adc(w24, w0, Operand(w1, LSL, 30)); __ Sbc(w25, w4, Operand(w3, LSR, 4)); __ Adc(w26, w2, Operand(w3, ASR, 4)); __ Adc(w27, w2, Operand(w3, ROR, 8)); END(); RUN(); ASSERT_EQUAL_64(0xffffffffffffffffL, x5); ASSERT_EQUAL_64(1L << 60, x6); ASSERT_EQUAL_64(0xf0123456789abcddL, x7); ASSERT_EQUAL_64(0x0111111111111110L, x8); ASSERT_EQUAL_64(0x1222222222222221L, x9); ASSERT_EQUAL_32(0xffffffff, w10); ASSERT_EQUAL_32(1 << 30, w11); ASSERT_EQUAL_32(0xf89abcdd, w12); ASSERT_EQUAL_32(0x91111110, w13); ASSERT_EQUAL_32(0x9a222221, w14); ASSERT_EQUAL_64(0xffffffffffffffffL + 1, x18); ASSERT_EQUAL_64((1L << 60) + 1, x19); ASSERT_EQUAL_64(0xf0123456789abcddL + 1, x20); ASSERT_EQUAL_64(0x0111111111111110L + 1, x21); ASSERT_EQUAL_64(0x1222222222222221L + 1, x22); ASSERT_EQUAL_32(0xffffffff + 1, w23); ASSERT_EQUAL_32((1 << 30) + 1, w24); ASSERT_EQUAL_32(0xf89abcdd + 1, w25); ASSERT_EQUAL_32(0x91111110 + 1, w26); ASSERT_EQUAL_32(0x9a222221 + 1, w27); // Check that adc correctly sets the condition flags. START(); __ Mov(x0, 1); __ Mov(x1, 0xffffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); ASSERT_EQUAL_64(0, x10); START(); __ Mov(x0, 1); __ Mov(x1, 0x8000000000000000L); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1, ASR, 63)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); ASSERT_EQUAL_64(0, x10); START(); __ Mov(x0, 0x10); __ Mov(x1, 0x07ffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1, LSL, 4)); END(); RUN(); ASSERT_EQUAL_NZCV(NVFlag); ASSERT_EQUAL_64(0x8000000000000000L, x10); // Check that sbc correctly sets the condition flags. START(); __ Mov(x0, 0); __ Mov(x1, 0xffffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Sbcs(x10, x0, Operand(x1)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0, x10); START(); __ Mov(x0, 1); __ Mov(x1, 0xffffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Sbcs(x10, x0, Operand(x1, LSR, 1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x8000000000000001L, x10); START(); __ Mov(x0, 0); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Sbcs(x10, x0, Operand(0xffffffffffffffffL)); END(); RUN(); ASSERT_EQUAL_NZCV(ZFlag); ASSERT_EQUAL_64(0, x10); START() __ Mov(w0, 0x7fffffff); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Ngcs(w10, w0); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x80000000, x10); START(); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Ngcs(x10, 0x7fffffffffffffffL); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x8000000000000000L, x10); START() __ Mov(x0, 0); // Set the C flag. __ Cmp(x0, Operand(x0)); __ Sbcs(x10, x0, Operand(1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0xffffffffffffffffL, x10); START() __ Mov(x0, 0); // Set the C flag. __ Cmp(x0, Operand(x0)); __ Ngcs(x10, 0x7fffffffffffffffL); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); ASSERT_EQUAL_64(0x8000000000000001L, x10); TEARDOWN(); } TEST(adc_sbc_extend) { INIT_V8(); SETUP(); START(); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Mov(x0, 0); __ Mov(x1, 1); __ Mov(x2, 0x0123456789abcdefL); __ Adc(x10, x1, Operand(w2, UXTB, 1)); __ Adc(x11, x1, Operand(x2, SXTH, 2)); __ Sbc(x12, x1, Operand(w2, UXTW, 4)); __ Adc(x13, x1, Operand(x2, UXTX, 4)); __ Adc(w14, w1, Operand(w2, UXTB, 1)); __ Adc(w15, w1, Operand(w2, SXTH, 2)); __ Adc(w9, w1, Operand(w2, UXTW, 4)); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Adc(x20, x1, Operand(w2, UXTB, 1)); __ Adc(x21, x1, Operand(x2, SXTH, 2)); __ Sbc(x22, x1, Operand(w2, UXTW, 4)); __ Adc(x23, x1, Operand(x2, UXTX, 4)); __ Adc(w24, w1, Operand(w2, UXTB, 1)); __ Adc(w25, w1, Operand(w2, SXTH, 2)); __ Adc(w26, w1, Operand(w2, UXTW, 4)); END(); RUN(); ASSERT_EQUAL_64(0x1df, x10); ASSERT_EQUAL_64(0xffffffffffff37bdL, x11); ASSERT_EQUAL_64(0xfffffff765432110L, x12); ASSERT_EQUAL_64(0x123456789abcdef1L, x13); ASSERT_EQUAL_32(0x1df, w14); ASSERT_EQUAL_32(0xffff37bd, w15); ASSERT_EQUAL_32(0x9abcdef1, w9); ASSERT_EQUAL_64(0x1df + 1, x20); ASSERT_EQUAL_64(0xffffffffffff37bdL + 1, x21); ASSERT_EQUAL_64(0xfffffff765432110L + 1, x22); ASSERT_EQUAL_64(0x123456789abcdef1L + 1, x23); ASSERT_EQUAL_32(0x1df + 1, w24); ASSERT_EQUAL_32(0xffff37bd + 1, w25); ASSERT_EQUAL_32(0x9abcdef1 + 1, w26); // Check that adc correctly sets the condition flags. START(); __ Mov(x0, 0xff); __ Mov(x1, 0xffffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1, SXTX, 1)); END(); RUN(); ASSERT_EQUAL_NZCV(CFlag); START(); __ Mov(x0, 0x7fffffffffffffffL); __ Mov(x1, 1); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(x1, UXTB, 2)); END(); RUN(); ASSERT_EQUAL_NZCV(NVFlag); START(); __ Mov(x0, 0x7fffffffffffffffL); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adcs(x10, x0, Operand(1)); END(); RUN(); ASSERT_EQUAL_NZCV(NVFlag); TEARDOWN(); } TEST(adc_sbc_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Adc(x7, x0, Operand(0x1234567890abcdefUL)); __ Adc(w8, w0, Operand(0xffffffff)); __ Sbc(x9, x0, Operand(0x1234567890abcdefUL)); __ Sbc(w10, w0, Operand(0xffffffff)); __ Ngc(x11, Operand(0xffffffff00000000UL)); __ Ngc(w12, Operand(0xffff0000)); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Adc(x18, x0, Operand(0x1234567890abcdefUL)); __ Adc(w19, w0, Operand(0xffffffff)); __ Sbc(x20, x0, Operand(0x1234567890abcdefUL)); __ Sbc(w21, w0, Operand(0xffffffff)); __ Ngc(x22, Operand(0xffffffff00000000UL)); __ Ngc(w23, Operand(0xffff0000)); END(); RUN(); ASSERT_EQUAL_64(0x1234567890abcdefUL, x7); ASSERT_EQUAL_64(0xffffffff, x8); ASSERT_EQUAL_64(0xedcba9876f543210UL, x9); ASSERT_EQUAL_64(0, x10); ASSERT_EQUAL_64(0xffffffff, x11); ASSERT_EQUAL_64(0xffff, x12); ASSERT_EQUAL_64(0x1234567890abcdefUL + 1, x18); ASSERT_EQUAL_64(0, x19); ASSERT_EQUAL_64(0xedcba9876f543211UL, x20); ASSERT_EQUAL_64(1, x21); ASSERT_EQUAL_64(0x100000000UL, x22); ASSERT_EQUAL_64(0x10000, x23); TEARDOWN(); } TEST(flags) { INIT_V8(); SETUP(); START(); __ Mov(x0, 0); __ Mov(x1, 0x1111111111111111L); __ Neg(x10, Operand(x0)); __ Neg(x11, Operand(x1)); __ Neg(w12, Operand(w1)); // Clear the C flag. __ Adds(x0, x0, Operand(0)); __ Ngc(x13, Operand(x0)); // Set the C flag. __ Cmp(x0, Operand(x0)); __ Ngc(w14, Operand(w0)); END(); RUN(); ASSERT_EQUAL_64(0, x10); ASSERT_EQUAL_64(-0x1111111111111111L, x11); ASSERT_EQUAL_32(-0x11111111, w12); ASSERT_EQUAL_64(-1L, x13); ASSERT_EQUAL_32(0, w14); START(); __ Mov(x0, 0); __ Cmp(x0, Operand(x0)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); START(); __ Mov(w0, 0); __ Cmp(w0, Operand(w0)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); START(); __ Mov(x0, 0); __ Mov(x1, 0x1111111111111111L); __ Cmp(x0, Operand(x1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); START(); __ Mov(w0, 0); __ Mov(w1, 0x11111111); __ Cmp(w0, Operand(w1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); START(); __ Mov(x1, 0x1111111111111111L); __ Cmp(x1, Operand(0)); END(); RUN(); ASSERT_EQUAL_NZCV(CFlag); START(); __ Mov(w1, 0x11111111); __ Cmp(w1, Operand(0)); END(); RUN(); ASSERT_EQUAL_NZCV(CFlag); START(); __ Mov(x0, 1); __ Mov(x1, 0x7fffffffffffffffL); __ Cmn(x1, Operand(x0)); END(); RUN(); ASSERT_EQUAL_NZCV(NVFlag); START(); __ Mov(w0, 1); __ Mov(w1, 0x7fffffff); __ Cmn(w1, Operand(w0)); END(); RUN(); ASSERT_EQUAL_NZCV(NVFlag); START(); __ Mov(x0, 1); __ Mov(x1, 0xffffffffffffffffL); __ Cmn(x1, Operand(x0)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); START(); __ Mov(w0, 1); __ Mov(w1, 0xffffffff); __ Cmn(w1, Operand(w0)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); START(); __ Mov(w0, 0); __ Mov(w1, 1); // Clear the C flag. __ Adds(w0, w0, Operand(0)); __ Ngcs(w0, Operand(w1)); END(); RUN(); ASSERT_EQUAL_NZCV(NFlag); START(); __ Mov(w0, 0); __ Mov(w1, 0); // Set the C flag. __ Cmp(w0, Operand(w0)); __ Ngcs(w0, Operand(w1)); END(); RUN(); ASSERT_EQUAL_NZCV(ZCFlag); TEARDOWN(); } TEST(cmp_shift) { INIT_V8(); SETUP(); START(); __ Mov(x18, 0xf0000000); __ Mov(x19, 0xf000000010000000UL); __ Mov(x20, 0xf0000000f0000000UL); __ Mov(x21, 0x7800000078000000UL); __ Mov(x22, 0x3c0000003c000000UL); __ Mov(x23, 0x8000000780000000UL); __ Mov(x24, 0x0000000f00000000UL); __ Mov(x25, 0x00000003c0000000UL); __ Mov(x26, 0x8000000780000000UL); __ Mov(x27, 0xc0000003); __ Cmp(w20, Operand(w21, LSL, 1)); __ Mrs(x0, NZCV); __ Cmp(x20, Operand(x22, LSL, 2)); __ Mrs(x1, NZCV); __ Cmp(w19, Operand(w23, LSR, 3)); __ Mrs(x2, NZCV); __ Cmp(x18, Operand(x24, LSR, 4)); __ Mrs(x3, NZCV); __ Cmp(w20, Operand(w25, ASR, 2)); __ Mrs(x4, NZCV); __ Cmp(x20, Operand(x26, ASR, 3)); __ Mrs(x5, NZCV); __ Cmp(w27, Operand(w22, ROR, 28)); __ Mrs(x6, NZCV); __ Cmp(x20, Operand(x21, ROR, 31)); __ Mrs(x7, NZCV); END(); RUN(); ASSERT_EQUAL_32(ZCFlag, w0); ASSERT_EQUAL_32(ZCFlag, w1); ASSERT_EQUAL_32(ZCFlag, w2); ASSERT_EQUAL_32(ZCFlag, w3); ASSERT_EQUAL_32(ZCFlag, w4); ASSERT_EQUAL_32(ZCFlag, w5); ASSERT_EQUAL_32(ZCFlag, w6); ASSERT_EQUAL_32(ZCFlag, w7); TEARDOWN(); } TEST(cmp_extend) { INIT_V8(); SETUP(); START(); __ Mov(w20, 0x2); __ Mov(w21, 0x1); __ Mov(x22, 0xffffffffffffffffUL); __ Mov(x23, 0xff); __ Mov(x24, 0xfffffffffffffffeUL); __ Mov(x25, 0xffff); __ Mov(x26, 0xffffffff); __ Cmp(w20, Operand(w21, LSL, 1)); __ Mrs(x0, NZCV); __ Cmp(x22, Operand(x23, SXTB, 0)); __ Mrs(x1, NZCV); __ Cmp(x24, Operand(x23, SXTB, 1)); __ Mrs(x2, NZCV); __ Cmp(x24, Operand(x23, UXTB, 1)); __ Mrs(x3, NZCV); __ Cmp(w22, Operand(w25, UXTH)); __ Mrs(x4, NZCV); __ Cmp(x22, Operand(x25, SXTH)); __ Mrs(x5, NZCV); __ Cmp(x22, Operand(x26, UXTW)); __ Mrs(x6, NZCV); __ Cmp(x24, Operand(x26, SXTW, 1)); __ Mrs(x7, NZCV); END(); RUN(); ASSERT_EQUAL_32(ZCFlag, w0); ASSERT_EQUAL_32(ZCFlag, w1); ASSERT_EQUAL_32(ZCFlag, w2); ASSERT_EQUAL_32(NCFlag, w3); ASSERT_EQUAL_32(NCFlag, w4); ASSERT_EQUAL_32(ZCFlag, w5); ASSERT_EQUAL_32(NCFlag, w6); ASSERT_EQUAL_32(ZCFlag, w7); TEARDOWN(); } TEST(ccmp) { INIT_V8(); SETUP(); START(); __ Mov(w16, 0); __ Mov(w17, 1); __ Cmp(w16, w16); __ Ccmp(w16, w17, NCFlag, eq); __ Mrs(x0, NZCV); __ Cmp(w16, w16); __ Ccmp(w16, w17, NCFlag, ne); __ Mrs(x1, NZCV); __ Cmp(x16, x16); __ Ccmn(x16, 2, NZCVFlag, eq); __ Mrs(x2, NZCV); __ Cmp(x16, x16); __ Ccmn(x16, 2, NZCVFlag, ne); __ Mrs(x3, NZCV); __ ccmp(x16, x16, NZCVFlag, al); __ Mrs(x4, NZCV); __ ccmp(x16, x16, NZCVFlag, nv); __ Mrs(x5, NZCV); END(); RUN(); ASSERT_EQUAL_32(NFlag, w0); ASSERT_EQUAL_32(NCFlag, w1); ASSERT_EQUAL_32(NoFlag, w2); ASSERT_EQUAL_32(NZCVFlag, w3); ASSERT_EQUAL_32(ZCFlag, w4); ASSERT_EQUAL_32(ZCFlag, w5); TEARDOWN(); } TEST(ccmp_wide_imm) { INIT_V8(); SETUP(); START(); __ Mov(w20, 0); __ Cmp(w20, Operand(w20)); __ Ccmp(w20, Operand(0x12345678), NZCVFlag, eq); __ Mrs(x0, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x20, Operand(0xffffffffffffffffUL), NZCVFlag, eq); __ Mrs(x1, NZCV); END(); RUN(); ASSERT_EQUAL_32(NFlag, w0); ASSERT_EQUAL_32(NoFlag, w1); TEARDOWN(); } TEST(ccmp_shift_extend) { INIT_V8(); SETUP(); START(); __ Mov(w20, 0x2); __ Mov(w21, 0x1); __ Mov(x22, 0xffffffffffffffffUL); __ Mov(x23, 0xff); __ Mov(x24, 0xfffffffffffffffeUL); __ Cmp(w20, Operand(w20)); __ Ccmp(w20, Operand(w21, LSL, 1), NZCVFlag, eq); __ Mrs(x0, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x22, Operand(x23, SXTB, 0), NZCVFlag, eq); __ Mrs(x1, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x24, Operand(x23, SXTB, 1), NZCVFlag, eq); __ Mrs(x2, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, eq); __ Mrs(x3, NZCV); __ Cmp(w20, Operand(w20)); __ Ccmp(x24, Operand(x23, UXTB, 1), NZCVFlag, ne); __ Mrs(x4, NZCV); END(); RUN(); ASSERT_EQUAL_32(ZCFlag, w0); ASSERT_EQUAL_32(ZCFlag, w1); ASSERT_EQUAL_32(ZCFlag, w2); ASSERT_EQUAL_32(NCFlag, w3); ASSERT_EQUAL_32(NZCVFlag, w4); TEARDOWN(); } TEST(csel) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Mov(x24, 0x0000000f0000000fUL); __ Mov(x25, 0x0000001f0000001fUL); __ Mov(x26, 0); __ Mov(x27, 0); __ Cmp(w16, 0); __ Csel(w0, w24, w25, eq); __ Csel(w1, w24, w25, ne); __ Csinc(w2, w24, w25, mi); __ Csinc(w3, w24, w25, pl); __ csel(w13, w24, w25, al); __ csel(x14, x24, x25, nv); __ Cmp(x16, 1); __ Csinv(x4, x24, x25, gt); __ Csinv(x5, x24, x25, le); __ Csneg(x6, x24, x25, hs); __ Csneg(x7, x24, x25, lo); __ Cset(w8, ne); __ Csetm(w9, ne); __ Cinc(x10, x25, ne); __ Cinv(x11, x24, ne); __ Cneg(x12, x24, ne); __ csel(w15, w24, w25, al); __ csel(x18, x24, x25, nv); __ CzeroX(x24, ne); __ CzeroX(x25, eq); __ CmovX(x26, x25, ne); __ CmovX(x27, x25, eq); END(); RUN(); ASSERT_EQUAL_64(0x0000000f, x0); ASSERT_EQUAL_64(0x0000001f, x1); ASSERT_EQUAL_64(0x00000020, x2); ASSERT_EQUAL_64(0x0000000f, x3); ASSERT_EQUAL_64(0xffffffe0ffffffe0UL, x4); ASSERT_EQUAL_64(0x0000000f0000000fUL, x5); ASSERT_EQUAL_64(0xffffffe0ffffffe1UL, x6); ASSERT_EQUAL_64(0x0000000f0000000fUL, x7); ASSERT_EQUAL_64(0x00000001, x8); ASSERT_EQUAL_64(0xffffffff, x9); ASSERT_EQUAL_64(0x0000001f00000020UL, x10); ASSERT_EQUAL_64(0xfffffff0fffffff0UL, x11); ASSERT_EQUAL_64(0xfffffff0fffffff1UL, x12); ASSERT_EQUAL_64(0x0000000f, x13); ASSERT_EQUAL_64(0x0000000f0000000fUL, x14); ASSERT_EQUAL_64(0x0000000f, x15); ASSERT_EQUAL_64(0x0000000f0000000fUL, x18); ASSERT_EQUAL_64(0, x24); ASSERT_EQUAL_64(0x0000001f0000001fUL, x25); ASSERT_EQUAL_64(0x0000001f0000001fUL, x26); ASSERT_EQUAL_64(0, x27); TEARDOWN(); } TEST(csel_imm) { INIT_V8(); SETUP(); START(); __ Mov(x18, 0); __ Mov(x19, 0x80000000); __ Mov(x20, 0x8000000000000000UL); __ Cmp(x18, Operand(0)); __ Csel(w0, w19, -2, ne); __ Csel(w1, w19, -1, ne); __ Csel(w2, w19, 0, ne); __ Csel(w3, w19, 1, ne); __ Csel(w4, w19, 2, ne); __ Csel(w5, w19, Operand(w19, ASR, 31), ne); __ Csel(w6, w19, Operand(w19, ROR, 1), ne); __ Csel(w7, w19, 3, eq); __ Csel(x8, x20, -2, ne); __ Csel(x9, x20, -1, ne); __ Csel(x10, x20, 0, ne); __ Csel(x11, x20, 1, ne); __ Csel(x12, x20, 2, ne); __ Csel(x13, x20, Operand(x20, ASR, 63), ne); __ Csel(x14, x20, Operand(x20, ROR, 1), ne); __ Csel(x15, x20, 3, eq); END(); RUN(); ASSERT_EQUAL_32(-2, w0); ASSERT_EQUAL_32(-1, w1); ASSERT_EQUAL_32(0, w2); ASSERT_EQUAL_32(1, w3); ASSERT_EQUAL_32(2, w4); ASSERT_EQUAL_32(-1, w5); ASSERT_EQUAL_32(0x40000000, w6); ASSERT_EQUAL_32(0x80000000, w7); ASSERT_EQUAL_64(-2, x8); ASSERT_EQUAL_64(-1, x9); ASSERT_EQUAL_64(0, x10); ASSERT_EQUAL_64(1, x11); ASSERT_EQUAL_64(2, x12); ASSERT_EQUAL_64(-1, x13); ASSERT_EQUAL_64(0x4000000000000000UL, x14); ASSERT_EQUAL_64(0x8000000000000000UL, x15); TEARDOWN(); } TEST(lslv) { INIT_V8(); SETUP(); uint64_t value = 0x0123456789abcdefUL; int shift[] = {1, 3, 5, 9, 17, 33}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ lslv(x0, x0, xzr); __ Lsl(x16, x0, x1); __ Lsl(x17, x0, x2); __ Lsl(x18, x0, x3); __ Lsl(x19, x0, x4); __ Lsl(x20, x0, x5); __ Lsl(x21, x0, x6); __ Lsl(w22, w0, w1); __ Lsl(w23, w0, w2); __ Lsl(w24, w0, w3); __ Lsl(w25, w0, w4); __ Lsl(w26, w0, w5); __ Lsl(w27, w0, w6); END(); RUN(); ASSERT_EQUAL_64(value, x0); ASSERT_EQUAL_64(value << (shift[0] & 63), x16); ASSERT_EQUAL_64(value << (shift[1] & 63), x17); ASSERT_EQUAL_64(value << (shift[2] & 63), x18); ASSERT_EQUAL_64(value << (shift[3] & 63), x19); ASSERT_EQUAL_64(value << (shift[4] & 63), x20); ASSERT_EQUAL_64(value << (shift[5] & 63), x21); ASSERT_EQUAL_32(value << (shift[0] & 31), w22); ASSERT_EQUAL_32(value << (shift[1] & 31), w23); ASSERT_EQUAL_32(value << (shift[2] & 31), w24); ASSERT_EQUAL_32(value << (shift[3] & 31), w25); ASSERT_EQUAL_32(value << (shift[4] & 31), w26); ASSERT_EQUAL_32(value << (shift[5] & 31), w27); TEARDOWN(); } TEST(lsrv) { INIT_V8(); SETUP(); uint64_t value = 0x0123456789abcdefUL; int shift[] = {1, 3, 5, 9, 17, 33}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ lsrv(x0, x0, xzr); __ Lsr(x16, x0, x1); __ Lsr(x17, x0, x2); __ Lsr(x18, x0, x3); __ Lsr(x19, x0, x4); __ Lsr(x20, x0, x5); __ Lsr(x21, x0, x6); __ Lsr(w22, w0, w1); __ Lsr(w23, w0, w2); __ Lsr(w24, w0, w3); __ Lsr(w25, w0, w4); __ Lsr(w26, w0, w5); __ Lsr(w27, w0, w6); END(); RUN(); ASSERT_EQUAL_64(value, x0); ASSERT_EQUAL_64(value >> (shift[0] & 63), x16); ASSERT_EQUAL_64(value >> (shift[1] & 63), x17); ASSERT_EQUAL_64(value >> (shift[2] & 63), x18); ASSERT_EQUAL_64(value >> (shift[3] & 63), x19); ASSERT_EQUAL_64(value >> (shift[4] & 63), x20); ASSERT_EQUAL_64(value >> (shift[5] & 63), x21); value &= 0xffffffffUL; ASSERT_EQUAL_32(value >> (shift[0] & 31), w22); ASSERT_EQUAL_32(value >> (shift[1] & 31), w23); ASSERT_EQUAL_32(value >> (shift[2] & 31), w24); ASSERT_EQUAL_32(value >> (shift[3] & 31), w25); ASSERT_EQUAL_32(value >> (shift[4] & 31), w26); ASSERT_EQUAL_32(value >> (shift[5] & 31), w27); TEARDOWN(); } TEST(asrv) { INIT_V8(); SETUP(); int64_t value = 0xfedcba98fedcba98UL; int shift[] = {1, 3, 5, 9, 17, 33}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ asrv(x0, x0, xzr); __ Asr(x16, x0, x1); __ Asr(x17, x0, x2); __ Asr(x18, x0, x3); __ Asr(x19, x0, x4); __ Asr(x20, x0, x5); __ Asr(x21, x0, x6); __ Asr(w22, w0, w1); __ Asr(w23, w0, w2); __ Asr(w24, w0, w3); __ Asr(w25, w0, w4); __ Asr(w26, w0, w5); __ Asr(w27, w0, w6); END(); RUN(); ASSERT_EQUAL_64(value, x0); ASSERT_EQUAL_64(value >> (shift[0] & 63), x16); ASSERT_EQUAL_64(value >> (shift[1] & 63), x17); ASSERT_EQUAL_64(value >> (shift[2] & 63), x18); ASSERT_EQUAL_64(value >> (shift[3] & 63), x19); ASSERT_EQUAL_64(value >> (shift[4] & 63), x20); ASSERT_EQUAL_64(value >> (shift[5] & 63), x21); int32_t value32 = static_cast(value & 0xffffffffUL); ASSERT_EQUAL_32(value32 >> (shift[0] & 31), w22); ASSERT_EQUAL_32(value32 >> (shift[1] & 31), w23); ASSERT_EQUAL_32(value32 >> (shift[2] & 31), w24); ASSERT_EQUAL_32(value32 >> (shift[3] & 31), w25); ASSERT_EQUAL_32(value32 >> (shift[4] & 31), w26); ASSERT_EQUAL_32(value32 >> (shift[5] & 31), w27); TEARDOWN(); } TEST(rorv) { INIT_V8(); SETUP(); uint64_t value = 0x0123456789abcdefUL; int shift[] = {4, 8, 12, 16, 24, 36}; START(); __ Mov(x0, value); __ Mov(w1, shift[0]); __ Mov(w2, shift[1]); __ Mov(w3, shift[2]); __ Mov(w4, shift[3]); __ Mov(w5, shift[4]); __ Mov(w6, shift[5]); __ rorv(x0, x0, xzr); __ Ror(x16, x0, x1); __ Ror(x17, x0, x2); __ Ror(x18, x0, x3); __ Ror(x19, x0, x4); __ Ror(x20, x0, x5); __ Ror(x21, x0, x6); __ Ror(w22, w0, w1); __ Ror(w23, w0, w2); __ Ror(w24, w0, w3); __ Ror(w25, w0, w4); __ Ror(w26, w0, w5); __ Ror(w27, w0, w6); END(); RUN(); ASSERT_EQUAL_64(value, x0); ASSERT_EQUAL_64(0xf0123456789abcdeUL, x16); ASSERT_EQUAL_64(0xef0123456789abcdUL, x17); ASSERT_EQUAL_64(0xdef0123456789abcUL, x18); ASSERT_EQUAL_64(0xcdef0123456789abUL, x19); ASSERT_EQUAL_64(0xabcdef0123456789UL, x20); ASSERT_EQUAL_64(0x789abcdef0123456UL, x21); ASSERT_EQUAL_32(0xf89abcde, w22); ASSERT_EQUAL_32(0xef89abcd, w23); ASSERT_EQUAL_32(0xdef89abc, w24); ASSERT_EQUAL_32(0xcdef89ab, w25); ASSERT_EQUAL_32(0xabcdef89, w26); ASSERT_EQUAL_32(0xf89abcde, w27); TEARDOWN(); } TEST(bfm) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789abcdefL); __ Mov(x10, 0x8888888888888888L); __ Mov(x11, 0x8888888888888888L); __ Mov(x12, 0x8888888888888888L); __ Mov(x13, 0x8888888888888888L); __ Mov(w20, 0x88888888); __ Mov(w21, 0x88888888); __ bfm(x10, x1, 16, 31); __ bfm(x11, x1, 32, 15); __ bfm(w20, w1, 16, 23); __ bfm(w21, w1, 24, 15); // Aliases. __ Bfi(x12, x1, 16, 8); __ Bfxil(x13, x1, 16, 8); END(); RUN(); ASSERT_EQUAL_64(0x88888888888889abL, x10); ASSERT_EQUAL_64(0x8888cdef88888888L, x11); ASSERT_EQUAL_32(0x888888ab, w20); ASSERT_EQUAL_32(0x88cdef88, w21); ASSERT_EQUAL_64(0x8888888888ef8888L, x12); ASSERT_EQUAL_64(0x88888888888888abL, x13); TEARDOWN(); } TEST(sbfm) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789abcdefL); __ Mov(x2, 0xfedcba9876543210L); __ sbfm(x10, x1, 16, 31); __ sbfm(x11, x1, 32, 15); __ sbfm(x12, x1, 32, 47); __ sbfm(x13, x1, 48, 35); __ sbfm(w14, w1, 16, 23); __ sbfm(w15, w1, 24, 15); __ sbfm(w16, w2, 16, 23); __ sbfm(w17, w2, 24, 15); // Aliases. __ Asr(x18, x1, 32); __ Asr(x19, x2, 32); __ Sbfiz(x20, x1, 8, 16); __ Sbfiz(x21, x2, 8, 16); __ Sbfx(x22, x1, 8, 16); __ Sbfx(x23, x2, 8, 16); __ Sxtb(x24, w1); __ Sxtb(x25, x2); __ Sxth(x26, w1); __ Sxth(x27, x2); __ Sxtw(x28, w1); __ Sxtw(x29, x2); END(); RUN(); ASSERT_EQUAL_64(0xffffffffffff89abL, x10); ASSERT_EQUAL_64(0xffffcdef00000000L, x11); ASSERT_EQUAL_64(0x4567L, x12); ASSERT_EQUAL_64(0x789abcdef0000L, x13); ASSERT_EQUAL_32(0xffffffab, w14); ASSERT_EQUAL_32(0xffcdef00, w15); ASSERT_EQUAL_32(0x54, w16); ASSERT_EQUAL_32(0x00321000, w17); ASSERT_EQUAL_64(0x01234567L, x18); ASSERT_EQUAL_64(0xfffffffffedcba98L, x19); ASSERT_EQUAL_64(0xffffffffffcdef00L, x20); ASSERT_EQUAL_64(0x321000L, x21); ASSERT_EQUAL_64(0xffffffffffffabcdL, x22); ASSERT_EQUAL_64(0x5432L, x23); ASSERT_EQUAL_64(0xffffffffffffffefL, x24); ASSERT_EQUAL_64(0x10, x25); ASSERT_EQUAL_64(0xffffffffffffcdefL, x26); ASSERT_EQUAL_64(0x3210, x27); ASSERT_EQUAL_64(0xffffffff89abcdefL, x28); ASSERT_EQUAL_64(0x76543210, x29); TEARDOWN(); } TEST(ubfm) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789abcdefL); __ Mov(x2, 0xfedcba9876543210L); __ Mov(x10, 0x8888888888888888L); __ Mov(x11, 0x8888888888888888L); __ ubfm(x10, x1, 16, 31); __ ubfm(x11, x1, 32, 15); __ ubfm(x12, x1, 32, 47); __ ubfm(x13, x1, 48, 35); __ ubfm(w25, w1, 16, 23); __ ubfm(w26, w1, 24, 15); __ ubfm(w27, w2, 16, 23); __ ubfm(w28, w2, 24, 15); // Aliases __ Lsl(x15, x1, 63); __ Lsl(x16, x1, 0); __ Lsr(x17, x1, 32); __ Ubfiz(x18, x1, 8, 16); __ Ubfx(x19, x1, 8, 16); __ Uxtb(x20, x1); __ Uxth(x21, x1); __ Uxtw(x22, x1); END(); RUN(); ASSERT_EQUAL_64(0x00000000000089abL, x10); ASSERT_EQUAL_64(0x0000cdef00000000L, x11); ASSERT_EQUAL_64(0x4567L, x12); ASSERT_EQUAL_64(0x789abcdef0000L, x13); ASSERT_EQUAL_32(0x000000ab, w25); ASSERT_EQUAL_32(0x00cdef00, w26); ASSERT_EQUAL_32(0x54, w27); ASSERT_EQUAL_32(0x00321000, w28); ASSERT_EQUAL_64(0x8000000000000000L, x15); ASSERT_EQUAL_64(0x0123456789abcdefL, x16); ASSERT_EQUAL_64(0x01234567L, x17); ASSERT_EQUAL_64(0xcdef00L, x18); ASSERT_EQUAL_64(0xabcdL, x19); ASSERT_EQUAL_64(0xefL, x20); ASSERT_EQUAL_64(0xcdefL, x21); ASSERT_EQUAL_64(0x89abcdefL, x22); TEARDOWN(); } TEST(extr) { INIT_V8(); SETUP(); START(); __ Mov(x1, 0x0123456789abcdefL); __ Mov(x2, 0xfedcba9876543210L); __ Extr(w10, w1, w2, 0); __ Extr(w11, w1, w2, 1); __ Extr(x12, x2, x1, 2); __ Ror(w13, w1, 0); __ Ror(w14, w2, 17); __ Ror(w15, w1, 31); __ Ror(x18, x2, 1); __ Ror(x19, x1, 63); END(); RUN(); ASSERT_EQUAL_64(0x76543210, x10); ASSERT_EQUAL_64(0xbb2a1908, x11); ASSERT_EQUAL_64(0x0048d159e26af37bUL, x12); ASSERT_EQUAL_64(0x89abcdef, x13); ASSERT_EQUAL_64(0x19083b2a, x14); ASSERT_EQUAL_64(0x13579bdf, x15); ASSERT_EQUAL_64(0x7f6e5d4c3b2a1908UL, x18); ASSERT_EQUAL_64(0x02468acf13579bdeUL, x19); TEARDOWN(); } TEST(fmov_imm) { INIT_V8(); SETUP(); START(); __ Fmov(s11, 1.0); __ Fmov(d22, -13.0); __ Fmov(s1, 255.0); __ Fmov(d2, 12.34567); __ Fmov(s3, 0.0); __ Fmov(d4, 0.0); __ Fmov(s5, kFP32PositiveInfinity); __ Fmov(d6, kFP64NegativeInfinity); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s11); ASSERT_EQUAL_FP64(-13.0, d22); ASSERT_EQUAL_FP32(255.0, s1); ASSERT_EQUAL_FP64(12.34567, d2); ASSERT_EQUAL_FP32(0.0, s3); ASSERT_EQUAL_FP64(0.0, d4); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d6); TEARDOWN(); } TEST(fmov_reg) { INIT_V8(); SETUP(); START(); __ Fmov(s20, 1.0); __ Fmov(w10, s20); __ Fmov(s30, w10); __ Fmov(s5, s20); __ Fmov(d1, -13.0); __ Fmov(x1, d1); __ Fmov(d2, x1); __ Fmov(d4, d1); __ Fmov(d6, rawbits_to_double(0x0123456789abcdefL)); __ Fmov(s6, s6); END(); RUN(); ASSERT_EQUAL_32(float_to_rawbits(1.0), w10); ASSERT_EQUAL_FP32(1.0, s30); ASSERT_EQUAL_FP32(1.0, s5); ASSERT_EQUAL_64(double_to_rawbits(-13.0), x1); ASSERT_EQUAL_FP64(-13.0, d2); ASSERT_EQUAL_FP64(-13.0, d4); ASSERT_EQUAL_FP32(rawbits_to_float(0x89abcdef), s6); TEARDOWN(); } TEST(fadd) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 1.0f); __ Fmov(s19, 0.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fadd(s0, s17, s18); __ Fadd(s1, s18, s19); __ Fadd(s2, s14, s18); __ Fadd(s3, s15, s18); __ Fadd(s4, s16, s18); __ Fadd(s5, s15, s16); __ Fadd(s6, s16, s15); __ Fadd(d7, d30, d31); __ Fadd(d8, d29, d31); __ Fadd(d9, d26, d31); __ Fadd(d10, d27, d31); __ Fadd(d11, d28, d31); __ Fadd(d12, d27, d28); __ Fadd(d13, d28, d27); END(); RUN(); ASSERT_EQUAL_FP32(4.25, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(1.0, s2); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6); ASSERT_EQUAL_FP64(0.25, d7); ASSERT_EQUAL_FP64(2.25, d8); ASSERT_EQUAL_FP64(2.25, d9); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d10); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d11); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13); TEARDOWN(); } TEST(fsub) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 1.0f); __ Fmov(s19, 0.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fsub(s0, s17, s18); __ Fsub(s1, s18, s19); __ Fsub(s2, s14, s18); __ Fsub(s3, s18, s15); __ Fsub(s4, s18, s16); __ Fsub(s5, s15, s15); __ Fsub(s6, s16, s16); __ Fsub(d7, d30, d31); __ Fsub(d8, d29, d31); __ Fsub(d9, d26, d31); __ Fsub(d10, d31, d27); __ Fsub(d11, d31, d28); __ Fsub(d12, d27, d27); __ Fsub(d13, d28, d28); END(); RUN(); ASSERT_EQUAL_FP32(2.25, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(-1.0, s2); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6); ASSERT_EQUAL_FP64(-4.25, d7); ASSERT_EQUAL_FP64(-2.25, d8); ASSERT_EQUAL_FP64(-2.25, d9); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13); TEARDOWN(); } TEST(fmul) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 2.0f); __ Fmov(s19, 0.0f); __ Fmov(s20, -2.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fmul(s0, s17, s18); __ Fmul(s1, s18, s19); __ Fmul(s2, s14, s14); __ Fmul(s3, s15, s20); __ Fmul(s4, s16, s20); __ Fmul(s5, s15, s19); __ Fmul(s6, s19, s16); __ Fmul(d7, d30, d31); __ Fmul(d8, d29, d31); __ Fmul(d9, d26, d26); __ Fmul(d10, d27, d30); __ Fmul(d11, d28, d30); __ Fmul(d12, d27, d29); __ Fmul(d13, d29, d28); END(); RUN(); ASSERT_EQUAL_FP32(6.5, s0); ASSERT_EQUAL_FP32(0.0, s1); ASSERT_EQUAL_FP32(0.0, s2); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s3); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s4); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6); ASSERT_EQUAL_FP64(-4.5, d7); ASSERT_EQUAL_FP64(0.0, d8); ASSERT_EQUAL_FP64(0.0, d9); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13); TEARDOWN(); } static void FmaddFmsubHelper(double n, double m, double a, double fmadd, double fmsub, double fnmadd, double fnmsub) { SETUP(); START(); __ Fmov(d0, n); __ Fmov(d1, m); __ Fmov(d2, a); __ Fmadd(d28, d0, d1, d2); __ Fmsub(d29, d0, d1, d2); __ Fnmadd(d30, d0, d1, d2); __ Fnmsub(d31, d0, d1, d2); END(); RUN(); ASSERT_EQUAL_FP64(fmadd, d28); ASSERT_EQUAL_FP64(fmsub, d29); ASSERT_EQUAL_FP64(fnmadd, d30); ASSERT_EQUAL_FP64(fnmsub, d31); TEARDOWN(); } TEST(fmadd_fmsub_double) { INIT_V8(); // It's hard to check the result of fused operations because the only way to // calculate the result is using fma, which is what the simulator uses anyway. // TODO(jbramley): Add tests to check behaviour against a hardware trace. // Basic operation. FmaddFmsubHelper(1.0, 2.0, 3.0, 5.0, 1.0, -5.0, -1.0); FmaddFmsubHelper(-1.0, 2.0, 3.0, 1.0, 5.0, -1.0, -5.0); // Check the sign of exact zeroes. // n m a fmadd fmsub fnmadd fnmsub FmaddFmsubHelper(-0.0, +0.0, -0.0, -0.0, +0.0, +0.0, +0.0); FmaddFmsubHelper(+0.0, +0.0, -0.0, +0.0, -0.0, +0.0, +0.0); FmaddFmsubHelper(+0.0, +0.0, +0.0, +0.0, +0.0, -0.0, +0.0); FmaddFmsubHelper(-0.0, +0.0, +0.0, +0.0, +0.0, +0.0, -0.0); FmaddFmsubHelper(+0.0, -0.0, -0.0, -0.0, +0.0, +0.0, +0.0); FmaddFmsubHelper(-0.0, -0.0, -0.0, +0.0, -0.0, +0.0, +0.0); FmaddFmsubHelper(-0.0, -0.0, +0.0, +0.0, +0.0, -0.0, +0.0); FmaddFmsubHelper(+0.0, -0.0, +0.0, +0.0, +0.0, +0.0, -0.0); // Check NaN generation. FmaddFmsubHelper(kFP64PositiveInfinity, 0.0, 42.0, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(0.0, kFP64PositiveInfinity, 42.0, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(kFP64PositiveInfinity, 1.0, kFP64PositiveInfinity, kFP64PositiveInfinity, // inf + ( inf * 1) = inf kFP64DefaultNaN, // inf + (-inf * 1) = NaN kFP64NegativeInfinity, // -inf + (-inf * 1) = -inf kFP64DefaultNaN); // -inf + ( inf * 1) = NaN FmaddFmsubHelper(kFP64NegativeInfinity, 1.0, kFP64PositiveInfinity, kFP64DefaultNaN, // inf + (-inf * 1) = NaN kFP64PositiveInfinity, // inf + ( inf * 1) = inf kFP64DefaultNaN, // -inf + ( inf * 1) = NaN kFP64NegativeInfinity); // -inf + (-inf * 1) = -inf } static void FmaddFmsubHelper(float n, float m, float a, float fmadd, float fmsub, float fnmadd, float fnmsub) { SETUP(); START(); __ Fmov(s0, n); __ Fmov(s1, m); __ Fmov(s2, a); __ Fmadd(s28, s0, s1, s2); __ Fmsub(s29, s0, s1, s2); __ Fnmadd(s30, s0, s1, s2); __ Fnmsub(s31, s0, s1, s2); END(); RUN(); ASSERT_EQUAL_FP32(fmadd, s28); ASSERT_EQUAL_FP32(fmsub, s29); ASSERT_EQUAL_FP32(fnmadd, s30); ASSERT_EQUAL_FP32(fnmsub, s31); TEARDOWN(); } TEST(fmadd_fmsub_float) { INIT_V8(); // It's hard to check the result of fused operations because the only way to // calculate the result is using fma, which is what the simulator uses anyway. // TODO(jbramley): Add tests to check behaviour against a hardware trace. // Basic operation. FmaddFmsubHelper(1.0f, 2.0f, 3.0f, 5.0f, 1.0f, -5.0f, -1.0f); FmaddFmsubHelper(-1.0f, 2.0f, 3.0f, 1.0f, 5.0f, -1.0f, -5.0f); // Check the sign of exact zeroes. // n m a fmadd fmsub fnmadd fnmsub FmaddFmsubHelper(-0.0f, +0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f); FmaddFmsubHelper(+0.0f, +0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f); FmaddFmsubHelper(+0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f); FmaddFmsubHelper(-0.0f, +0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f); FmaddFmsubHelper(+0.0f, -0.0f, -0.0f, -0.0f, +0.0f, +0.0f, +0.0f); FmaddFmsubHelper(-0.0f, -0.0f, -0.0f, +0.0f, -0.0f, +0.0f, +0.0f); FmaddFmsubHelper(-0.0f, -0.0f, +0.0f, +0.0f, +0.0f, -0.0f, +0.0f); FmaddFmsubHelper(+0.0f, -0.0f, +0.0f, +0.0f, +0.0f, +0.0f, -0.0f); // Check NaN generation. FmaddFmsubHelper(kFP32PositiveInfinity, 0.0f, 42.0f, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(0.0f, kFP32PositiveInfinity, 42.0f, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(kFP32PositiveInfinity, 1.0f, kFP32PositiveInfinity, kFP32PositiveInfinity, // inf + ( inf * 1) = inf kFP32DefaultNaN, // inf + (-inf * 1) = NaN kFP32NegativeInfinity, // -inf + (-inf * 1) = -inf kFP32DefaultNaN); // -inf + ( inf * 1) = NaN FmaddFmsubHelper(kFP32NegativeInfinity, 1.0f, kFP32PositiveInfinity, kFP32DefaultNaN, // inf + (-inf * 1) = NaN kFP32PositiveInfinity, // inf + ( inf * 1) = inf kFP32DefaultNaN, // -inf + ( inf * 1) = NaN kFP32NegativeInfinity); // -inf + (-inf * 1) = -inf } TEST(fmadd_fmsub_double_nans) { INIT_V8(); // Make sure that NaN propagation works correctly. double s1 = rawbits_to_double(0x7ff5555511111111); double s2 = rawbits_to_double(0x7ff5555522222222); double sa = rawbits_to_double(0x7ff55555aaaaaaaa); double q1 = rawbits_to_double(0x7ffaaaaa11111111); double q2 = rawbits_to_double(0x7ffaaaaa22222222); double qa = rawbits_to_double(0x7ffaaaaaaaaaaaaa); ASSERT(IsSignallingNaN(s1)); ASSERT(IsSignallingNaN(s2)); ASSERT(IsSignallingNaN(sa)); ASSERT(IsQuietNaN(q1)); ASSERT(IsQuietNaN(q2)); ASSERT(IsQuietNaN(qa)); // The input NaNs after passing through ProcessNaN. double s1_proc = rawbits_to_double(0x7ffd555511111111); double s2_proc = rawbits_to_double(0x7ffd555522222222); double sa_proc = rawbits_to_double(0x7ffd5555aaaaaaaa); double q1_proc = q1; double q2_proc = q2; double qa_proc = qa; ASSERT(IsQuietNaN(s1_proc)); ASSERT(IsQuietNaN(s2_proc)); ASSERT(IsQuietNaN(sa_proc)); ASSERT(IsQuietNaN(q1_proc)); ASSERT(IsQuietNaN(q2_proc)); ASSERT(IsQuietNaN(qa_proc)); // Negated NaNs as it would be done on ARMv8 hardware. double s1_proc_neg = rawbits_to_double(0xfffd555511111111); double sa_proc_neg = rawbits_to_double(0xfffd5555aaaaaaaa); double q1_proc_neg = rawbits_to_double(0xfffaaaaa11111111); double qa_proc_neg = rawbits_to_double(0xfffaaaaaaaaaaaaa); ASSERT(IsQuietNaN(s1_proc_neg)); ASSERT(IsQuietNaN(sa_proc_neg)); ASSERT(IsQuietNaN(q1_proc_neg)); ASSERT(IsQuietNaN(qa_proc_neg)); // Quiet NaNs are propagated. FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc); FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); // Signalling NaNs are propagated, and made quiet. FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // Signalling NaNs take precedence over quiet NaNs. FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a. FmaddFmsubHelper(0, kFP64PositiveInfinity, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(kFP64PositiveInfinity, 0, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(0, kFP64NegativeInfinity, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); FmaddFmsubHelper(kFP64NegativeInfinity, 0, qa, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN, kFP64DefaultNaN); } TEST(fmadd_fmsub_float_nans) { INIT_V8(); // Make sure that NaN propagation works correctly. float s1 = rawbits_to_float(0x7f951111); float s2 = rawbits_to_float(0x7f952222); float sa = rawbits_to_float(0x7f95aaaa); float q1 = rawbits_to_float(0x7fea1111); float q2 = rawbits_to_float(0x7fea2222); float qa = rawbits_to_float(0x7feaaaaa); ASSERT(IsSignallingNaN(s1)); ASSERT(IsSignallingNaN(s2)); ASSERT(IsSignallingNaN(sa)); ASSERT(IsQuietNaN(q1)); ASSERT(IsQuietNaN(q2)); ASSERT(IsQuietNaN(qa)); // The input NaNs after passing through ProcessNaN. float s1_proc = rawbits_to_float(0x7fd51111); float s2_proc = rawbits_to_float(0x7fd52222); float sa_proc = rawbits_to_float(0x7fd5aaaa); float q1_proc = q1; float q2_proc = q2; float qa_proc = qa; ASSERT(IsQuietNaN(s1_proc)); ASSERT(IsQuietNaN(s2_proc)); ASSERT(IsQuietNaN(sa_proc)); ASSERT(IsQuietNaN(q1_proc)); ASSERT(IsQuietNaN(q2_proc)); ASSERT(IsQuietNaN(qa_proc)); // Negated NaNs as it would be done on ARMv8 hardware. float s1_proc_neg = rawbits_to_float(0xffd51111); float sa_proc_neg = rawbits_to_float(0xffd5aaaa); float q1_proc_neg = rawbits_to_float(0xffea1111); float qa_proc_neg = rawbits_to_float(0xffeaaaaa); ASSERT(IsQuietNaN(s1_proc_neg)); ASSERT(IsQuietNaN(sa_proc_neg)); ASSERT(IsQuietNaN(q1_proc_neg)); ASSERT(IsQuietNaN(qa_proc_neg)); // Quiet NaNs are propagated. FmaddFmsubHelper(q1, 0, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, 0, q2_proc, q2_proc, q2_proc, q2_proc); FmaddFmsubHelper(0, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, 0, q1_proc, q1_proc_neg, q1_proc_neg, q1_proc); FmaddFmsubHelper(0, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, 0, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); FmaddFmsubHelper(q1, q2, qa, qa_proc, qa_proc, qa_proc_neg, qa_proc_neg); // Signalling NaNs are propagated, and made quiet. FmaddFmsubHelper(s1, 0, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, 0, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(0, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, 0, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(0, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, 0, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // Signalling NaNs take precedence over quiet NaNs. FmaddFmsubHelper(s1, q2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, qa, s2_proc, s2_proc, s2_proc, s2_proc); FmaddFmsubHelper(q1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, qa, s1_proc, s1_proc_neg, s1_proc_neg, s1_proc); FmaddFmsubHelper(q1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, q2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); FmaddFmsubHelper(s1, s2, sa, sa_proc, sa_proc, sa_proc_neg, sa_proc_neg); // A NaN generated by the intermediate op1 * op2 overrides a quiet NaN in a. FmaddFmsubHelper(0, kFP32PositiveInfinity, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(kFP32PositiveInfinity, 0, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(0, kFP32NegativeInfinity, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); FmaddFmsubHelper(kFP32NegativeInfinity, 0, qa, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN, kFP32DefaultNaN); } TEST(fdiv) { INIT_V8(); SETUP(); START(); __ Fmov(s14, -0.0f); __ Fmov(s15, kFP32PositiveInfinity); __ Fmov(s16, kFP32NegativeInfinity); __ Fmov(s17, 3.25f); __ Fmov(s18, 2.0f); __ Fmov(s19, 2.0f); __ Fmov(s20, -2.0f); __ Fmov(d26, -0.0); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0.0); __ Fmov(d30, -2.0); __ Fmov(d31, 2.25); __ Fdiv(s0, s17, s18); __ Fdiv(s1, s18, s19); __ Fdiv(s2, s14, s18); __ Fdiv(s3, s18, s15); __ Fdiv(s4, s18, s16); __ Fdiv(s5, s15, s16); __ Fdiv(s6, s14, s14); __ Fdiv(d7, d31, d30); __ Fdiv(d8, d29, d31); __ Fdiv(d9, d26, d31); __ Fdiv(d10, d31, d27); __ Fdiv(d11, d31, d28); __ Fdiv(d12, d28, d27); __ Fdiv(d13, d29, d29); END(); RUN(); ASSERT_EQUAL_FP32(1.625f, s0); ASSERT_EQUAL_FP32(1.0f, s1); ASSERT_EQUAL_FP32(-0.0f, s2); ASSERT_EQUAL_FP32(0.0f, s3); ASSERT_EQUAL_FP32(-0.0f, s4); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s5); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6); ASSERT_EQUAL_FP64(-1.125, d7); ASSERT_EQUAL_FP64(0.0, d8); ASSERT_EQUAL_FP64(-0.0, d9); ASSERT_EQUAL_FP64(0.0, d10); ASSERT_EQUAL_FP64(-0.0, d11); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d12); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13); TEARDOWN(); } static float MinMaxHelper(float n, float m, bool min, float quiet_nan_substitute = 0.0) { uint32_t raw_n = float_to_rawbits(n); uint32_t raw_m = float_to_rawbits(m); if (std::isnan(n) && ((raw_n & kSQuietNanMask) == 0)) { // n is signalling NaN. return rawbits_to_float(raw_n | kSQuietNanMask); } else if (std::isnan(m) && ((raw_m & kSQuietNanMask) == 0)) { // m is signalling NaN. return rawbits_to_float(raw_m | kSQuietNanMask); } else if (quiet_nan_substitute == 0.0) { if (std::isnan(n)) { // n is quiet NaN. return n; } else if (std::isnan(m)) { // m is quiet NaN. return m; } } else { // Substitute n or m if one is quiet, but not both. if (std::isnan(n) && !std::isnan(m)) { // n is quiet NaN: replace with substitute. n = quiet_nan_substitute; } else if (!std::isnan(n) && std::isnan(m)) { // m is quiet NaN: replace with substitute. m = quiet_nan_substitute; } } if ((n == 0.0) && (m == 0.0) && (copysign(1.0, n) != copysign(1.0, m))) { return min ? -0.0 : 0.0; } return min ? fminf(n, m) : fmaxf(n, m); } static double MinMaxHelper(double n, double m, bool min, double quiet_nan_substitute = 0.0) { uint64_t raw_n = double_to_rawbits(n); uint64_t raw_m = double_to_rawbits(m); if (std::isnan(n) && ((raw_n & kDQuietNanMask) == 0)) { // n is signalling NaN. return rawbits_to_double(raw_n | kDQuietNanMask); } else if (std::isnan(m) && ((raw_m & kDQuietNanMask) == 0)) { // m is signalling NaN. return rawbits_to_double(raw_m | kDQuietNanMask); } else if (quiet_nan_substitute == 0.0) { if (std::isnan(n)) { // n is quiet NaN. return n; } else if (std::isnan(m)) { // m is quiet NaN. return m; } } else { // Substitute n or m if one is quiet, but not both. if (std::isnan(n) && !std::isnan(m)) { // n is quiet NaN: replace with substitute. n = quiet_nan_substitute; } else if (!std::isnan(n) && std::isnan(m)) { // m is quiet NaN: replace with substitute. m = quiet_nan_substitute; } } if ((n == 0.0) && (m == 0.0) && (copysign(1.0, n) != copysign(1.0, m))) { return min ? -0.0 : 0.0; } return min ? fmin(n, m) : fmax(n, m); } static void FminFmaxDoubleHelper(double n, double m, double min, double max, double minnm, double maxnm) { SETUP(); START(); __ Fmov(d0, n); __ Fmov(d1, m); __ Fmin(d28, d0, d1); __ Fmax(d29, d0, d1); __ Fminnm(d30, d0, d1); __ Fmaxnm(d31, d0, d1); END(); RUN(); ASSERT_EQUAL_FP64(min, d28); ASSERT_EQUAL_FP64(max, d29); ASSERT_EQUAL_FP64(minnm, d30); ASSERT_EQUAL_FP64(maxnm, d31); TEARDOWN(); } TEST(fmax_fmin_d) { INIT_V8(); // Use non-standard NaNs to check that the payload bits are preserved. double snan = rawbits_to_double(0x7ff5555512345678); double qnan = rawbits_to_double(0x7ffaaaaa87654321); double snan_processed = rawbits_to_double(0x7ffd555512345678); double qnan_processed = qnan; ASSERT(IsSignallingNaN(snan)); ASSERT(IsQuietNaN(qnan)); ASSERT(IsQuietNaN(snan_processed)); ASSERT(IsQuietNaN(qnan_processed)); // Bootstrap tests. FminFmaxDoubleHelper(0, 0, 0, 0, 0, 0); FminFmaxDoubleHelper(0, 1, 0, 1, 0, 1); FminFmaxDoubleHelper(kFP64PositiveInfinity, kFP64NegativeInfinity, kFP64NegativeInfinity, kFP64PositiveInfinity, kFP64NegativeInfinity, kFP64PositiveInfinity); FminFmaxDoubleHelper(snan, 0, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxDoubleHelper(0, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxDoubleHelper(qnan, 0, qnan_processed, qnan_processed, 0, 0); FminFmaxDoubleHelper(0, qnan, qnan_processed, qnan_processed, 0, 0); FminFmaxDoubleHelper(qnan, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxDoubleHelper(snan, qnan, snan_processed, snan_processed, snan_processed, snan_processed); // Iterate over all combinations of inputs. double inputs[] = { DBL_MAX, DBL_MIN, 1.0, 0.0, -DBL_MAX, -DBL_MIN, -1.0, -0.0, kFP64PositiveInfinity, kFP64NegativeInfinity, kFP64QuietNaN, kFP64SignallingNaN }; const int count = sizeof(inputs) / sizeof(inputs[0]); for (int in = 0; in < count; in++) { double n = inputs[in]; for (int im = 0; im < count; im++) { double m = inputs[im]; FminFmaxDoubleHelper(n, m, MinMaxHelper(n, m, true), MinMaxHelper(n, m, false), MinMaxHelper(n, m, true, kFP64PositiveInfinity), MinMaxHelper(n, m, false, kFP64NegativeInfinity)); } } } static void FminFmaxFloatHelper(float n, float m, float min, float max, float minnm, float maxnm) { SETUP(); START(); __ Fmov(s0, n); __ Fmov(s1, m); __ Fmin(s28, s0, s1); __ Fmax(s29, s0, s1); __ Fminnm(s30, s0, s1); __ Fmaxnm(s31, s0, s1); END(); RUN(); ASSERT_EQUAL_FP32(min, s28); ASSERT_EQUAL_FP32(max, s29); ASSERT_EQUAL_FP32(minnm, s30); ASSERT_EQUAL_FP32(maxnm, s31); TEARDOWN(); } TEST(fmax_fmin_s) { INIT_V8(); // Use non-standard NaNs to check that the payload bits are preserved. float snan = rawbits_to_float(0x7f951234); float qnan = rawbits_to_float(0x7fea8765); float snan_processed = rawbits_to_float(0x7fd51234); float qnan_processed = qnan; ASSERT(IsSignallingNaN(snan)); ASSERT(IsQuietNaN(qnan)); ASSERT(IsQuietNaN(snan_processed)); ASSERT(IsQuietNaN(qnan_processed)); // Bootstrap tests. FminFmaxFloatHelper(0, 0, 0, 0, 0, 0); FminFmaxFloatHelper(0, 1, 0, 1, 0, 1); FminFmaxFloatHelper(kFP32PositiveInfinity, kFP32NegativeInfinity, kFP32NegativeInfinity, kFP32PositiveInfinity, kFP32NegativeInfinity, kFP32PositiveInfinity); FminFmaxFloatHelper(snan, 0, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxFloatHelper(0, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxFloatHelper(qnan, 0, qnan_processed, qnan_processed, 0, 0); FminFmaxFloatHelper(0, qnan, qnan_processed, qnan_processed, 0, 0); FminFmaxFloatHelper(qnan, snan, snan_processed, snan_processed, snan_processed, snan_processed); FminFmaxFloatHelper(snan, qnan, snan_processed, snan_processed, snan_processed, snan_processed); // Iterate over all combinations of inputs. float inputs[] = { FLT_MAX, FLT_MIN, 1.0, 0.0, -FLT_MAX, -FLT_MIN, -1.0, -0.0, kFP32PositiveInfinity, kFP32NegativeInfinity, kFP32QuietNaN, kFP32SignallingNaN }; const int count = sizeof(inputs) / sizeof(inputs[0]); for (int in = 0; in < count; in++) { float n = inputs[in]; for (int im = 0; im < count; im++) { float m = inputs[im]; FminFmaxFloatHelper(n, m, MinMaxHelper(n, m, true), MinMaxHelper(n, m, false), MinMaxHelper(n, m, true, kFP32PositiveInfinity), MinMaxHelper(n, m, false, kFP32NegativeInfinity)); } } } TEST(fccmp) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 0.0); __ Fmov(s17, 0.5); __ Fmov(d18, -0.5); __ Fmov(d19, -1.0); __ Mov(x20, 0); __ Cmp(x20, 0); __ Fccmp(s16, s16, NoFlag, eq); __ Mrs(x0, NZCV); __ Cmp(x20, 0); __ Fccmp(s16, s16, VFlag, ne); __ Mrs(x1, NZCV); __ Cmp(x20, 0); __ Fccmp(s16, s17, CFlag, ge); __ Mrs(x2, NZCV); __ Cmp(x20, 0); __ Fccmp(s16, s17, CVFlag, lt); __ Mrs(x3, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d18, ZFlag, le); __ Mrs(x4, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d18, ZVFlag, gt); __ Mrs(x5, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d19, ZCVFlag, ls); __ Mrs(x6, NZCV); __ Cmp(x20, 0); __ Fccmp(d18, d19, NFlag, hi); __ Mrs(x7, NZCV); __ fccmp(s16, s16, NFlag, al); __ Mrs(x8, NZCV); __ fccmp(d18, d18, NFlag, nv); __ Mrs(x9, NZCV); END(); RUN(); ASSERT_EQUAL_32(ZCFlag, w0); ASSERT_EQUAL_32(VFlag, w1); ASSERT_EQUAL_32(NFlag, w2); ASSERT_EQUAL_32(CVFlag, w3); ASSERT_EQUAL_32(ZCFlag, w4); ASSERT_EQUAL_32(ZVFlag, w5); ASSERT_EQUAL_32(CFlag, w6); ASSERT_EQUAL_32(NFlag, w7); ASSERT_EQUAL_32(ZCFlag, w8); ASSERT_EQUAL_32(ZCFlag, w9); TEARDOWN(); } TEST(fcmp) { INIT_V8(); SETUP(); START(); // Some of these tests require a floating-point scratch register assigned to // the macro assembler, but most do not. { // We're going to mess around with the available scratch registers in this // test. A UseScratchRegisterScope will make sure that they are restored to // the default values once we're finished. UseScratchRegisterScope temps(&masm); masm.FPTmpList()->set_list(0); __ Fmov(s8, 0.0); __ Fmov(s9, 0.5); __ Mov(w18, 0x7f800001); // Single precision NaN. __ Fmov(s18, w18); __ Fcmp(s8, s8); __ Mrs(x0, NZCV); __ Fcmp(s8, s9); __ Mrs(x1, NZCV); __ Fcmp(s9, s8); __ Mrs(x2, NZCV); __ Fcmp(s8, s18); __ Mrs(x3, NZCV); __ Fcmp(s18, s18); __ Mrs(x4, NZCV); __ Fcmp(s8, 0.0); __ Mrs(x5, NZCV); masm.FPTmpList()->set_list(d0.Bit()); __ Fcmp(s8, 255.0); masm.FPTmpList()->set_list(0); __ Mrs(x6, NZCV); __ Fmov(d19, 0.0); __ Fmov(d20, 0.5); __ Mov(x21, 0x7ff0000000000001UL); // Double precision NaN. __ Fmov(d21, x21); __ Fcmp(d19, d19); __ Mrs(x10, NZCV); __ Fcmp(d19, d20); __ Mrs(x11, NZCV); __ Fcmp(d20, d19); __ Mrs(x12, NZCV); __ Fcmp(d19, d21); __ Mrs(x13, NZCV); __ Fcmp(d21, d21); __ Mrs(x14, NZCV); __ Fcmp(d19, 0.0); __ Mrs(x15, NZCV); masm.FPTmpList()->set_list(d0.Bit()); __ Fcmp(d19, 12.3456); masm.FPTmpList()->set_list(0); __ Mrs(x16, NZCV); } END(); RUN(); ASSERT_EQUAL_32(ZCFlag, w0); ASSERT_EQUAL_32(NFlag, w1); ASSERT_EQUAL_32(CFlag, w2); ASSERT_EQUAL_32(CVFlag, w3); ASSERT_EQUAL_32(CVFlag, w4); ASSERT_EQUAL_32(ZCFlag, w5); ASSERT_EQUAL_32(NFlag, w6); ASSERT_EQUAL_32(ZCFlag, w10); ASSERT_EQUAL_32(NFlag, w11); ASSERT_EQUAL_32(CFlag, w12); ASSERT_EQUAL_32(CVFlag, w13); ASSERT_EQUAL_32(CVFlag, w14); ASSERT_EQUAL_32(ZCFlag, w15); ASSERT_EQUAL_32(NFlag, w16); TEARDOWN(); } TEST(fcsel) { INIT_V8(); SETUP(); START(); __ Mov(x16, 0); __ Fmov(s16, 1.0); __ Fmov(s17, 2.0); __ Fmov(d18, 3.0); __ Fmov(d19, 4.0); __ Cmp(x16, 0); __ Fcsel(s0, s16, s17, eq); __ Fcsel(s1, s16, s17, ne); __ Fcsel(d2, d18, d19, eq); __ Fcsel(d3, d18, d19, ne); __ fcsel(s4, s16, s17, al); __ fcsel(d5, d18, d19, nv); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s0); ASSERT_EQUAL_FP32(2.0, s1); ASSERT_EQUAL_FP64(3.0, d2); ASSERT_EQUAL_FP64(4.0, d3); ASSERT_EQUAL_FP32(1.0, s4); ASSERT_EQUAL_FP64(3.0, d5); TEARDOWN(); } TEST(fneg) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 0.0); __ Fmov(s18, kFP32PositiveInfinity); __ Fmov(d19, 1.0); __ Fmov(d20, 0.0); __ Fmov(d21, kFP64PositiveInfinity); __ Fneg(s0, s16); __ Fneg(s1, s0); __ Fneg(s2, s17); __ Fneg(s3, s2); __ Fneg(s4, s18); __ Fneg(s5, s4); __ Fneg(d6, d19); __ Fneg(d7, d6); __ Fneg(d8, d20); __ Fneg(d9, d8); __ Fneg(d10, d21); __ Fneg(d11, d10); END(); RUN(); ASSERT_EQUAL_FP32(-1.0, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(-0.0, s2); ASSERT_EQUAL_FP32(0.0, s3); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s4); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); ASSERT_EQUAL_FP64(-1.0, d6); ASSERT_EQUAL_FP64(1.0, d7); ASSERT_EQUAL_FP64(-0.0, d8); ASSERT_EQUAL_FP64(0.0, d9); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d10); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d11); TEARDOWN(); } TEST(fabs) { INIT_V8(); SETUP(); START(); __ Fmov(s16, -1.0); __ Fmov(s17, -0.0); __ Fmov(s18, kFP32NegativeInfinity); __ Fmov(d19, -1.0); __ Fmov(d20, -0.0); __ Fmov(d21, kFP64NegativeInfinity); __ Fabs(s0, s16); __ Fabs(s1, s0); __ Fabs(s2, s17); __ Fabs(s3, s18); __ Fabs(d4, d19); __ Fabs(d5, d4); __ Fabs(d6, d20); __ Fabs(d7, d21); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(0.0, s2); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s3); ASSERT_EQUAL_FP64(1.0, d4); ASSERT_EQUAL_FP64(1.0, d5); ASSERT_EQUAL_FP64(0.0, d6); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7); TEARDOWN(); } TEST(fsqrt) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 0.0); __ Fmov(s17, 1.0); __ Fmov(s18, 0.25); __ Fmov(s19, 65536.0); __ Fmov(s20, -0.0); __ Fmov(s21, kFP32PositiveInfinity); __ Fmov(s22, -1.0); __ Fmov(d23, 0.0); __ Fmov(d24, 1.0); __ Fmov(d25, 0.25); __ Fmov(d26, 4294967296.0); __ Fmov(d27, -0.0); __ Fmov(d28, kFP64PositiveInfinity); __ Fmov(d29, -1.0); __ Fsqrt(s0, s16); __ Fsqrt(s1, s17); __ Fsqrt(s2, s18); __ Fsqrt(s3, s19); __ Fsqrt(s4, s20); __ Fsqrt(s5, s21); __ Fsqrt(s6, s22); __ Fsqrt(d7, d23); __ Fsqrt(d8, d24); __ Fsqrt(d9, d25); __ Fsqrt(d10, d26); __ Fsqrt(d11, d27); __ Fsqrt(d12, d28); __ Fsqrt(d13, d29); END(); RUN(); ASSERT_EQUAL_FP32(0.0, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(0.5, s2); ASSERT_EQUAL_FP32(256.0, s3); ASSERT_EQUAL_FP32(-0.0, s4); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s5); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s6); ASSERT_EQUAL_FP64(0.0, d7); ASSERT_EQUAL_FP64(1.0, d8); ASSERT_EQUAL_FP64(0.5, d9); ASSERT_EQUAL_FP64(65536.0, d10); ASSERT_EQUAL_FP64(-0.0, d11); ASSERT_EQUAL_FP64(kFP32PositiveInfinity, d12); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13); TEARDOWN(); } TEST(frinta) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Frinta(s0, s16); __ Frinta(s1, s17); __ Frinta(s2, s18); __ Frinta(s3, s19); __ Frinta(s4, s20); __ Frinta(s5, s21); __ Frinta(s6, s22); __ Frinta(s7, s23); __ Frinta(s8, s24); __ Frinta(s9, s25); __ Frinta(s10, s26); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Frinta(d11, d16); __ Frinta(d12, d17); __ Frinta(d13, d18); __ Frinta(d14, d19); __ Frinta(d15, d20); __ Frinta(d16, d21); __ Frinta(d17, d22); __ Frinta(d18, d23); __ Frinta(d19, d24); __ Frinta(d20, d25); __ Frinta(d21, d26); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(2.0, s2); ASSERT_EQUAL_FP32(2.0, s3); ASSERT_EQUAL_FP32(3.0, s4); ASSERT_EQUAL_FP32(-2.0, s5); ASSERT_EQUAL_FP32(-3.0, s6); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); ASSERT_EQUAL_FP32(0.0, s9); ASSERT_EQUAL_FP32(-0.0, s10); ASSERT_EQUAL_FP64(1.0, d11); ASSERT_EQUAL_FP64(1.0, d12); ASSERT_EQUAL_FP64(2.0, d13); ASSERT_EQUAL_FP64(2.0, d14); ASSERT_EQUAL_FP64(3.0, d15); ASSERT_EQUAL_FP64(-2.0, d16); ASSERT_EQUAL_FP64(-3.0, d17); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); ASSERT_EQUAL_FP64(0.0, d20); ASSERT_EQUAL_FP64(-0.0, d21); TEARDOWN(); } TEST(frintn) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Frintn(s0, s16); __ Frintn(s1, s17); __ Frintn(s2, s18); __ Frintn(s3, s19); __ Frintn(s4, s20); __ Frintn(s5, s21); __ Frintn(s6, s22); __ Frintn(s7, s23); __ Frintn(s8, s24); __ Frintn(s9, s25); __ Frintn(s10, s26); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Frintn(d11, d16); __ Frintn(d12, d17); __ Frintn(d13, d18); __ Frintn(d14, d19); __ Frintn(d15, d20); __ Frintn(d16, d21); __ Frintn(d17, d22); __ Frintn(d18, d23); __ Frintn(d19, d24); __ Frintn(d20, d25); __ Frintn(d21, d26); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(2.0, s2); ASSERT_EQUAL_FP32(2.0, s3); ASSERT_EQUAL_FP32(2.0, s4); ASSERT_EQUAL_FP32(-2.0, s5); ASSERT_EQUAL_FP32(-2.0, s6); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); ASSERT_EQUAL_FP32(0.0, s9); ASSERT_EQUAL_FP32(-0.0, s10); ASSERT_EQUAL_FP64(1.0, d11); ASSERT_EQUAL_FP64(1.0, d12); ASSERT_EQUAL_FP64(2.0, d13); ASSERT_EQUAL_FP64(2.0, d14); ASSERT_EQUAL_FP64(2.0, d15); ASSERT_EQUAL_FP64(-2.0, d16); ASSERT_EQUAL_FP64(-2.0, d17); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); ASSERT_EQUAL_FP64(0.0, d20); ASSERT_EQUAL_FP64(-0.0, d21); TEARDOWN(); } TEST(frintz) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Frintz(s0, s16); __ Frintz(s1, s17); __ Frintz(s2, s18); __ Frintz(s3, s19); __ Frintz(s4, s20); __ Frintz(s5, s21); __ Frintz(s6, s22); __ Frintz(s7, s23); __ Frintz(s8, s24); __ Frintz(s9, s25); __ Frintz(s10, s26); __ Fmov(d16, 1.0); __ Fmov(d17, 1.1); __ Fmov(d18, 1.5); __ Fmov(d19, 1.9); __ Fmov(d20, 2.5); __ Fmov(d21, -1.5); __ Fmov(d22, -2.5); __ Fmov(d23, kFP32PositiveInfinity); __ Fmov(d24, kFP32NegativeInfinity); __ Fmov(d25, 0.0); __ Fmov(d26, -0.0); __ Frintz(d11, d16); __ Frintz(d12, d17); __ Frintz(d13, d18); __ Frintz(d14, d19); __ Frintz(d15, d20); __ Frintz(d16, d21); __ Frintz(d17, d22); __ Frintz(d18, d23); __ Frintz(d19, d24); __ Frintz(d20, d25); __ Frintz(d21, d26); END(); RUN(); ASSERT_EQUAL_FP32(1.0, s0); ASSERT_EQUAL_FP32(1.0, s1); ASSERT_EQUAL_FP32(1.0, s2); ASSERT_EQUAL_FP32(1.0, s3); ASSERT_EQUAL_FP32(2.0, s4); ASSERT_EQUAL_FP32(-1.0, s5); ASSERT_EQUAL_FP32(-2.0, s6); ASSERT_EQUAL_FP32(kFP32PositiveInfinity, s7); ASSERT_EQUAL_FP32(kFP32NegativeInfinity, s8); ASSERT_EQUAL_FP32(0.0, s9); ASSERT_EQUAL_FP32(-0.0, s10); ASSERT_EQUAL_FP64(1.0, d11); ASSERT_EQUAL_FP64(1.0, d12); ASSERT_EQUAL_FP64(1.0, d13); ASSERT_EQUAL_FP64(1.0, d14); ASSERT_EQUAL_FP64(2.0, d15); ASSERT_EQUAL_FP64(-1.0, d16); ASSERT_EQUAL_FP64(-2.0, d17); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d18); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d19); ASSERT_EQUAL_FP64(0.0, d20); ASSERT_EQUAL_FP64(-0.0, d21); TEARDOWN(); } TEST(fcvt_ds) { INIT_V8(); SETUP(); START(); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, 1.9); __ Fmov(s20, 2.5); __ Fmov(s21, -1.5); __ Fmov(s22, -2.5); __ Fmov(s23, kFP32PositiveInfinity); __ Fmov(s24, kFP32NegativeInfinity); __ Fmov(s25, 0.0); __ Fmov(s26, -0.0); __ Fmov(s27, FLT_MAX); __ Fmov(s28, FLT_MIN); __ Fmov(s29, rawbits_to_float(0x7fc12345)); // Quiet NaN. __ Fmov(s30, rawbits_to_float(0x7f812345)); // Signalling NaN. __ Fcvt(d0, s16); __ Fcvt(d1, s17); __ Fcvt(d2, s18); __ Fcvt(d3, s19); __ Fcvt(d4, s20); __ Fcvt(d5, s21); __ Fcvt(d6, s22); __ Fcvt(d7, s23); __ Fcvt(d8, s24); __ Fcvt(d9, s25); __ Fcvt(d10, s26); __ Fcvt(d11, s27); __ Fcvt(d12, s28); __ Fcvt(d13, s29); __ Fcvt(d14, s30); END(); RUN(); ASSERT_EQUAL_FP64(1.0f, d0); ASSERT_EQUAL_FP64(1.1f, d1); ASSERT_EQUAL_FP64(1.5f, d2); ASSERT_EQUAL_FP64(1.9f, d3); ASSERT_EQUAL_FP64(2.5f, d4); ASSERT_EQUAL_FP64(-1.5f, d5); ASSERT_EQUAL_FP64(-2.5f, d6); ASSERT_EQUAL_FP64(kFP64PositiveInfinity, d7); ASSERT_EQUAL_FP64(kFP64NegativeInfinity, d8); ASSERT_EQUAL_FP64(0.0f, d9); ASSERT_EQUAL_FP64(-0.0f, d10); ASSERT_EQUAL_FP64(FLT_MAX, d11); ASSERT_EQUAL_FP64(FLT_MIN, d12); // Check that the NaN payload is preserved according to ARM64 conversion // rules: // - The sign bit is preserved. // - The top bit of the mantissa is forced to 1 (making it a quiet NaN). // - The remaining mantissa bits are copied until they run out. // - The low-order bits that haven't already been assigned are set to 0. ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d13); ASSERT_EQUAL_FP64(rawbits_to_double(0x7ff82468a0000000), d14); TEARDOWN(); } TEST(fcvt_sd) { INIT_V8(); // There are a huge number of corner-cases to check, so this test iterates // through a list. The list is then negated and checked again (since the sign // is irrelevant in ties-to-even rounding), so the list shouldn't include any // negative values. // // Note that this test only checks ties-to-even rounding, because that is all // that the simulator supports. struct {double in; float expected;} test[] = { // Check some simple conversions. {0.0, 0.0f}, {1.0, 1.0f}, {1.5, 1.5f}, {2.0, 2.0f}, {FLT_MAX, FLT_MAX}, // - The smallest normalized float. {pow(2.0, -126), powf(2, -126)}, // - Normal floats that need (ties-to-even) rounding. // For normalized numbers: // bit 29 (0x0000000020000000) is the lowest-order bit which will // fit in the float's mantissa. {rawbits_to_double(0x3ff0000000000000), rawbits_to_float(0x3f800000)}, {rawbits_to_double(0x3ff0000000000001), rawbits_to_float(0x3f800000)}, {rawbits_to_double(0x3ff0000010000000), rawbits_to_float(0x3f800000)}, {rawbits_to_double(0x3ff0000010000001), rawbits_to_float(0x3f800001)}, {rawbits_to_double(0x3ff0000020000000), rawbits_to_float(0x3f800001)}, {rawbits_to_double(0x3ff0000020000001), rawbits_to_float(0x3f800001)}, {rawbits_to_double(0x3ff0000030000000), rawbits_to_float(0x3f800002)}, {rawbits_to_double(0x3ff0000030000001), rawbits_to_float(0x3f800002)}, {rawbits_to_double(0x3ff0000040000000), rawbits_to_float(0x3f800002)}, {rawbits_to_double(0x3ff0000040000001), rawbits_to_float(0x3f800002)}, {rawbits_to_double(0x3ff0000050000000), rawbits_to_float(0x3f800002)}, {rawbits_to_double(0x3ff0000050000001), rawbits_to_float(0x3f800003)}, {rawbits_to_double(0x3ff0000060000000), rawbits_to_float(0x3f800003)}, // - A mantissa that overflows into the exponent during rounding. {rawbits_to_double(0x3feffffff0000000), rawbits_to_float(0x3f800000)}, // - The largest double that rounds to a normal float. {rawbits_to_double(0x47efffffefffffff), rawbits_to_float(0x7f7fffff)}, // Doubles that are too big for a float. {kFP64PositiveInfinity, kFP32PositiveInfinity}, {DBL_MAX, kFP32PositiveInfinity}, // - The smallest exponent that's too big for a float. {pow(2.0, 128), kFP32PositiveInfinity}, // - This exponent is in range, but the value rounds to infinity. {rawbits_to_double(0x47effffff0000000), kFP32PositiveInfinity}, // Doubles that are too small for a float. // - The smallest (subnormal) double. {DBL_MIN, 0.0}, // - The largest double which is too small for a subnormal float. {rawbits_to_double(0x3690000000000000), rawbits_to_float(0x00000000)}, // Normal doubles that become subnormal floats. // - The largest subnormal float. {rawbits_to_double(0x380fffffc0000000), rawbits_to_float(0x007fffff)}, // - The smallest subnormal float. {rawbits_to_double(0x36a0000000000000), rawbits_to_float(0x00000001)}, // - Subnormal floats that need (ties-to-even) rounding. // For these subnormals: // bit 34 (0x0000000400000000) is the lowest-order bit which will // fit in the float's mantissa. {rawbits_to_double(0x37c159e000000000), rawbits_to_float(0x00045678)}, {rawbits_to_double(0x37c159e000000001), rawbits_to_float(0x00045678)}, {rawbits_to_double(0x37c159e200000000), rawbits_to_float(0x00045678)}, {rawbits_to_double(0x37c159e200000001), rawbits_to_float(0x00045679)}, {rawbits_to_double(0x37c159e400000000), rawbits_to_float(0x00045679)}, {rawbits_to_double(0x37c159e400000001), rawbits_to_float(0x00045679)}, {rawbits_to_double(0x37c159e600000000), rawbits_to_float(0x0004567a)}, {rawbits_to_double(0x37c159e600000001), rawbits_to_float(0x0004567a)}, {rawbits_to_double(0x37c159e800000000), rawbits_to_float(0x0004567a)}, {rawbits_to_double(0x37c159e800000001), rawbits_to_float(0x0004567a)}, {rawbits_to_double(0x37c159ea00000000), rawbits_to_float(0x0004567a)}, {rawbits_to_double(0x37c159ea00000001), rawbits_to_float(0x0004567b)}, {rawbits_to_double(0x37c159ec00000000), rawbits_to_float(0x0004567b)}, // - The smallest double which rounds up to become a subnormal float. {rawbits_to_double(0x3690000000000001), rawbits_to_float(0x00000001)}, // Check NaN payload preservation. {rawbits_to_double(0x7ff82468a0000000), rawbits_to_float(0x7fc12345)}, {rawbits_to_double(0x7ff82468bfffffff), rawbits_to_float(0x7fc12345)}, // - Signalling NaNs become quiet NaNs. {rawbits_to_double(0x7ff02468a0000000), rawbits_to_float(0x7fc12345)}, {rawbits_to_double(0x7ff02468bfffffff), rawbits_to_float(0x7fc12345)}, {rawbits_to_double(0x7ff000001fffffff), rawbits_to_float(0x7fc00000)}, }; int count = sizeof(test) / sizeof(test[0]); for (int i = 0; i < count; i++) { double in = test[i].in; float expected = test[i].expected; // We only expect positive input. ASSERT(std::signbit(in) == 0); ASSERT(std::signbit(expected) == 0); SETUP(); START(); __ Fmov(d10, in); __ Fcvt(s20, d10); __ Fmov(d11, -in); __ Fcvt(s21, d11); END(); RUN(); ASSERT_EQUAL_FP32(expected, s20); ASSERT_EQUAL_FP32(-expected, s21); TEARDOWN(); } } TEST(fcvtas) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 2.5); __ Fmov(s3, -2.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 2.5); __ Fmov(d11, -2.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s17, 1.1); __ Fmov(s18, 2.5); __ Fmov(s19, -2.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 2.5); __ Fmov(d26, -2.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtas(w0, s0); __ Fcvtas(w1, s1); __ Fcvtas(w2, s2); __ Fcvtas(w3, s3); __ Fcvtas(w4, s4); __ Fcvtas(w5, s5); __ Fcvtas(w6, s6); __ Fcvtas(w7, s7); __ Fcvtas(w8, d8); __ Fcvtas(w9, d9); __ Fcvtas(w10, d10); __ Fcvtas(w11, d11); __ Fcvtas(w12, d12); __ Fcvtas(w13, d13); __ Fcvtas(w14, d14); __ Fcvtas(w15, d15); __ Fcvtas(x17, s17); __ Fcvtas(x18, s18); __ Fcvtas(x19, s19); __ Fcvtas(x20, s20); __ Fcvtas(x21, s21); __ Fcvtas(x22, s22); __ Fcvtas(x23, s23); __ Fcvtas(x24, d24); __ Fcvtas(x25, d25); __ Fcvtas(x26, d26); __ Fcvtas(x27, d27); __ Fcvtas(x28, d28); __ Fcvtas(x29, d29); __ Fcvtas(x30, d30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(3, x2); ASSERT_EQUAL_64(0xfffffffd, x3); ASSERT_EQUAL_64(0x7fffffff, x4); ASSERT_EQUAL_64(0x80000000, x5); ASSERT_EQUAL_64(0x7fffff80, x6); ASSERT_EQUAL_64(0x80000080, x7); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(3, x10); ASSERT_EQUAL_64(0xfffffffd, x11); ASSERT_EQUAL_64(0x7fffffff, x12); ASSERT_EQUAL_64(0x80000000, x13); ASSERT_EQUAL_64(0x7ffffffe, x14); ASSERT_EQUAL_64(0x80000001, x15); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(3, x18); ASSERT_EQUAL_64(0xfffffffffffffffdUL, x19); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); ASSERT_EQUAL_64(0x8000000000000000UL, x21); ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); ASSERT_EQUAL_64(0x8000008000000000UL, x23); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(3, x25); ASSERT_EQUAL_64(0xfffffffffffffffdUL, x26); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); ASSERT_EQUAL_64(0x8000000000000000UL, x28); ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); ASSERT_EQUAL_64(0x8000000000000400UL, x30); TEARDOWN(); } TEST(fcvtau) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 2.5); __ Fmov(s3, -2.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 2.5); __ Fmov(d11, -2.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, 0xfffffffe); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 2.5); __ Fmov(s19, -2.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX. __ Fmov(d24, 1.1); __ Fmov(d25, 2.5); __ Fmov(d26, -2.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX. __ Fmov(s30, 0x100000000UL); __ Fcvtau(w0, s0); __ Fcvtau(w1, s1); __ Fcvtau(w2, s2); __ Fcvtau(w3, s3); __ Fcvtau(w4, s4); __ Fcvtau(w5, s5); __ Fcvtau(w6, s6); __ Fcvtau(w8, d8); __ Fcvtau(w9, d9); __ Fcvtau(w10, d10); __ Fcvtau(w11, d11); __ Fcvtau(w12, d12); __ Fcvtau(w13, d13); __ Fcvtau(w14, d14); __ Fcvtau(w15, d15); __ Fcvtau(x16, s16); __ Fcvtau(x17, s17); __ Fcvtau(x18, s18); __ Fcvtau(x19, s19); __ Fcvtau(x20, s20); __ Fcvtau(x21, s21); __ Fcvtau(x22, s22); __ Fcvtau(x24, d24); __ Fcvtau(x25, d25); __ Fcvtau(x26, d26); __ Fcvtau(x27, d27); __ Fcvtau(x28, d28); __ Fcvtau(x29, d29); __ Fcvtau(w30, s30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(3, x2); ASSERT_EQUAL_64(0, x3); ASSERT_EQUAL_64(0xffffffff, x4); ASSERT_EQUAL_64(0, x5); ASSERT_EQUAL_64(0xffffff00, x6); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(3, x10); ASSERT_EQUAL_64(0, x11); ASSERT_EQUAL_64(0xffffffff, x12); ASSERT_EQUAL_64(0, x13); ASSERT_EQUAL_64(0xfffffffe, x14); ASSERT_EQUAL_64(1, x16); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(3, x18); ASSERT_EQUAL_64(0, x19); ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); ASSERT_EQUAL_64(0, x21); ASSERT_EQUAL_64(0xffffff0000000000UL, x22); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(3, x25); ASSERT_EQUAL_64(0, x26); ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); ASSERT_EQUAL_64(0, x28); ASSERT_EQUAL_64(0xfffffffffffff800UL, x29); ASSERT_EQUAL_64(0xffffffff, x30); TEARDOWN(); } TEST(fcvtms) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtms(w0, s0); __ Fcvtms(w1, s1); __ Fcvtms(w2, s2); __ Fcvtms(w3, s3); __ Fcvtms(w4, s4); __ Fcvtms(w5, s5); __ Fcvtms(w6, s6); __ Fcvtms(w7, s7); __ Fcvtms(w8, d8); __ Fcvtms(w9, d9); __ Fcvtms(w10, d10); __ Fcvtms(w11, d11); __ Fcvtms(w12, d12); __ Fcvtms(w13, d13); __ Fcvtms(w14, d14); __ Fcvtms(w15, d15); __ Fcvtms(x17, s17); __ Fcvtms(x18, s18); __ Fcvtms(x19, s19); __ Fcvtms(x20, s20); __ Fcvtms(x21, s21); __ Fcvtms(x22, s22); __ Fcvtms(x23, s23); __ Fcvtms(x24, d24); __ Fcvtms(x25, d25); __ Fcvtms(x26, d26); __ Fcvtms(x27, d27); __ Fcvtms(x28, d28); __ Fcvtms(x29, d29); __ Fcvtms(x30, d30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0xfffffffe, x3); ASSERT_EQUAL_64(0x7fffffff, x4); ASSERT_EQUAL_64(0x80000000, x5); ASSERT_EQUAL_64(0x7fffff80, x6); ASSERT_EQUAL_64(0x80000080, x7); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(1, x10); ASSERT_EQUAL_64(0xfffffffe, x11); ASSERT_EQUAL_64(0x7fffffff, x12); ASSERT_EQUAL_64(0x80000000, x13); ASSERT_EQUAL_64(0x7ffffffe, x14); ASSERT_EQUAL_64(0x80000001, x15); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(1, x18); ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); ASSERT_EQUAL_64(0x8000000000000000UL, x21); ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); ASSERT_EQUAL_64(0x8000008000000000UL, x23); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(1, x25); ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); ASSERT_EQUAL_64(0x8000000000000000UL, x28); ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); ASSERT_EQUAL_64(0x8000000000000400UL, x30); TEARDOWN(); } TEST(fcvtmu) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtmu(w0, s0); __ Fcvtmu(w1, s1); __ Fcvtmu(w2, s2); __ Fcvtmu(w3, s3); __ Fcvtmu(w4, s4); __ Fcvtmu(w5, s5); __ Fcvtmu(w6, s6); __ Fcvtmu(w7, s7); __ Fcvtmu(w8, d8); __ Fcvtmu(w9, d9); __ Fcvtmu(w10, d10); __ Fcvtmu(w11, d11); __ Fcvtmu(w12, d12); __ Fcvtmu(w13, d13); __ Fcvtmu(w14, d14); __ Fcvtmu(x17, s17); __ Fcvtmu(x18, s18); __ Fcvtmu(x19, s19); __ Fcvtmu(x20, s20); __ Fcvtmu(x21, s21); __ Fcvtmu(x22, s22); __ Fcvtmu(x23, s23); __ Fcvtmu(x24, d24); __ Fcvtmu(x25, d25); __ Fcvtmu(x26, d26); __ Fcvtmu(x27, d27); __ Fcvtmu(x28, d28); __ Fcvtmu(x29, d29); __ Fcvtmu(x30, d30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0, x3); ASSERT_EQUAL_64(0xffffffff, x4); ASSERT_EQUAL_64(0, x5); ASSERT_EQUAL_64(0x7fffff80, x6); ASSERT_EQUAL_64(0, x7); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(1, x10); ASSERT_EQUAL_64(0, x11); ASSERT_EQUAL_64(0xffffffff, x12); ASSERT_EQUAL_64(0, x13); ASSERT_EQUAL_64(0x7ffffffe, x14); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(1, x18); ASSERT_EQUAL_64(0x0UL, x19); ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); ASSERT_EQUAL_64(0x0UL, x21); ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); ASSERT_EQUAL_64(0x0UL, x23); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(1, x25); ASSERT_EQUAL_64(0x0UL, x26); ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); ASSERT_EQUAL_64(0x0UL, x28); ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); ASSERT_EQUAL_64(0x0UL, x30); TEARDOWN(); } TEST(fcvtns) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtns(w0, s0); __ Fcvtns(w1, s1); __ Fcvtns(w2, s2); __ Fcvtns(w3, s3); __ Fcvtns(w4, s4); __ Fcvtns(w5, s5); __ Fcvtns(w6, s6); __ Fcvtns(w7, s7); __ Fcvtns(w8, d8); __ Fcvtns(w9, d9); __ Fcvtns(w10, d10); __ Fcvtns(w11, d11); __ Fcvtns(w12, d12); __ Fcvtns(w13, d13); __ Fcvtns(w14, d14); __ Fcvtns(w15, d15); __ Fcvtns(x17, s17); __ Fcvtns(x18, s18); __ Fcvtns(x19, s19); __ Fcvtns(x20, s20); __ Fcvtns(x21, s21); __ Fcvtns(x22, s22); __ Fcvtns(x23, s23); __ Fcvtns(x24, d24); __ Fcvtns(x25, d25); __ Fcvtns(x26, d26); __ Fcvtns(x27, d27); // __ Fcvtns(x28, d28); __ Fcvtns(x29, d29); __ Fcvtns(x30, d30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(2, x2); ASSERT_EQUAL_64(0xfffffffe, x3); ASSERT_EQUAL_64(0x7fffffff, x4); ASSERT_EQUAL_64(0x80000000, x5); ASSERT_EQUAL_64(0x7fffff80, x6); ASSERT_EQUAL_64(0x80000080, x7); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(2, x10); ASSERT_EQUAL_64(0xfffffffe, x11); ASSERT_EQUAL_64(0x7fffffff, x12); ASSERT_EQUAL_64(0x80000000, x13); ASSERT_EQUAL_64(0x7ffffffe, x14); ASSERT_EQUAL_64(0x80000001, x15); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(2, x18); ASSERT_EQUAL_64(0xfffffffffffffffeUL, x19); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); ASSERT_EQUAL_64(0x8000000000000000UL, x21); ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); ASSERT_EQUAL_64(0x8000008000000000UL, x23); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(2, x25); ASSERT_EQUAL_64(0xfffffffffffffffeUL, x26); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); // ASSERT_EQUAL_64(0x8000000000000000UL, x28); ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); ASSERT_EQUAL_64(0x8000000000000400UL, x30); TEARDOWN(); } TEST(fcvtnu) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0xffffff00); // Largest float < UINT32_MAX. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, 0xfffffffe); __ Fmov(s16, 1.0); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0xffffff0000000000UL); // Largest float < UINT64_MAX. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0xfffffffffffff800UL); // Largest double < UINT64_MAX. __ Fmov(s30, 0x100000000UL); __ Fcvtnu(w0, s0); __ Fcvtnu(w1, s1); __ Fcvtnu(w2, s2); __ Fcvtnu(w3, s3); __ Fcvtnu(w4, s4); __ Fcvtnu(w5, s5); __ Fcvtnu(w6, s6); __ Fcvtnu(w8, d8); __ Fcvtnu(w9, d9); __ Fcvtnu(w10, d10); __ Fcvtnu(w11, d11); __ Fcvtnu(w12, d12); __ Fcvtnu(w13, d13); __ Fcvtnu(w14, d14); __ Fcvtnu(w15, d15); __ Fcvtnu(x16, s16); __ Fcvtnu(x17, s17); __ Fcvtnu(x18, s18); __ Fcvtnu(x19, s19); __ Fcvtnu(x20, s20); __ Fcvtnu(x21, s21); __ Fcvtnu(x22, s22); __ Fcvtnu(x24, d24); __ Fcvtnu(x25, d25); __ Fcvtnu(x26, d26); __ Fcvtnu(x27, d27); // __ Fcvtnu(x28, d28); __ Fcvtnu(x29, d29); __ Fcvtnu(w30, s30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(2, x2); ASSERT_EQUAL_64(0, x3); ASSERT_EQUAL_64(0xffffffff, x4); ASSERT_EQUAL_64(0, x5); ASSERT_EQUAL_64(0xffffff00, x6); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(2, x10); ASSERT_EQUAL_64(0, x11); ASSERT_EQUAL_64(0xffffffff, x12); ASSERT_EQUAL_64(0, x13); ASSERT_EQUAL_64(0xfffffffe, x14); ASSERT_EQUAL_64(1, x16); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(2, x18); ASSERT_EQUAL_64(0, x19); ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); ASSERT_EQUAL_64(0, x21); ASSERT_EQUAL_64(0xffffff0000000000UL, x22); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(2, x25); ASSERT_EQUAL_64(0, x26); ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); // ASSERT_EQUAL_64(0, x28); ASSERT_EQUAL_64(0xfffffffffffff800UL, x29); ASSERT_EQUAL_64(0xffffffff, x30); TEARDOWN(); } TEST(fcvtzs) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtzs(w0, s0); __ Fcvtzs(w1, s1); __ Fcvtzs(w2, s2); __ Fcvtzs(w3, s3); __ Fcvtzs(w4, s4); __ Fcvtzs(w5, s5); __ Fcvtzs(w6, s6); __ Fcvtzs(w7, s7); __ Fcvtzs(w8, d8); __ Fcvtzs(w9, d9); __ Fcvtzs(w10, d10); __ Fcvtzs(w11, d11); __ Fcvtzs(w12, d12); __ Fcvtzs(w13, d13); __ Fcvtzs(w14, d14); __ Fcvtzs(w15, d15); __ Fcvtzs(x17, s17); __ Fcvtzs(x18, s18); __ Fcvtzs(x19, s19); __ Fcvtzs(x20, s20); __ Fcvtzs(x21, s21); __ Fcvtzs(x22, s22); __ Fcvtzs(x23, s23); __ Fcvtzs(x24, d24); __ Fcvtzs(x25, d25); __ Fcvtzs(x26, d26); __ Fcvtzs(x27, d27); __ Fcvtzs(x28, d28); __ Fcvtzs(x29, d29); __ Fcvtzs(x30, d30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0xffffffff, x3); ASSERT_EQUAL_64(0x7fffffff, x4); ASSERT_EQUAL_64(0x80000000, x5); ASSERT_EQUAL_64(0x7fffff80, x6); ASSERT_EQUAL_64(0x80000080, x7); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(1, x10); ASSERT_EQUAL_64(0xffffffff, x11); ASSERT_EQUAL_64(0x7fffffff, x12); ASSERT_EQUAL_64(0x80000000, x13); ASSERT_EQUAL_64(0x7ffffffe, x14); ASSERT_EQUAL_64(0x80000001, x15); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(1, x18); ASSERT_EQUAL_64(0xffffffffffffffffUL, x19); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x20); ASSERT_EQUAL_64(0x8000000000000000UL, x21); ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); ASSERT_EQUAL_64(0x8000008000000000UL, x23); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(1, x25); ASSERT_EQUAL_64(0xffffffffffffffffUL, x26); ASSERT_EQUAL_64(0x7fffffffffffffffUL, x27); ASSERT_EQUAL_64(0x8000000000000000UL, x28); ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); ASSERT_EQUAL_64(0x8000000000000400UL, x30); TEARDOWN(); } TEST(fcvtzu) { INIT_V8(); SETUP(); START(); __ Fmov(s0, 1.0); __ Fmov(s1, 1.1); __ Fmov(s2, 1.5); __ Fmov(s3, -1.5); __ Fmov(s4, kFP32PositiveInfinity); __ Fmov(s5, kFP32NegativeInfinity); __ Fmov(s6, 0x7fffff80); // Largest float < INT32_MAX. __ Fneg(s7, s6); // Smallest float > INT32_MIN. __ Fmov(d8, 1.0); __ Fmov(d9, 1.1); __ Fmov(d10, 1.5); __ Fmov(d11, -1.5); __ Fmov(d12, kFP64PositiveInfinity); __ Fmov(d13, kFP64NegativeInfinity); __ Fmov(d14, kWMaxInt - 1); __ Fmov(d15, kWMinInt + 1); __ Fmov(s17, 1.1); __ Fmov(s18, 1.5); __ Fmov(s19, -1.5); __ Fmov(s20, kFP32PositiveInfinity); __ Fmov(s21, kFP32NegativeInfinity); __ Fmov(s22, 0x7fffff8000000000UL); // Largest float < INT64_MAX. __ Fneg(s23, s22); // Smallest float > INT64_MIN. __ Fmov(d24, 1.1); __ Fmov(d25, 1.5); __ Fmov(d26, -1.5); __ Fmov(d27, kFP64PositiveInfinity); __ Fmov(d28, kFP64NegativeInfinity); __ Fmov(d29, 0x7ffffffffffffc00UL); // Largest double < INT64_MAX. __ Fneg(d30, d29); // Smallest double > INT64_MIN. __ Fcvtzu(w0, s0); __ Fcvtzu(w1, s1); __ Fcvtzu(w2, s2); __ Fcvtzu(w3, s3); __ Fcvtzu(w4, s4); __ Fcvtzu(w5, s5); __ Fcvtzu(w6, s6); __ Fcvtzu(w7, s7); __ Fcvtzu(w8, d8); __ Fcvtzu(w9, d9); __ Fcvtzu(w10, d10); __ Fcvtzu(w11, d11); __ Fcvtzu(w12, d12); __ Fcvtzu(w13, d13); __ Fcvtzu(w14, d14); __ Fcvtzu(x17, s17); __ Fcvtzu(x18, s18); __ Fcvtzu(x19, s19); __ Fcvtzu(x20, s20); __ Fcvtzu(x21, s21); __ Fcvtzu(x22, s22); __ Fcvtzu(x23, s23); __ Fcvtzu(x24, d24); __ Fcvtzu(x25, d25); __ Fcvtzu(x26, d26); __ Fcvtzu(x27, d27); __ Fcvtzu(x28, d28); __ Fcvtzu(x29, d29); __ Fcvtzu(x30, d30); END(); RUN(); ASSERT_EQUAL_64(1, x0); ASSERT_EQUAL_64(1, x1); ASSERT_EQUAL_64(1, x2); ASSERT_EQUAL_64(0, x3); ASSERT_EQUAL_64(0xffffffff, x4); ASSERT_EQUAL_64(0, x5); ASSERT_EQUAL_64(0x7fffff80, x6); ASSERT_EQUAL_64(0, x7); ASSERT_EQUAL_64(1, x8); ASSERT_EQUAL_64(1, x9); ASSERT_EQUAL_64(1, x10); ASSERT_EQUAL_64(0, x11); ASSERT_EQUAL_64(0xffffffff, x12); ASSERT_EQUAL_64(0, x13); ASSERT_EQUAL_64(0x7ffffffe, x14); ASSERT_EQUAL_64(1, x17); ASSERT_EQUAL_64(1, x18); ASSERT_EQUAL_64(0x0UL, x19); ASSERT_EQUAL_64(0xffffffffffffffffUL, x20); ASSERT_EQUAL_64(0x0UL, x21); ASSERT_EQUAL_64(0x7fffff8000000000UL, x22); ASSERT_EQUAL_64(0x0UL, x23); ASSERT_EQUAL_64(1, x24); ASSERT_EQUAL_64(1, x25); ASSERT_EQUAL_64(0x0UL, x26); ASSERT_EQUAL_64(0xffffffffffffffffUL, x27); ASSERT_EQUAL_64(0x0UL, x28); ASSERT_EQUAL_64(0x7ffffffffffffc00UL, x29); ASSERT_EQUAL_64(0x0UL, x30); TEARDOWN(); } // Test that scvtf and ucvtf can convert the 64-bit input into the expected // value. All possible values of 'fbits' are tested. The expected value is // modified accordingly in each case. // // The expected value is specified as the bit encoding of the expected double // produced by scvtf (expected_scvtf_bits) as well as ucvtf // (expected_ucvtf_bits). // // Where the input value is representable by int32_t or uint32_t, conversions // from W registers will also be tested. static void TestUScvtfHelper(uint64_t in, uint64_t expected_scvtf_bits, uint64_t expected_ucvtf_bits) { uint64_t u64 = in; uint32_t u32 = u64 & 0xffffffff; int64_t s64 = static_cast(in); int32_t s32 = s64 & 0x7fffffff; bool cvtf_s32 = (s64 == s32); bool cvtf_u32 = (u64 == u32); double results_scvtf_x[65]; double results_ucvtf_x[65]; double results_scvtf_w[33]; double results_ucvtf_w[33]; SETUP(); START(); __ Mov(x0, reinterpret_cast(results_scvtf_x)); __ Mov(x1, reinterpret_cast(results_ucvtf_x)); __ Mov(x2, reinterpret_cast(results_scvtf_w)); __ Mov(x3, reinterpret_cast(results_ucvtf_w)); __ Mov(x10, s64); // Corrupt the top word, in case it is accidentally used during W-register // conversions. __ Mov(x11, 0x5555555555555555); __ Bfi(x11, x10, 0, kWRegSizeInBits); // Test integer conversions. __ Scvtf(d0, x10); __ Ucvtf(d1, x10); __ Scvtf(d2, w11); __ Ucvtf(d3, w11); __ Str(d0, MemOperand(x0)); __ Str(d1, MemOperand(x1)); __ Str(d2, MemOperand(x2)); __ Str(d3, MemOperand(x3)); // Test all possible values of fbits. for (int fbits = 1; fbits <= 32; fbits++) { __ Scvtf(d0, x10, fbits); __ Ucvtf(d1, x10, fbits); __ Scvtf(d2, w11, fbits); __ Ucvtf(d3, w11, fbits); __ Str(d0, MemOperand(x0, fbits * kDRegSize)); __ Str(d1, MemOperand(x1, fbits * kDRegSize)); __ Str(d2, MemOperand(x2, fbits * kDRegSize)); __ Str(d3, MemOperand(x3, fbits * kDRegSize)); } // Conversions from W registers can only handle fbits values <= 32, so just // test conversions from X registers for 32 < fbits <= 64. for (int fbits = 33; fbits <= 64; fbits++) { __ Scvtf(d0, x10, fbits); __ Ucvtf(d1, x10, fbits); __ Str(d0, MemOperand(x0, fbits * kDRegSize)); __ Str(d1, MemOperand(x1, fbits * kDRegSize)); } END(); RUN(); // Check the results. double expected_scvtf_base = rawbits_to_double(expected_scvtf_bits); double expected_ucvtf_base = rawbits_to_double(expected_ucvtf_bits); for (int fbits = 0; fbits <= 32; fbits++) { double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); if (cvtf_s32) ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_w[fbits]); if (cvtf_u32) ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_w[fbits]); } for (int fbits = 33; fbits <= 64; fbits++) { double expected_scvtf = expected_scvtf_base / pow(2.0, fbits); double expected_ucvtf = expected_ucvtf_base / pow(2.0, fbits); ASSERT_EQUAL_FP64(expected_scvtf, results_scvtf_x[fbits]); ASSERT_EQUAL_FP64(expected_ucvtf, results_ucvtf_x[fbits]); } TEARDOWN(); } TEST(scvtf_ucvtf_double) { INIT_V8(); // Simple conversions of positive numbers which require no rounding; the // results should not depened on the rounding mode, and ucvtf and scvtf should // produce the same result. TestUScvtfHelper(0x0000000000000000, 0x0000000000000000, 0x0000000000000000); TestUScvtfHelper(0x0000000000000001, 0x3ff0000000000000, 0x3ff0000000000000); TestUScvtfHelper(0x0000000040000000, 0x41d0000000000000, 0x41d0000000000000); TestUScvtfHelper(0x0000000100000000, 0x41f0000000000000, 0x41f0000000000000); TestUScvtfHelper(0x4000000000000000, 0x43d0000000000000, 0x43d0000000000000); // Test mantissa extremities. TestUScvtfHelper(0x4000000000000400, 0x43d0000000000001, 0x43d0000000000001); // The largest int32_t that fits in a double. TestUScvtfHelper(0x000000007fffffff, 0x41dfffffffc00000, 0x41dfffffffc00000); // Values that would be negative if treated as an int32_t. TestUScvtfHelper(0x00000000ffffffff, 0x41efffffffe00000, 0x41efffffffe00000); TestUScvtfHelper(0x0000000080000000, 0x41e0000000000000, 0x41e0000000000000); TestUScvtfHelper(0x0000000080000001, 0x41e0000000200000, 0x41e0000000200000); // The largest int64_t that fits in a double. TestUScvtfHelper(0x7ffffffffffffc00, 0x43dfffffffffffff, 0x43dfffffffffffff); // Check for bit pattern reproduction. TestUScvtfHelper(0x0123456789abcde0, 0x43723456789abcde, 0x43723456789abcde); TestUScvtfHelper(0x0000000012345678, 0x41b2345678000000, 0x41b2345678000000); // Simple conversions of negative int64_t values. These require no rounding, // and the results should not depend on the rounding mode. TestUScvtfHelper(0xffffffffc0000000, 0xc1d0000000000000, 0x43effffffff80000); TestUScvtfHelper(0xffffffff00000000, 0xc1f0000000000000, 0x43efffffffe00000); TestUScvtfHelper(0xc000000000000000, 0xc3d0000000000000, 0x43e8000000000000); // Conversions which require rounding. TestUScvtfHelper(0x1000000000000000, 0x43b0000000000000, 0x43b0000000000000); TestUScvtfHelper(0x1000000000000001, 0x43b0000000000000, 0x43b0000000000000); TestUScvtfHelper(0x1000000000000080, 0x43b0000000000000, 0x43b0000000000000); TestUScvtfHelper(0x1000000000000081, 0x43b0000000000001, 0x43b0000000000001); TestUScvtfHelper(0x1000000000000100, 0x43b0000000000001, 0x43b0000000000001); TestUScvtfHelper(0x1000000000000101, 0x43b0000000000001, 0x43b0000000000001); TestUScvtfHelper(0x1000000000000180, 0x43b0000000000002, 0x43b0000000000002); TestUScvtfHelper(0x1000000000000181, 0x43b0000000000002, 0x43b0000000000002); TestUScvtfHelper(0x1000000000000200, 0x43b0000000000002, 0x43b0000000000002); TestUScvtfHelper(0x1000000000000201, 0x43b0000000000002, 0x43b0000000000002); TestUScvtfHelper(0x1000000000000280, 0x43b0000000000002, 0x43b0000000000002); TestUScvtfHelper(0x1000000000000281, 0x43b0000000000003, 0x43b0000000000003); TestUScvtfHelper(0x1000000000000300, 0x43b0000000000003, 0x43b0000000000003); // Check rounding of negative int64_t values (and large uint64_t values). TestUScvtfHelper(0x8000000000000000, 0xc3e0000000000000, 0x43e0000000000000); TestUScvtfHelper(0x8000000000000001, 0xc3e0000000000000, 0x43e0000000000000); TestUScvtfHelper(0x8000000000000200, 0xc3e0000000000000, 0x43e0000000000000); TestUScvtfHelper(0x8000000000000201, 0xc3dfffffffffffff, 0x43e0000000000000); TestUScvtfHelper(0x8000000000000400, 0xc3dfffffffffffff, 0x43e0000000000000); TestUScvtfHelper(0x8000000000000401, 0xc3dfffffffffffff, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000600, 0xc3dffffffffffffe, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000601, 0xc3dffffffffffffe, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000800, 0xc3dffffffffffffe, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000801, 0xc3dffffffffffffe, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000a00, 0xc3dffffffffffffe, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000a01, 0xc3dffffffffffffd, 0x43e0000000000001); TestUScvtfHelper(0x8000000000000c00, 0xc3dffffffffffffd, 0x43e0000000000002); // Round up to produce a result that's too big for the input to represent. TestUScvtfHelper(0x7ffffffffffffe00, 0x43e0000000000000, 0x43e0000000000000); TestUScvtfHelper(0x7fffffffffffffff, 0x43e0000000000000, 0x43e0000000000000); TestUScvtfHelper(0xfffffffffffffc00, 0xc090000000000000, 0x43f0000000000000); TestUScvtfHelper(0xffffffffffffffff, 0xbff0000000000000, 0x43f0000000000000); } // The same as TestUScvtfHelper, but convert to floats. static void TestUScvtf32Helper(uint64_t in, uint32_t expected_scvtf_bits, uint32_t expected_ucvtf_bits) { uint64_t u64 = in; uint32_t u32 = u64 & 0xffffffff; int64_t s64 = static_cast(in); int32_t s32 = s64 & 0x7fffffff; bool cvtf_s32 = (s64 == s32); bool cvtf_u32 = (u64 == u32); float results_scvtf_x[65]; float results_ucvtf_x[65]; float results_scvtf_w[33]; float results_ucvtf_w[33]; SETUP(); START(); __ Mov(x0, reinterpret_cast(results_scvtf_x)); __ Mov(x1, reinterpret_cast(results_ucvtf_x)); __ Mov(x2, reinterpret_cast(results_scvtf_w)); __ Mov(x3, reinterpret_cast(results_ucvtf_w)); __ Mov(x10, s64); // Corrupt the top word, in case it is accidentally used during W-register // conversions. __ Mov(x11, 0x5555555555555555); __ Bfi(x11, x10, 0, kWRegSizeInBits); // Test integer conversions. __ Scvtf(s0, x10); __ Ucvtf(s1, x10); __ Scvtf(s2, w11); __ Ucvtf(s3, w11); __ Str(s0, MemOperand(x0)); __ Str(s1, MemOperand(x1)); __ Str(s2, MemOperand(x2)); __ Str(s3, MemOperand(x3)); // Test all possible values of fbits. for (int fbits = 1; fbits <= 32; fbits++) { __ Scvtf(s0, x10, fbits); __ Ucvtf(s1, x10, fbits); __ Scvtf(s2, w11, fbits); __ Ucvtf(s3, w11, fbits); __ Str(s0, MemOperand(x0, fbits * kSRegSize)); __ Str(s1, MemOperand(x1, fbits * kSRegSize)); __ Str(s2, MemOperand(x2, fbits * kSRegSize)); __ Str(s3, MemOperand(x3, fbits * kSRegSize)); } // Conversions from W registers can only handle fbits values <= 32, so just // test conversions from X registers for 32 < fbits <= 64. for (int fbits = 33; fbits <= 64; fbits++) { __ Scvtf(s0, x10, fbits); __ Ucvtf(s1, x10, fbits); __ Str(s0, MemOperand(x0, fbits * kSRegSize)); __ Str(s1, MemOperand(x1, fbits * kSRegSize)); } END(); RUN(); // Check the results. float expected_scvtf_base = rawbits_to_float(expected_scvtf_bits); float expected_ucvtf_base = rawbits_to_float(expected_ucvtf_bits); for (int fbits = 0; fbits <= 32; fbits++) { float expected_scvtf = expected_scvtf_base / powf(2, fbits); float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); if (cvtf_s32) ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_w[fbits]); if (cvtf_u32) ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_w[fbits]); break; } for (int fbits = 33; fbits <= 64; fbits++) { break; float expected_scvtf = expected_scvtf_base / powf(2, fbits); float expected_ucvtf = expected_ucvtf_base / powf(2, fbits); ASSERT_EQUAL_FP32(expected_scvtf, results_scvtf_x[fbits]); ASSERT_EQUAL_FP32(expected_ucvtf, results_ucvtf_x[fbits]); } TEARDOWN(); } TEST(scvtf_ucvtf_float) { INIT_V8(); // Simple conversions of positive numbers which require no rounding; the // results should not depened on the rounding mode, and ucvtf and scvtf should // produce the same result. TestUScvtf32Helper(0x0000000000000000, 0x00000000, 0x00000000); TestUScvtf32Helper(0x0000000000000001, 0x3f800000, 0x3f800000); TestUScvtf32Helper(0x0000000040000000, 0x4e800000, 0x4e800000); TestUScvtf32Helper(0x0000000100000000, 0x4f800000, 0x4f800000); TestUScvtf32Helper(0x4000000000000000, 0x5e800000, 0x5e800000); // Test mantissa extremities. TestUScvtf32Helper(0x0000000000800001, 0x4b000001, 0x4b000001); TestUScvtf32Helper(0x4000008000000000, 0x5e800001, 0x5e800001); // The largest int32_t that fits in a float. TestUScvtf32Helper(0x000000007fffff80, 0x4effffff, 0x4effffff); // Values that would be negative if treated as an int32_t. TestUScvtf32Helper(0x00000000ffffff00, 0x4f7fffff, 0x4f7fffff); TestUScvtf32Helper(0x0000000080000000, 0x4f000000, 0x4f000000); TestUScvtf32Helper(0x0000000080000100, 0x4f000001, 0x4f000001); // The largest int64_t that fits in a float. TestUScvtf32Helper(0x7fffff8000000000, 0x5effffff, 0x5effffff); // Check for bit pattern reproduction. TestUScvtf32Helper(0x0000000000876543, 0x4b076543, 0x4b076543); // Simple conversions of negative int64_t values. These require no rounding, // and the results should not depend on the rounding mode. TestUScvtf32Helper(0xfffffc0000000000, 0xd4800000, 0x5f7ffffc); TestUScvtf32Helper(0xc000000000000000, 0xde800000, 0x5f400000); // Conversions which require rounding. TestUScvtf32Helper(0x0000800000000000, 0x57000000, 0x57000000); TestUScvtf32Helper(0x0000800000000001, 0x57000000, 0x57000000); TestUScvtf32Helper(0x0000800000800000, 0x57000000, 0x57000000); TestUScvtf32Helper(0x0000800000800001, 0x57000001, 0x57000001); TestUScvtf32Helper(0x0000800001000000, 0x57000001, 0x57000001); TestUScvtf32Helper(0x0000800001000001, 0x57000001, 0x57000001); TestUScvtf32Helper(0x0000800001800000, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800001800001, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002000000, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002000001, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002800000, 0x57000002, 0x57000002); TestUScvtf32Helper(0x0000800002800001, 0x57000003, 0x57000003); TestUScvtf32Helper(0x0000800003000000, 0x57000003, 0x57000003); // Check rounding of negative int64_t values (and large uint64_t values). TestUScvtf32Helper(0x8000000000000000, 0xdf000000, 0x5f000000); TestUScvtf32Helper(0x8000000000000001, 0xdf000000, 0x5f000000); TestUScvtf32Helper(0x8000004000000000, 0xdf000000, 0x5f000000); TestUScvtf32Helper(0x8000004000000001, 0xdeffffff, 0x5f000000); TestUScvtf32Helper(0x8000008000000000, 0xdeffffff, 0x5f000000); TestUScvtf32Helper(0x8000008000000001, 0xdeffffff, 0x5f000001); TestUScvtf32Helper(0x800000c000000000, 0xdefffffe, 0x5f000001); TestUScvtf32Helper(0x800000c000000001, 0xdefffffe, 0x5f000001); TestUScvtf32Helper(0x8000010000000000, 0xdefffffe, 0x5f000001); TestUScvtf32Helper(0x8000010000000001, 0xdefffffe, 0x5f000001); TestUScvtf32Helper(0x8000014000000000, 0xdefffffe, 0x5f000001); TestUScvtf32Helper(0x8000014000000001, 0xdefffffd, 0x5f000001); TestUScvtf32Helper(0x8000018000000000, 0xdefffffd, 0x5f000002); // Round up to produce a result that's too big for the input to represent. TestUScvtf32Helper(0x000000007fffffc0, 0x4f000000, 0x4f000000); TestUScvtf32Helper(0x000000007fffffff, 0x4f000000, 0x4f000000); TestUScvtf32Helper(0x00000000ffffff80, 0x4f800000, 0x4f800000); TestUScvtf32Helper(0x00000000ffffffff, 0x4f800000, 0x4f800000); TestUScvtf32Helper(0x7fffffc000000000, 0x5f000000, 0x5f000000); TestUScvtf32Helper(0x7fffffffffffffff, 0x5f000000, 0x5f000000); TestUScvtf32Helper(0xffffff8000000000, 0xd3000000, 0x5f800000); TestUScvtf32Helper(0xffffffffffffffff, 0xbf800000, 0x5f800000); } TEST(system_mrs) { INIT_V8(); SETUP(); START(); __ Mov(w0, 0); __ Mov(w1, 1); __ Mov(w2, 0x80000000); // Set the Z and C flags. __ Cmp(w0, w0); __ Mrs(x3, NZCV); // Set the N flag. __ Cmp(w0, w1); __ Mrs(x4, NZCV); // Set the Z, C and V flags. __ Adds(w0, w2, w2); __ Mrs(x5, NZCV); // Read the default FPCR. __ Mrs(x6, FPCR); END(); RUN(); // NZCV ASSERT_EQUAL_32(ZCFlag, w3); ASSERT_EQUAL_32(NFlag, w4); ASSERT_EQUAL_32(ZCVFlag, w5); // FPCR // The default FPCR on Linux-based platforms is 0. ASSERT_EQUAL_32(0, w6); TEARDOWN(); } TEST(system_msr) { INIT_V8(); // All FPCR fields that must be implemented: AHP, DN, FZ, RMode const uint64_t fpcr_core = 0x07c00000; // All FPCR fields (including fields which may be read-as-zero): // Stride, Len // IDE, IXE, UFE, OFE, DZE, IOE const uint64_t fpcr_all = fpcr_core | 0x00379f00; SETUP(); START(); __ Mov(w0, 0); __ Mov(w1, 0x7fffffff); __ Mov(x7, 0); __ Mov(x10, NVFlag); __ Cmp(w0, w0); // Set Z and C. __ Msr(NZCV, x10); // Set N and V. // The Msr should have overwritten every flag set by the Cmp. __ Cinc(x7, x7, mi); // N __ Cinc(x7, x7, ne); // !Z __ Cinc(x7, x7, lo); // !C __ Cinc(x7, x7, vs); // V __ Mov(x10, ZCFlag); __ Cmn(w1, w1); // Set N and V. __ Msr(NZCV, x10); // Set Z and C. // The Msr should have overwritten every flag set by the Cmn. __ Cinc(x7, x7, pl); // !N __ Cinc(x7, x7, eq); // Z __ Cinc(x7, x7, hs); // C __ Cinc(x7, x7, vc); // !V // All core FPCR fields must be writable. __ Mov(x8, fpcr_core); __ Msr(FPCR, x8); __ Mrs(x8, FPCR); // All FPCR fields, including optional ones. This part of the test doesn't // achieve much other than ensuring that supported fields can be cleared by // the next test. __ Mov(x9, fpcr_all); __ Msr(FPCR, x9); __ Mrs(x9, FPCR); __ And(x9, x9, fpcr_core); // The undefined bits must ignore writes. // It's conceivable that a future version of the architecture could use these // fields (making this test fail), but in the meantime this is a useful test // for the simulator. __ Mov(x10, ~fpcr_all); __ Msr(FPCR, x10); __ Mrs(x10, FPCR); END(); RUN(); // We should have incremented x7 (from 0) exactly 8 times. ASSERT_EQUAL_64(8, x7); ASSERT_EQUAL_64(fpcr_core, x8); ASSERT_EQUAL_64(fpcr_core, x9); ASSERT_EQUAL_64(0, x10); TEARDOWN(); } TEST(system_nop) { INIT_V8(); SETUP(); RegisterDump before; START(); before.Dump(&masm); __ Nop(); END(); RUN(); ASSERT_EQUAL_REGISTERS(before); ASSERT_EQUAL_NZCV(before.flags_nzcv()); TEARDOWN(); } TEST(zero_dest) { INIT_V8(); SETUP(); RegisterDump before; START(); // Preserve the system stack pointer, in case we clobber it. __ Mov(x30, csp); // Initialize the other registers used in this test. uint64_t literal_base = 0x0100001000100101UL; __ Mov(x0, 0); __ Mov(x1, literal_base); for (unsigned i = 2; i < x30.code(); i++) { __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); } before.Dump(&masm); // All of these instructions should be NOPs in these forms, but have // alternate forms which can write into the stack pointer. __ add(xzr, x0, x1); __ add(xzr, x1, xzr); __ add(xzr, xzr, x1); __ and_(xzr, x0, x2); __ and_(xzr, x2, xzr); __ and_(xzr, xzr, x2); __ bic(xzr, x0, x3); __ bic(xzr, x3, xzr); __ bic(xzr, xzr, x3); __ eon(xzr, x0, x4); __ eon(xzr, x4, xzr); __ eon(xzr, xzr, x4); __ eor(xzr, x0, x5); __ eor(xzr, x5, xzr); __ eor(xzr, xzr, x5); __ orr(xzr, x0, x6); __ orr(xzr, x6, xzr); __ orr(xzr, xzr, x6); __ sub(xzr, x0, x7); __ sub(xzr, x7, xzr); __ sub(xzr, xzr, x7); // Swap the saved system stack pointer with the real one. If csp was written // during the test, it will show up in x30. This is done because the test // framework assumes that csp will be valid at the end of the test. __ Mov(x29, x30); __ Mov(x30, csp); __ Mov(csp, x29); // We used x29 as a scratch register, so reset it to make sure it doesn't // trigger a test failure. __ Add(x29, x28, x1); END(); RUN(); ASSERT_EQUAL_REGISTERS(before); ASSERT_EQUAL_NZCV(before.flags_nzcv()); TEARDOWN(); } TEST(zero_dest_setflags) { INIT_V8(); SETUP(); RegisterDump before; START(); // Preserve the system stack pointer, in case we clobber it. __ Mov(x30, csp); // Initialize the other registers used in this test. uint64_t literal_base = 0x0100001000100101UL; __ Mov(x0, 0); __ Mov(x1, literal_base); for (int i = 2; i < 30; i++) { __ Add(Register::XRegFromCode(i), Register::XRegFromCode(i-1), x1); } before.Dump(&masm); // All of these instructions should only write to the flags in these forms, // but have alternate forms which can write into the stack pointer. __ adds(xzr, x0, Operand(x1, UXTX)); __ adds(xzr, x1, Operand(xzr, UXTX)); __ adds(xzr, x1, 1234); __ adds(xzr, x0, x1); __ adds(xzr, x1, xzr); __ adds(xzr, xzr, x1); __ ands(xzr, x2, ~0xf); __ ands(xzr, xzr, ~0xf); __ ands(xzr, x0, x2); __ ands(xzr, x2, xzr); __ ands(xzr, xzr, x2); __ bics(xzr, x3, ~0xf); __ bics(xzr, xzr, ~0xf); __ bics(xzr, x0, x3); __ bics(xzr, x3, xzr); __ bics(xzr, xzr, x3); __ subs(xzr, x0, Operand(x3, UXTX)); __ subs(xzr, x3, Operand(xzr, UXTX)); __ subs(xzr, x3, 1234); __ subs(xzr, x0, x3); __ subs(xzr, x3, xzr); __ subs(xzr, xzr, x3); // Swap the saved system stack pointer with the real one. If csp was written // during the test, it will show up in x30. This is done because the test // framework assumes that csp will be valid at the end of the test. __ Mov(x29, x30); __ Mov(x30, csp); __ Mov(csp, x29); // We used x29 as a scratch register, so reset it to make sure it doesn't // trigger a test failure. __ Add(x29, x28, x1); END(); RUN(); ASSERT_EQUAL_REGISTERS(before); TEARDOWN(); } TEST(register_bit) { // No code generation takes place in this test, so no need to setup and // teardown. // Simple tests. CHECK(x0.Bit() == (1UL << 0)); CHECK(x1.Bit() == (1UL << 1)); CHECK(x10.Bit() == (1UL << 10)); // AAPCS64 definitions. CHECK(fp.Bit() == (1UL << kFramePointerRegCode)); CHECK(lr.Bit() == (1UL << kLinkRegCode)); // Fixed (hardware) definitions. CHECK(xzr.Bit() == (1UL << kZeroRegCode)); // Internal ABI definitions. CHECK(jssp.Bit() == (1UL << kJSSPCode)); CHECK(csp.Bit() == (1UL << kSPRegInternalCode)); CHECK(csp.Bit() != xzr.Bit()); // xn.Bit() == wn.Bit() at all times, for the same n. CHECK(x0.Bit() == w0.Bit()); CHECK(x1.Bit() == w1.Bit()); CHECK(x10.Bit() == w10.Bit()); CHECK(jssp.Bit() == wjssp.Bit()); CHECK(xzr.Bit() == wzr.Bit()); CHECK(csp.Bit() == wcsp.Bit()); } TEST(stack_pointer_override) { // This test generates some stack maintenance code, but the test only checks // the reported state. INIT_V8(); SETUP(); START(); // The default stack pointer in V8 is jssp, but for compatibility with W16, // the test framework sets it to csp before calling the test. CHECK(csp.Is(__ StackPointer())); __ SetStackPointer(x0); CHECK(x0.Is(__ StackPointer())); __ SetStackPointer(jssp); CHECK(jssp.Is(__ StackPointer())); __ SetStackPointer(csp); CHECK(csp.Is(__ StackPointer())); END(); RUN(); TEARDOWN(); } TEST(peek_poke_simple) { INIT_V8(); SETUP(); START(); static const RegList x0_to_x3 = x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit(); static const RegList x10_to_x13 = x10.Bit() | x11.Bit() | x12.Bit() | x13.Bit(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Add(x2, x1, x0); __ Add(x3, x2, x0); __ Claim(4); // Simple exchange. // After this test: // x0-x3 should be unchanged. // w10-w13 should contain the lower words of x0-x3. __ Poke(x0, 0); __ Poke(x1, 8); __ Poke(x2, 16); __ Poke(x3, 24); Clobber(&masm, x0_to_x3); __ Peek(x0, 0); __ Peek(x1, 8); __ Peek(x2, 16); __ Peek(x3, 24); __ Poke(w0, 0); __ Poke(w1, 4); __ Poke(w2, 8); __ Poke(w3, 12); Clobber(&masm, x10_to_x13); __ Peek(w10, 0); __ Peek(w11, 4); __ Peek(w12, 8); __ Peek(w13, 12); __ Drop(4); END(); RUN(); ASSERT_EQUAL_64(literal_base * 1, x0); ASSERT_EQUAL_64(literal_base * 2, x1); ASSERT_EQUAL_64(literal_base * 3, x2); ASSERT_EQUAL_64(literal_base * 4, x3); ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10); ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11); ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12); ASSERT_EQUAL_64((literal_base * 4) & 0xffffffff, x13); TEARDOWN(); } TEST(peek_poke_unaligned) { INIT_V8(); SETUP(); START(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Add(x2, x1, x0); __ Add(x3, x2, x0); __ Add(x4, x3, x0); __ Add(x5, x4, x0); __ Add(x6, x5, x0); __ Claim(4); // Unaligned exchanges. // After this test: // x0-x6 should be unchanged. // w10-w12 should contain the lower words of x0-x2. __ Poke(x0, 1); Clobber(&masm, x0.Bit()); __ Peek(x0, 1); __ Poke(x1, 2); Clobber(&masm, x1.Bit()); __ Peek(x1, 2); __ Poke(x2, 3); Clobber(&masm, x2.Bit()); __ Peek(x2, 3); __ Poke(x3, 4); Clobber(&masm, x3.Bit()); __ Peek(x3, 4); __ Poke(x4, 5); Clobber(&masm, x4.Bit()); __ Peek(x4, 5); __ Poke(x5, 6); Clobber(&masm, x5.Bit()); __ Peek(x5, 6); __ Poke(x6, 7); Clobber(&masm, x6.Bit()); __ Peek(x6, 7); __ Poke(w0, 1); Clobber(&masm, w10.Bit()); __ Peek(w10, 1); __ Poke(w1, 2); Clobber(&masm, w11.Bit()); __ Peek(w11, 2); __ Poke(w2, 3); Clobber(&masm, w12.Bit()); __ Peek(w12, 3); __ Drop(4); END(); RUN(); ASSERT_EQUAL_64(literal_base * 1, x0); ASSERT_EQUAL_64(literal_base * 2, x1); ASSERT_EQUAL_64(literal_base * 3, x2); ASSERT_EQUAL_64(literal_base * 4, x3); ASSERT_EQUAL_64(literal_base * 5, x4); ASSERT_EQUAL_64(literal_base * 6, x5); ASSERT_EQUAL_64(literal_base * 7, x6); ASSERT_EQUAL_64((literal_base * 1) & 0xffffffff, x10); ASSERT_EQUAL_64((literal_base * 2) & 0xffffffff, x11); ASSERT_EQUAL_64((literal_base * 3) & 0xffffffff, x12); TEARDOWN(); } TEST(peek_poke_endianness) { INIT_V8(); SETUP(); START(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Claim(4); // Endianness tests. // After this section: // x4 should match x0[31:0]:x0[63:32] // w5 should match w1[15:0]:w1[31:16] __ Poke(x0, 0); __ Poke(x0, 8); __ Peek(x4, 4); __ Poke(w1, 0); __ Poke(w1, 4); __ Peek(w5, 2); __ Drop(4); END(); RUN(); uint64_t x0_expected = literal_base * 1; uint64_t x1_expected = literal_base * 2; uint64_t x4_expected = (x0_expected << 32) | (x0_expected >> 32); uint64_t x5_expected = ((x1_expected << 16) & 0xffff0000) | ((x1_expected >> 16) & 0x0000ffff); ASSERT_EQUAL_64(x0_expected, x0); ASSERT_EQUAL_64(x1_expected, x1); ASSERT_EQUAL_64(x4_expected, x4); ASSERT_EQUAL_64(x5_expected, x5); TEARDOWN(); } TEST(peek_poke_mixed) { INIT_V8(); SETUP(); START(); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; // Initialize the registers. __ Mov(x0, literal_base); __ Add(x1, x0, x0); __ Add(x2, x1, x0); __ Add(x3, x2, x0); __ Claim(4); // Mix with other stack operations. // After this section: // x0-x3 should be unchanged. // x6 should match x1[31:0]:x0[63:32] // w7 should match x1[15:0]:x0[63:48] __ Poke(x1, 8); __ Poke(x0, 0); { ASSERT(__ StackPointer().Is(csp)); __ Mov(x4, __ StackPointer()); __ SetStackPointer(x4); __ Poke(wzr, 0); // Clobber the space we're about to drop. __ Drop(1, kWRegSize); __ Peek(x6, 0); __ Claim(1); __ Peek(w7, 10); __ Poke(x3, 28); __ Poke(xzr, 0); // Clobber the space we're about to drop. __ Drop(1); __ Poke(x2, 12); __ Push(w0); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); } __ Pop(x0, x1, x2, x3); END(); RUN(); uint64_t x0_expected = literal_base * 1; uint64_t x1_expected = literal_base * 2; uint64_t x2_expected = literal_base * 3; uint64_t x3_expected = literal_base * 4; uint64_t x6_expected = (x1_expected << 32) | (x0_expected >> 32); uint64_t x7_expected = ((x1_expected << 16) & 0xffff0000) | ((x0_expected >> 48) & 0x0000ffff); ASSERT_EQUAL_64(x0_expected, x0); ASSERT_EQUAL_64(x1_expected, x1); ASSERT_EQUAL_64(x2_expected, x2); ASSERT_EQUAL_64(x3_expected, x3); ASSERT_EQUAL_64(x6_expected, x6); ASSERT_EQUAL_64(x7_expected, x7); TEARDOWN(); } // This enum is used only as an argument to the push-pop test helpers. enum PushPopMethod { // Push or Pop using the Push and Pop methods, with blocks of up to four // registers. (Smaller blocks will be used if necessary.) PushPopByFour, // Use PushRegList and PopRegList to transfer the registers. PushPopRegList }; // The maximum number of registers that can be used by the PushPopJssp* tests, // where a reg_count field is provided. static int const kPushPopJsspMaxRegCount = -1; // Test a simple push-pop pattern: // * Claim bytes to set the stack alignment. // * Push registers with size . // * Clobber the register contents. // * Pop registers to restore the original contents. // * Drop bytes to restore the original stack pointer. // // Different push and pop methods can be specified independently to test for // proper word-endian behaviour. static void PushPopJsspSimpleHelper(int reg_count, int claim, int reg_size, PushPopMethod push_method, PushPopMethod pop_method) { SETUP(); START(); // Registers x8 and x9 are used by the macro assembler for debug code (for // example in 'Pop'), so we can't use them here. We can't use jssp because it // will be the stack pointer for this test. static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit()); if (reg_count == kPushPopJsspMaxRegCount) { reg_count = CountSetBits(allowed, kNumberOfRegisters); } // Work out which registers to use, based on reg_size. Register r[kNumberOfRegisters]; Register x[kNumberOfRegisters]; RegList list = PopulateRegisterArray(NULL, x, r, reg_size, reg_count, allowed); // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; { ASSERT(__ StackPointer().Is(csp)); __ Mov(jssp, __ StackPointer()); __ SetStackPointer(jssp); int i; // Initialize the registers. for (i = 0; i < reg_count; i++) { // Always write into the X register, to ensure that the upper word is // properly ignored by Push when testing W registers. if (!x[i].IsZero()) { __ Mov(x[i], literal_base * i); } } // Claim memory first, as requested. __ Claim(claim, kByteSizeInBytes); switch (push_method) { case PushPopByFour: // Push high-numbered registers first (to the highest addresses). for (i = reg_count; i >= 4; i -= 4) { __ Push(r[i-1], r[i-2], r[i-3], r[i-4]); } // Finish off the leftovers. switch (i) { case 3: __ Push(r[2], r[1], r[0]); break; case 2: __ Push(r[1], r[0]); break; case 1: __ Push(r[0]); break; default: ASSERT(i == 0); break; } break; case PushPopRegList: __ PushSizeRegList(list, reg_size); break; } // Clobber all the registers, to ensure that they get repopulated by Pop. Clobber(&masm, list); switch (pop_method) { case PushPopByFour: // Pop low-numbered registers first (from the lowest addresses). for (i = 0; i <= (reg_count-4); i += 4) { __ Pop(r[i], r[i+1], r[i+2], r[i+3]); } // Finish off the leftovers. switch (reg_count - i) { case 3: __ Pop(r[i], r[i+1], r[i+2]); break; case 2: __ Pop(r[i], r[i+1]); break; case 1: __ Pop(r[i]); break; default: ASSERT(i == reg_count); break; } break; case PushPopRegList: __ PopSizeRegList(list, reg_size); break; } // Drop memory to restore jssp. __ Drop(claim, kByteSizeInBytes); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); } END(); RUN(); // Check that the register contents were preserved. // Always use ASSERT_EQUAL_64, even when testing W registers, so we can test // that the upper word was properly cleared by Pop. literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); for (int i = 0; i < reg_count; i++) { if (x[i].IsZero()) { ASSERT_EQUAL_64(0, x[i]); } else { ASSERT_EQUAL_64(literal_base * i, x[i]); } } TEARDOWN(); } TEST(push_pop_jssp_simple_32) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { for (int count = 0; count <= 8; count++) { PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits, PushPopByFour, PushPopByFour); PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits, PushPopByFour, PushPopRegList); PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits, PushPopRegList, PushPopByFour); PushPopJsspSimpleHelper(count, claim, kWRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits, PushPopByFour, PushPopByFour); PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits, PushPopByFour, PushPopRegList); PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits, PushPopRegList, PushPopByFour); PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kWRegSizeInBits, PushPopRegList, PushPopRegList); } } TEST(push_pop_jssp_simple_64) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { for (int count = 0; count <= 8; count++) { PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits, PushPopByFour, PushPopByFour); PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits, PushPopByFour, PushPopRegList); PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits, PushPopRegList, PushPopByFour); PushPopJsspSimpleHelper(count, claim, kXRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits, PushPopByFour, PushPopByFour); PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits, PushPopByFour, PushPopRegList); PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits, PushPopRegList, PushPopByFour); PushPopJsspSimpleHelper(kPushPopJsspMaxRegCount, claim, kXRegSizeInBits, PushPopRegList, PushPopRegList); } } // The maximum number of registers that can be used by the PushPopFPJssp* tests, // where a reg_count field is provided. static int const kPushPopFPJsspMaxRegCount = -1; // Test a simple push-pop pattern: // * Claim bytes to set the stack alignment. // * Push FP registers with size . // * Clobber the register contents. // * Pop FP registers to restore the original contents. // * Drop bytes to restore the original stack pointer. // // Different push and pop methods can be specified independently to test for // proper word-endian behaviour. static void PushPopFPJsspSimpleHelper(int reg_count, int claim, int reg_size, PushPopMethod push_method, PushPopMethod pop_method) { SETUP(); START(); // We can use any floating-point register. None of them are reserved for // debug code, for example. static RegList const allowed = ~0; if (reg_count == kPushPopFPJsspMaxRegCount) { reg_count = CountSetBits(allowed, kNumberOfFPRegisters); } // Work out which registers to use, based on reg_size. FPRegister v[kNumberOfRegisters]; FPRegister d[kNumberOfRegisters]; RegList list = PopulateFPRegisterArray(NULL, d, v, reg_size, reg_count, allowed); // The literal base is chosen to have two useful properties: // * When multiplied (using an integer) by small values (such as a register // index), this value is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. // * It is never a floating-point NaN, and will therefore always compare // equal to itself. uint64_t literal_base = 0x0100001000100101UL; { ASSERT(__ StackPointer().Is(csp)); __ Mov(jssp, __ StackPointer()); __ SetStackPointer(jssp); int i; // Initialize the registers, using X registers to load the literal. __ Mov(x0, 0); __ Mov(x1, literal_base); for (i = 0; i < reg_count; i++) { // Always write into the D register, to ensure that the upper word is // properly ignored by Push when testing S registers. __ Fmov(d[i], x0); // Calculate the next literal. __ Add(x0, x0, x1); } // Claim memory first, as requested. __ Claim(claim, kByteSizeInBytes); switch (push_method) { case PushPopByFour: // Push high-numbered registers first (to the highest addresses). for (i = reg_count; i >= 4; i -= 4) { __ Push(v[i-1], v[i-2], v[i-3], v[i-4]); } // Finish off the leftovers. switch (i) { case 3: __ Push(v[2], v[1], v[0]); break; case 2: __ Push(v[1], v[0]); break; case 1: __ Push(v[0]); break; default: ASSERT(i == 0); break; } break; case PushPopRegList: __ PushSizeRegList(list, reg_size, CPURegister::kFPRegister); break; } // Clobber all the registers, to ensure that they get repopulated by Pop. ClobberFP(&masm, list); switch (pop_method) { case PushPopByFour: // Pop low-numbered registers first (from the lowest addresses). for (i = 0; i <= (reg_count-4); i += 4) { __ Pop(v[i], v[i+1], v[i+2], v[i+3]); } // Finish off the leftovers. switch (reg_count - i) { case 3: __ Pop(v[i], v[i+1], v[i+2]); break; case 2: __ Pop(v[i], v[i+1]); break; case 1: __ Pop(v[i]); break; default: ASSERT(i == reg_count); break; } break; case PushPopRegList: __ PopSizeRegList(list, reg_size, CPURegister::kFPRegister); break; } // Drop memory to restore jssp. __ Drop(claim, kByteSizeInBytes); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); } END(); RUN(); // Check that the register contents were preserved. // Always use ASSERT_EQUAL_FP64, even when testing S registers, so we can // test that the upper word was properly cleared by Pop. literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); for (int i = 0; i < reg_count; i++) { uint64_t literal = literal_base * i; double expected; memcpy(&expected, &literal, sizeof(expected)); ASSERT_EQUAL_FP64(expected, d[i]); } TEARDOWN(); } TEST(push_pop_fp_jssp_simple_32) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { for (int count = 0; count <= 8; count++) { PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPJsspSimpleHelper(count, claim, kSRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kSRegSizeInBits, PushPopRegList, PushPopRegList); } } TEST(push_pop_fp_jssp_simple_64) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { for (int count = 0; count <= 8; count++) { PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPJsspSimpleHelper(count, claim, kDRegSizeInBits, PushPopRegList, PushPopRegList); } // Test with the maximum number of registers. PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits, PushPopByFour, PushPopByFour); PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits, PushPopByFour, PushPopRegList); PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits, PushPopRegList, PushPopByFour); PushPopFPJsspSimpleHelper(kPushPopFPJsspMaxRegCount, claim, kDRegSizeInBits, PushPopRegList, PushPopRegList); } } // Push and pop data using an overlapping combination of Push/Pop and // RegList-based methods. static void PushPopJsspMixedMethodsHelper(int claim, int reg_size) { SETUP(); // Registers x8 and x9 are used by the macro assembler for debug code (for // example in 'Pop'), so we can't use them here. We can't use jssp because it // will be the stack pointer for this test. static RegList const allowed = ~(x8.Bit() | x9.Bit() | jssp.Bit() | xzr.Bit()); // Work out which registers to use, based on reg_size. Register r[10]; Register x[10]; PopulateRegisterArray(NULL, x, r, reg_size, 10, allowed); // Calculate some handy register lists. RegList r0_to_r3 = 0; for (int i = 0; i <= 3; i++) { r0_to_r3 |= x[i].Bit(); } RegList r4_to_r5 = 0; for (int i = 4; i <= 5; i++) { r4_to_r5 |= x[i].Bit(); } RegList r6_to_r9 = 0; for (int i = 6; i <= 9; i++) { r6_to_r9 |= x[i].Bit(); } // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. uint64_t literal_base = 0x0100001000100101UL; START(); { ASSERT(__ StackPointer().Is(csp)); __ Mov(jssp, __ StackPointer()); __ SetStackPointer(jssp); // Claim memory first, as requested. __ Claim(claim, kByteSizeInBytes); __ Mov(x[3], literal_base * 3); __ Mov(x[2], literal_base * 2); __ Mov(x[1], literal_base * 1); __ Mov(x[0], literal_base * 0); __ PushSizeRegList(r0_to_r3, reg_size); __ Push(r[3], r[2]); Clobber(&masm, r0_to_r3); __ PopSizeRegList(r0_to_r3, reg_size); __ Push(r[2], r[1], r[3], r[0]); Clobber(&masm, r4_to_r5); __ Pop(r[4], r[5]); Clobber(&masm, r6_to_r9); __ Pop(r[6], r[7], r[8], r[9]); // Drop memory to restore jssp. __ Drop(claim, kByteSizeInBytes); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); } END(); RUN(); // Always use ASSERT_EQUAL_64, even when testing W registers, so we can test // that the upper word was properly cleared by Pop. literal_base &= (0xffffffffffffffffUL >> (64-reg_size)); ASSERT_EQUAL_64(literal_base * 3, x[9]); ASSERT_EQUAL_64(literal_base * 2, x[8]); ASSERT_EQUAL_64(literal_base * 0, x[7]); ASSERT_EQUAL_64(literal_base * 3, x[6]); ASSERT_EQUAL_64(literal_base * 1, x[5]); ASSERT_EQUAL_64(literal_base * 2, x[4]); TEARDOWN(); } TEST(push_pop_jssp_mixed_methods_64) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { PushPopJsspMixedMethodsHelper(claim, kXRegSizeInBits); } } TEST(push_pop_jssp_mixed_methods_32) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { PushPopJsspMixedMethodsHelper(claim, kWRegSizeInBits); } } // Push and pop data using overlapping X- and W-sized quantities. static void PushPopJsspWXOverlapHelper(int reg_count, int claim) { // This test emits rather a lot of code. SETUP_SIZE(BUF_SIZE * 2); // Work out which registers to use, based on reg_size. Register tmp = x8; static RegList const allowed = ~(tmp.Bit() | jssp.Bit()); if (reg_count == kPushPopJsspMaxRegCount) { reg_count = CountSetBits(allowed, kNumberOfRegisters); } Register w[kNumberOfRegisters]; Register x[kNumberOfRegisters]; RegList list = PopulateRegisterArray(w, x, NULL, 0, reg_count, allowed); // The number of W-sized slots we expect to pop. When we pop, we alternate // between W and X registers, so we need reg_count*1.5 W-sized slots. int const requested_w_slots = reg_count + reg_count / 2; // Track what _should_ be on the stack, using W-sized slots. static int const kMaxWSlots = kNumberOfRegisters + kNumberOfRegisters / 2; uint32_t stack[kMaxWSlots]; for (int i = 0; i < kMaxWSlots; i++) { stack[i] = 0xdeadbeef; } // The literal base is chosen to have two useful properties: // * When multiplied by small values (such as a register index), this value // is clearly readable in the result. // * The value is not formed from repeating fixed-size smaller values, so it // can be used to detect endianness-related errors. static uint64_t const literal_base = 0x0100001000100101UL; static uint64_t const literal_base_hi = literal_base >> 32; static uint64_t const literal_base_lo = literal_base & 0xffffffff; static uint64_t const literal_base_w = literal_base & 0xffffffff; START(); { ASSERT(__ StackPointer().Is(csp)); __ Mov(jssp, __ StackPointer()); __ SetStackPointer(jssp); // Initialize the registers. for (int i = 0; i < reg_count; i++) { // Always write into the X register, to ensure that the upper word is // properly ignored by Push when testing W registers. if (!x[i].IsZero()) { __ Mov(x[i], literal_base * i); } } // Claim memory first, as requested. __ Claim(claim, kByteSizeInBytes); // The push-pop pattern is as follows: // Push: Pop: // x[0](hi) -> w[0] // x[0](lo) -> x[1](hi) // w[1] -> x[1](lo) // w[1] -> w[2] // x[2](hi) -> x[2](hi) // x[2](lo) -> x[2](lo) // x[2](hi) -> w[3] // x[2](lo) -> x[4](hi) // x[2](hi) -> x[4](lo) // x[2](lo) -> w[5] // w[3] -> x[5](hi) // w[3] -> x[6](lo) // w[3] -> w[7] // w[3] -> x[8](hi) // x[4](hi) -> x[8](lo) // x[4](lo) -> w[9] // ... pattern continues ... // // That is, registers are pushed starting with the lower numbers, // alternating between x and w registers, and pushing i%4+1 copies of each, // where i is the register number. // Registers are popped starting with the higher numbers one-by-one, // alternating between x and w registers, but only popping one at a time. // // This pattern provides a wide variety of alignment effects and overlaps. // ---- Push ---- int active_w_slots = 0; for (int i = 0; active_w_slots < requested_w_slots; i++) { ASSERT(i < reg_count); // In order to test various arguments to PushMultipleTimes, and to try to // exercise different alignment and overlap effects, we push each // register a different number of times. int times = i % 4 + 1; if (i & 1) { // Push odd-numbered registers as W registers. if (i & 2) { __ PushMultipleTimes(w[i], times); } else { // Use a register to specify the count. __ Mov(tmp.W(), times); __ PushMultipleTimes(w[i], tmp.W()); } // Fill in the expected stack slots. for (int j = 0; j < times; j++) { if (w[i].Is(wzr)) { // The zero register always writes zeroes. stack[active_w_slots++] = 0; } else { stack[active_w_slots++] = literal_base_w * i; } } } else { // Push even-numbered registers as X registers. if (i & 2) { __ PushMultipleTimes(x[i], times); } else { // Use a register to specify the count. __ Mov(tmp, times); __ PushMultipleTimes(x[i], tmp); } // Fill in the expected stack slots. for (int j = 0; j < times; j++) { if (x[i].IsZero()) { // The zero register always writes zeroes. stack[active_w_slots++] = 0; stack[active_w_slots++] = 0; } else { stack[active_w_slots++] = literal_base_hi * i; stack[active_w_slots++] = literal_base_lo * i; } } } } // Because we were pushing several registers at a time, we probably pushed // more than we needed to. if (active_w_slots > requested_w_slots) { __ Drop(active_w_slots - requested_w_slots, kWRegSize); // Bump the number of active W-sized slots back to where it should be, // and fill the empty space with a dummy value. do { stack[active_w_slots--] = 0xdeadbeef; } while (active_w_slots > requested_w_slots); } // ---- Pop ---- Clobber(&masm, list); // If popping an even number of registers, the first one will be X-sized. // Otherwise, the first one will be W-sized. bool next_is_64 = !(reg_count & 1); for (int i = reg_count-1; i >= 0; i--) { if (next_is_64) { __ Pop(x[i]); active_w_slots -= 2; } else { __ Pop(w[i]); active_w_slots -= 1; } next_is_64 = !next_is_64; } ASSERT(active_w_slots == 0); // Drop memory to restore jssp. __ Drop(claim, kByteSizeInBytes); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); } END(); RUN(); int slot = 0; for (int i = 0; i < reg_count; i++) { // Even-numbered registers were written as W registers. // Odd-numbered registers were written as X registers. bool expect_64 = (i & 1); uint64_t expected; if (expect_64) { uint64_t hi = stack[slot++]; uint64_t lo = stack[slot++]; expected = (hi << 32) | lo; } else { expected = stack[slot++]; } // Always use ASSERT_EQUAL_64, even when testing W registers, so we can // test that the upper word was properly cleared by Pop. if (x[i].IsZero()) { ASSERT_EQUAL_64(0, x[i]); } else { ASSERT_EQUAL_64(expected, x[i]); } } ASSERT(slot == requested_w_slots); TEARDOWN(); } TEST(push_pop_jssp_wx_overlap) { INIT_V8(); for (int claim = 0; claim <= 8; claim++) { for (int count = 1; count <= 8; count++) { PushPopJsspWXOverlapHelper(count, claim); PushPopJsspWXOverlapHelper(count, claim); PushPopJsspWXOverlapHelper(count, claim); PushPopJsspWXOverlapHelper(count, claim); } // Test with the maximum number of registers. PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); PushPopJsspWXOverlapHelper(kPushPopJsspMaxRegCount, claim); } } TEST(push_pop_csp) { INIT_V8(); SETUP(); START(); ASSERT(csp.Is(__ StackPointer())); __ Mov(x3, 0x3333333333333333UL); __ Mov(x2, 0x2222222222222222UL); __ Mov(x1, 0x1111111111111111UL); __ Mov(x0, 0x0000000000000000UL); __ Claim(2); __ PushXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit()); __ Push(x3, x2); __ PopXRegList(x0.Bit() | x1.Bit() | x2.Bit() | x3.Bit()); __ Push(x2, x1, x3, x0); __ Pop(x4, x5); __ Pop(x6, x7, x8, x9); __ Claim(2); __ PushWRegList(w0.Bit() | w1.Bit() | w2.Bit() | w3.Bit()); __ Push(w3, w1, w2, w0); __ PopWRegList(w10.Bit() | w11.Bit() | w12.Bit() | w13.Bit()); __ Pop(w14, w15, w16, w17); __ Claim(2); __ Push(w2, w2, w1, w1); __ Push(x3, x3); __ Pop(w18, w19, w20, w21); __ Pop(x22, x23); __ Claim(2); __ PushXRegList(x1.Bit() | x22.Bit()); __ PopXRegList(x24.Bit() | x26.Bit()); __ Claim(2); __ PushWRegList(w1.Bit() | w2.Bit() | w4.Bit() | w22.Bit()); __ PopWRegList(w25.Bit() | w27.Bit() | w28.Bit() | w29.Bit()); __ Claim(2); __ PushXRegList(0); __ PopXRegList(0); __ PushXRegList(0xffffffff); __ PopXRegList(0xffffffff); __ Drop(12); END(); RUN(); ASSERT_EQUAL_64(0x1111111111111111UL, x3); ASSERT_EQUAL_64(0x0000000000000000UL, x2); ASSERT_EQUAL_64(0x3333333333333333UL, x1); ASSERT_EQUAL_64(0x2222222222222222UL, x0); ASSERT_EQUAL_64(0x3333333333333333UL, x9); ASSERT_EQUAL_64(0x2222222222222222UL, x8); ASSERT_EQUAL_64(0x0000000000000000UL, x7); ASSERT_EQUAL_64(0x3333333333333333UL, x6); ASSERT_EQUAL_64(0x1111111111111111UL, x5); ASSERT_EQUAL_64(0x2222222222222222UL, x4); ASSERT_EQUAL_32(0x11111111U, w13); ASSERT_EQUAL_32(0x33333333U, w12); ASSERT_EQUAL_32(0x00000000U, w11); ASSERT_EQUAL_32(0x22222222U, w10); ASSERT_EQUAL_32(0x11111111U, w17); ASSERT_EQUAL_32(0x00000000U, w16); ASSERT_EQUAL_32(0x33333333U, w15); ASSERT_EQUAL_32(0x22222222U, w14); ASSERT_EQUAL_32(0x11111111U, w18); ASSERT_EQUAL_32(0x11111111U, w19); ASSERT_EQUAL_32(0x11111111U, w20); ASSERT_EQUAL_32(0x11111111U, w21); ASSERT_EQUAL_64(0x3333333333333333UL, x22); ASSERT_EQUAL_64(0x0000000000000000UL, x23); ASSERT_EQUAL_64(0x3333333333333333UL, x24); ASSERT_EQUAL_64(0x3333333333333333UL, x26); ASSERT_EQUAL_32(0x33333333U, w25); ASSERT_EQUAL_32(0x00000000U, w27); ASSERT_EQUAL_32(0x22222222U, w28); ASSERT_EQUAL_32(0x33333333U, w29); TEARDOWN(); } TEST(push_queued) { INIT_V8(); SETUP(); START(); ASSERT(__ StackPointer().Is(csp)); __ Mov(jssp, __ StackPointer()); __ SetStackPointer(jssp); MacroAssembler::PushPopQueue queue(&masm); // Queue up registers. queue.Queue(x0); queue.Queue(x1); queue.Queue(x2); queue.Queue(x3); queue.Queue(w4); queue.Queue(w5); queue.Queue(w6); queue.Queue(d0); queue.Queue(d1); queue.Queue(s2); __ Mov(x0, 0x1234000000000000); __ Mov(x1, 0x1234000100010001); __ Mov(x2, 0x1234000200020002); __ Mov(x3, 0x1234000300030003); __ Mov(w4, 0x12340004); __ Mov(w5, 0x12340005); __ Mov(w6, 0x12340006); __ Fmov(d0, 123400.0); __ Fmov(d1, 123401.0); __ Fmov(s2, 123402.0); // Actually push them. queue.PushQueued(); Clobber(&masm, CPURegList(CPURegister::kRegister, kXRegSizeInBits, 0, 6)); Clobber(&masm, CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, 2)); // Pop them conventionally. __ Pop(s2); __ Pop(d1, d0); __ Pop(w6, w5, w4); __ Pop(x3, x2, x1, x0); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); END(); RUN(); ASSERT_EQUAL_64(0x1234000000000000, x0); ASSERT_EQUAL_64(0x1234000100010001, x1); ASSERT_EQUAL_64(0x1234000200020002, x2); ASSERT_EQUAL_64(0x1234000300030003, x3); ASSERT_EQUAL_32(0x12340004, w4); ASSERT_EQUAL_32(0x12340005, w5); ASSERT_EQUAL_32(0x12340006, w6); ASSERT_EQUAL_FP64(123400.0, d0); ASSERT_EQUAL_FP64(123401.0, d1); ASSERT_EQUAL_FP32(123402.0, s2); TEARDOWN(); } TEST(pop_queued) { INIT_V8(); SETUP(); START(); ASSERT(__ StackPointer().Is(csp)); __ Mov(jssp, __ StackPointer()); __ SetStackPointer(jssp); MacroAssembler::PushPopQueue queue(&masm); __ Mov(x0, 0x1234000000000000); __ Mov(x1, 0x1234000100010001); __ Mov(x2, 0x1234000200020002); __ Mov(x3, 0x1234000300030003); __ Mov(w4, 0x12340004); __ Mov(w5, 0x12340005); __ Mov(w6, 0x12340006); __ Fmov(d0, 123400.0); __ Fmov(d1, 123401.0); __ Fmov(s2, 123402.0); // Push registers conventionally. __ Push(x0, x1, x2, x3); __ Push(w4, w5, w6); __ Push(d0, d1); __ Push(s2); // Queue up a pop. queue.Queue(s2); queue.Queue(d1); queue.Queue(d0); queue.Queue(w6); queue.Queue(w5); queue.Queue(w4); queue.Queue(x3); queue.Queue(x2); queue.Queue(x1); queue.Queue(x0); Clobber(&masm, CPURegList(CPURegister::kRegister, kXRegSizeInBits, 0, 6)); Clobber(&masm, CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, 2)); // Actually pop them. queue.PopQueued(); __ Mov(csp, __ StackPointer()); __ SetStackPointer(csp); END(); RUN(); ASSERT_EQUAL_64(0x1234000000000000, x0); ASSERT_EQUAL_64(0x1234000100010001, x1); ASSERT_EQUAL_64(0x1234000200020002, x2); ASSERT_EQUAL_64(0x1234000300030003, x3); ASSERT_EQUAL_64(0x0000000012340004, x4); ASSERT_EQUAL_64(0x0000000012340005, x5); ASSERT_EQUAL_64(0x0000000012340006, x6); ASSERT_EQUAL_FP64(123400.0, d0); ASSERT_EQUAL_FP64(123401.0, d1); ASSERT_EQUAL_FP32(123402.0, s2); TEARDOWN(); } TEST(jump_both_smi) { INIT_V8(); SETUP(); Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11; Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11; Label return1, return2, return3, done; START(); __ Mov(x0, 0x5555555500000001UL); // A pointer. __ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer. __ Mov(x2, 0x1234567800000000UL); // A smi. __ Mov(x3, 0x8765432100000000UL); // A smi. __ Mov(x4, 0xdead); __ Mov(x5, 0xdead); __ Mov(x6, 0xdead); __ Mov(x7, 0xdead); __ JumpIfBothSmi(x0, x1, &cond_pass_00, &cond_fail_00); __ Bind(&return1); __ JumpIfBothSmi(x0, x2, &cond_pass_01, &cond_fail_01); __ Bind(&return2); __ JumpIfBothSmi(x2, x1, &cond_pass_10, &cond_fail_10); __ Bind(&return3); __ JumpIfBothSmi(x2, x3, &cond_pass_11, &cond_fail_11); __ Bind(&cond_fail_00); __ Mov(x4, 0); __ B(&return1); __ Bind(&cond_pass_00); __ Mov(x4, 1); __ B(&return1); __ Bind(&cond_fail_01); __ Mov(x5, 0); __ B(&return2); __ Bind(&cond_pass_01); __ Mov(x5, 1); __ B(&return2); __ Bind(&cond_fail_10); __ Mov(x6, 0); __ B(&return3); __ Bind(&cond_pass_10); __ Mov(x6, 1); __ B(&return3); __ Bind(&cond_fail_11); __ Mov(x7, 0); __ B(&done); __ Bind(&cond_pass_11); __ Mov(x7, 1); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x5555555500000001UL, x0); ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1); ASSERT_EQUAL_64(0x1234567800000000UL, x2); ASSERT_EQUAL_64(0x8765432100000000UL, x3); ASSERT_EQUAL_64(0, x4); ASSERT_EQUAL_64(0, x5); ASSERT_EQUAL_64(0, x6); ASSERT_EQUAL_64(1, x7); TEARDOWN(); } TEST(jump_either_smi) { INIT_V8(); SETUP(); Label cond_pass_00, cond_pass_01, cond_pass_10, cond_pass_11; Label cond_fail_00, cond_fail_01, cond_fail_10, cond_fail_11; Label return1, return2, return3, done; START(); __ Mov(x0, 0x5555555500000001UL); // A pointer. __ Mov(x1, 0xaaaaaaaa00000001UL); // A pointer. __ Mov(x2, 0x1234567800000000UL); // A smi. __ Mov(x3, 0x8765432100000000UL); // A smi. __ Mov(x4, 0xdead); __ Mov(x5, 0xdead); __ Mov(x6, 0xdead); __ Mov(x7, 0xdead); __ JumpIfEitherSmi(x0, x1, &cond_pass_00, &cond_fail_00); __ Bind(&return1); __ JumpIfEitherSmi(x0, x2, &cond_pass_01, &cond_fail_01); __ Bind(&return2); __ JumpIfEitherSmi(x2, x1, &cond_pass_10, &cond_fail_10); __ Bind(&return3); __ JumpIfEitherSmi(x2, x3, &cond_pass_11, &cond_fail_11); __ Bind(&cond_fail_00); __ Mov(x4, 0); __ B(&return1); __ Bind(&cond_pass_00); __ Mov(x4, 1); __ B(&return1); __ Bind(&cond_fail_01); __ Mov(x5, 0); __ B(&return2); __ Bind(&cond_pass_01); __ Mov(x5, 1); __ B(&return2); __ Bind(&cond_fail_10); __ Mov(x6, 0); __ B(&return3); __ Bind(&cond_pass_10); __ Mov(x6, 1); __ B(&return3); __ Bind(&cond_fail_11); __ Mov(x7, 0); __ B(&done); __ Bind(&cond_pass_11); __ Mov(x7, 1); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0x5555555500000001UL, x0); ASSERT_EQUAL_64(0xaaaaaaaa00000001UL, x1); ASSERT_EQUAL_64(0x1234567800000000UL, x2); ASSERT_EQUAL_64(0x8765432100000000UL, x3); ASSERT_EQUAL_64(0, x4); ASSERT_EQUAL_64(1, x5); ASSERT_EQUAL_64(1, x6); ASSERT_EQUAL_64(1, x7); TEARDOWN(); } TEST(noreg) { // This test doesn't generate any code, but it verifies some invariants // related to NoReg. CHECK(NoReg.Is(NoFPReg)); CHECK(NoFPReg.Is(NoReg)); CHECK(NoReg.Is(NoCPUReg)); CHECK(NoCPUReg.Is(NoReg)); CHECK(NoFPReg.Is(NoCPUReg)); CHECK(NoCPUReg.Is(NoFPReg)); CHECK(NoReg.IsNone()); CHECK(NoFPReg.IsNone()); CHECK(NoCPUReg.IsNone()); } TEST(isvalid) { // This test doesn't generate any code, but it verifies some invariants // related to IsValid(). CHECK(!NoReg.IsValid()); CHECK(!NoFPReg.IsValid()); CHECK(!NoCPUReg.IsValid()); CHECK(x0.IsValid()); CHECK(w0.IsValid()); CHECK(x30.IsValid()); CHECK(w30.IsValid()); CHECK(xzr.IsValid()); CHECK(wzr.IsValid()); CHECK(csp.IsValid()); CHECK(wcsp.IsValid()); CHECK(d0.IsValid()); CHECK(s0.IsValid()); CHECK(d31.IsValid()); CHECK(s31.IsValid()); CHECK(x0.IsValidRegister()); CHECK(w0.IsValidRegister()); CHECK(xzr.IsValidRegister()); CHECK(wzr.IsValidRegister()); CHECK(csp.IsValidRegister()); CHECK(wcsp.IsValidRegister()); CHECK(!x0.IsValidFPRegister()); CHECK(!w0.IsValidFPRegister()); CHECK(!xzr.IsValidFPRegister()); CHECK(!wzr.IsValidFPRegister()); CHECK(!csp.IsValidFPRegister()); CHECK(!wcsp.IsValidFPRegister()); CHECK(d0.IsValidFPRegister()); CHECK(s0.IsValidFPRegister()); CHECK(!d0.IsValidRegister()); CHECK(!s0.IsValidRegister()); // Test the same as before, but using CPURegister types. This shouldn't make // any difference. CHECK(static_cast(x0).IsValid()); CHECK(static_cast(w0).IsValid()); CHECK(static_cast(x30).IsValid()); CHECK(static_cast(w30).IsValid()); CHECK(static_cast(xzr).IsValid()); CHECK(static_cast(wzr).IsValid()); CHECK(static_cast(csp).IsValid()); CHECK(static_cast(wcsp).IsValid()); CHECK(static_cast(d0).IsValid()); CHECK(static_cast(s0).IsValid()); CHECK(static_cast(d31).IsValid()); CHECK(static_cast(s31).IsValid()); CHECK(static_cast(x0).IsValidRegister()); CHECK(static_cast(w0).IsValidRegister()); CHECK(static_cast(xzr).IsValidRegister()); CHECK(static_cast(wzr).IsValidRegister()); CHECK(static_cast(csp).IsValidRegister()); CHECK(static_cast(wcsp).IsValidRegister()); CHECK(!static_cast(x0).IsValidFPRegister()); CHECK(!static_cast(w0).IsValidFPRegister()); CHECK(!static_cast(xzr).IsValidFPRegister()); CHECK(!static_cast(wzr).IsValidFPRegister()); CHECK(!static_cast(csp).IsValidFPRegister()); CHECK(!static_cast(wcsp).IsValidFPRegister()); CHECK(static_cast(d0).IsValidFPRegister()); CHECK(static_cast(s0).IsValidFPRegister()); CHECK(!static_cast(d0).IsValidRegister()); CHECK(!static_cast(s0).IsValidRegister()); } TEST(cpureglist_utils_x) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of X registers. CPURegList test(x0, x1, x2, x3); CHECK(test.IncludesAliasOf(x0)); CHECK(test.IncludesAliasOf(x1)); CHECK(test.IncludesAliasOf(x2)); CHECK(test.IncludesAliasOf(x3)); CHECK(test.IncludesAliasOf(w0)); CHECK(test.IncludesAliasOf(w1)); CHECK(test.IncludesAliasOf(w2)); CHECK(test.IncludesAliasOf(w3)); CHECK(!test.IncludesAliasOf(x4)); CHECK(!test.IncludesAliasOf(x30)); CHECK(!test.IncludesAliasOf(xzr)); CHECK(!test.IncludesAliasOf(csp)); CHECK(!test.IncludesAliasOf(w4)); CHECK(!test.IncludesAliasOf(w30)); CHECK(!test.IncludesAliasOf(wzr)); CHECK(!test.IncludesAliasOf(wcsp)); CHECK(!test.IncludesAliasOf(d0)); CHECK(!test.IncludesAliasOf(d1)); CHECK(!test.IncludesAliasOf(d2)); CHECK(!test.IncludesAliasOf(d3)); CHECK(!test.IncludesAliasOf(s0)); CHECK(!test.IncludesAliasOf(s1)); CHECK(!test.IncludesAliasOf(s2)); CHECK(!test.IncludesAliasOf(s3)); CHECK(!test.IsEmpty()); CHECK(test.type() == x0.type()); CHECK(test.PopHighestIndex().Is(x3)); CHECK(test.PopLowestIndex().Is(x0)); CHECK(test.IncludesAliasOf(x1)); CHECK(test.IncludesAliasOf(x2)); CHECK(test.IncludesAliasOf(w1)); CHECK(test.IncludesAliasOf(w2)); CHECK(!test.IncludesAliasOf(x0)); CHECK(!test.IncludesAliasOf(x3)); CHECK(!test.IncludesAliasOf(w0)); CHECK(!test.IncludesAliasOf(w3)); CHECK(test.PopHighestIndex().Is(x2)); CHECK(test.PopLowestIndex().Is(x1)); CHECK(!test.IncludesAliasOf(x1)); CHECK(!test.IncludesAliasOf(x2)); CHECK(!test.IncludesAliasOf(w1)); CHECK(!test.IncludesAliasOf(w2)); CHECK(test.IsEmpty()); } TEST(cpureglist_utils_w) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of W registers. CPURegList test(w10, w11, w12, w13); CHECK(test.IncludesAliasOf(x10)); CHECK(test.IncludesAliasOf(x11)); CHECK(test.IncludesAliasOf(x12)); CHECK(test.IncludesAliasOf(x13)); CHECK(test.IncludesAliasOf(w10)); CHECK(test.IncludesAliasOf(w11)); CHECK(test.IncludesAliasOf(w12)); CHECK(test.IncludesAliasOf(w13)); CHECK(!test.IncludesAliasOf(x0)); CHECK(!test.IncludesAliasOf(x9)); CHECK(!test.IncludesAliasOf(x14)); CHECK(!test.IncludesAliasOf(x30)); CHECK(!test.IncludesAliasOf(xzr)); CHECK(!test.IncludesAliasOf(csp)); CHECK(!test.IncludesAliasOf(w0)); CHECK(!test.IncludesAliasOf(w9)); CHECK(!test.IncludesAliasOf(w14)); CHECK(!test.IncludesAliasOf(w30)); CHECK(!test.IncludesAliasOf(wzr)); CHECK(!test.IncludesAliasOf(wcsp)); CHECK(!test.IncludesAliasOf(d10)); CHECK(!test.IncludesAliasOf(d11)); CHECK(!test.IncludesAliasOf(d12)); CHECK(!test.IncludesAliasOf(d13)); CHECK(!test.IncludesAliasOf(s10)); CHECK(!test.IncludesAliasOf(s11)); CHECK(!test.IncludesAliasOf(s12)); CHECK(!test.IncludesAliasOf(s13)); CHECK(!test.IsEmpty()); CHECK(test.type() == w10.type()); CHECK(test.PopHighestIndex().Is(w13)); CHECK(test.PopLowestIndex().Is(w10)); CHECK(test.IncludesAliasOf(x11)); CHECK(test.IncludesAliasOf(x12)); CHECK(test.IncludesAliasOf(w11)); CHECK(test.IncludesAliasOf(w12)); CHECK(!test.IncludesAliasOf(x10)); CHECK(!test.IncludesAliasOf(x13)); CHECK(!test.IncludesAliasOf(w10)); CHECK(!test.IncludesAliasOf(w13)); CHECK(test.PopHighestIndex().Is(w12)); CHECK(test.PopLowestIndex().Is(w11)); CHECK(!test.IncludesAliasOf(x11)); CHECK(!test.IncludesAliasOf(x12)); CHECK(!test.IncludesAliasOf(w11)); CHECK(!test.IncludesAliasOf(w12)); CHECK(test.IsEmpty()); } TEST(cpureglist_utils_d) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of D registers. CPURegList test(d20, d21, d22, d23); CHECK(test.IncludesAliasOf(d20)); CHECK(test.IncludesAliasOf(d21)); CHECK(test.IncludesAliasOf(d22)); CHECK(test.IncludesAliasOf(d23)); CHECK(test.IncludesAliasOf(s20)); CHECK(test.IncludesAliasOf(s21)); CHECK(test.IncludesAliasOf(s22)); CHECK(test.IncludesAliasOf(s23)); CHECK(!test.IncludesAliasOf(d0)); CHECK(!test.IncludesAliasOf(d19)); CHECK(!test.IncludesAliasOf(d24)); CHECK(!test.IncludesAliasOf(d31)); CHECK(!test.IncludesAliasOf(s0)); CHECK(!test.IncludesAliasOf(s19)); CHECK(!test.IncludesAliasOf(s24)); CHECK(!test.IncludesAliasOf(s31)); CHECK(!test.IncludesAliasOf(x20)); CHECK(!test.IncludesAliasOf(x21)); CHECK(!test.IncludesAliasOf(x22)); CHECK(!test.IncludesAliasOf(x23)); CHECK(!test.IncludesAliasOf(w20)); CHECK(!test.IncludesAliasOf(w21)); CHECK(!test.IncludesAliasOf(w22)); CHECK(!test.IncludesAliasOf(w23)); CHECK(!test.IncludesAliasOf(xzr)); CHECK(!test.IncludesAliasOf(wzr)); CHECK(!test.IncludesAliasOf(csp)); CHECK(!test.IncludesAliasOf(wcsp)); CHECK(!test.IsEmpty()); CHECK(test.type() == d20.type()); CHECK(test.PopHighestIndex().Is(d23)); CHECK(test.PopLowestIndex().Is(d20)); CHECK(test.IncludesAliasOf(d21)); CHECK(test.IncludesAliasOf(d22)); CHECK(test.IncludesAliasOf(s21)); CHECK(test.IncludesAliasOf(s22)); CHECK(!test.IncludesAliasOf(d20)); CHECK(!test.IncludesAliasOf(d23)); CHECK(!test.IncludesAliasOf(s20)); CHECK(!test.IncludesAliasOf(s23)); CHECK(test.PopHighestIndex().Is(d22)); CHECK(test.PopLowestIndex().Is(d21)); CHECK(!test.IncludesAliasOf(d21)); CHECK(!test.IncludesAliasOf(d22)); CHECK(!test.IncludesAliasOf(s21)); CHECK(!test.IncludesAliasOf(s22)); CHECK(test.IsEmpty()); } TEST(cpureglist_utils_s) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test a list of S registers. CPURegList test(s20, s21, s22, s23); // The type and size mechanisms are already covered, so here we just test // that lists of S registers alias individual D registers. CHECK(test.IncludesAliasOf(d20)); CHECK(test.IncludesAliasOf(d21)); CHECK(test.IncludesAliasOf(d22)); CHECK(test.IncludesAliasOf(d23)); CHECK(test.IncludesAliasOf(s20)); CHECK(test.IncludesAliasOf(s21)); CHECK(test.IncludesAliasOf(s22)); CHECK(test.IncludesAliasOf(s23)); } TEST(cpureglist_utils_empty) { // This test doesn't generate any code, but it verifies the behaviour of // the CPURegList utility methods. // Test an empty list. // Empty lists can have type and size properties. Check that we can create // them, and that they are empty. CPURegList reg32(CPURegister::kRegister, kWRegSizeInBits, 0); CPURegList reg64(CPURegister::kRegister, kXRegSizeInBits, 0); CPURegList fpreg32(CPURegister::kFPRegister, kSRegSizeInBits, 0); CPURegList fpreg64(CPURegister::kFPRegister, kDRegSizeInBits, 0); CHECK(reg32.IsEmpty()); CHECK(reg64.IsEmpty()); CHECK(fpreg32.IsEmpty()); CHECK(fpreg64.IsEmpty()); CHECK(reg32.PopLowestIndex().IsNone()); CHECK(reg64.PopLowestIndex().IsNone()); CHECK(fpreg32.PopLowestIndex().IsNone()); CHECK(fpreg64.PopLowestIndex().IsNone()); CHECK(reg32.PopHighestIndex().IsNone()); CHECK(reg64.PopHighestIndex().IsNone()); CHECK(fpreg32.PopHighestIndex().IsNone()); CHECK(fpreg64.PopHighestIndex().IsNone()); CHECK(reg32.IsEmpty()); CHECK(reg64.IsEmpty()); CHECK(fpreg32.IsEmpty()); CHECK(fpreg64.IsEmpty()); } TEST(printf) { INIT_V8(); SETUP(); START(); char const * test_plain_string = "Printf with no arguments.\n"; char const * test_substring = "'This is a substring.'"; RegisterDump before; // Initialize x29 to the value of the stack pointer. We will use x29 as a // temporary stack pointer later, and initializing it in this way allows the // RegisterDump check to pass. __ Mov(x29, __ StackPointer()); // Test simple integer arguments. __ Mov(x0, 1234); __ Mov(x1, 0x1234); // Test simple floating-point arguments. __ Fmov(d0, 1.234); // Test pointer (string) arguments. __ Mov(x2, reinterpret_cast(test_substring)); // Test the maximum number of arguments, and sign extension. __ Mov(w3, 0xffffffff); __ Mov(w4, 0xffffffff); __ Mov(x5, 0xffffffffffffffff); __ Mov(x6, 0xffffffffffffffff); __ Fmov(s1, 1.234); __ Fmov(s2, 2.345); __ Fmov(d3, 3.456); __ Fmov(d4, 4.567); // Test printing callee-saved registers. __ Mov(x28, 0x123456789abcdef); __ Fmov(d10, 42.0); // Test with three arguments. __ Mov(x10, 3); __ Mov(x11, 40); __ Mov(x12, 500); // x8 and x9 are used by debug code in part of the macro assembler. However, // Printf guarantees to preserve them (so we can use Printf in debug code), // and we need to test that they are properly preserved. The above code // shouldn't need to use them, but we initialize x8 and x9 last to be on the // safe side. This test still assumes that none of the code from // before->Dump() to the end of the test can clobber x8 or x9, so where // possible we use the Assembler directly to be safe. __ orr(x8, xzr, 0x8888888888888888); __ orr(x9, xzr, 0x9999999999999999); // Check that we don't clobber any registers, except those that we explicitly // write results into. before.Dump(&masm); __ Printf(test_plain_string); // NOLINT(runtime/printf) __ Printf("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); __ Printf("d0: %f\n", d0); __ Printf("Test %%s: %s\n", x2); __ Printf("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", w3, w4, x5, x6); __ Printf("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); __ Printf("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28); __ Printf("%g\n", d10); // Test with a different stack pointer. const Register old_stack_pointer = __ StackPointer(); __ mov(x29, old_stack_pointer); __ SetStackPointer(x29); __ Printf("old_stack_pointer: 0x%016" PRIx64 "\n", old_stack_pointer); __ mov(old_stack_pointer, __ StackPointer()); __ SetStackPointer(old_stack_pointer); __ Printf("3=%u, 4=%u, 5=%u\n", x10, x11, x12); END(); RUN(); // We cannot easily test the output of the Printf sequences, and because // Printf preserves all registers by default, we can't look at the number of // bytes that were printed. However, the printf_no_preserve test should check // that, and here we just test that we didn't clobber any registers. ASSERT_EQUAL_REGISTERS(before); TEARDOWN(); } TEST(printf_no_preserve) { INIT_V8(); SETUP(); START(); char const * test_plain_string = "Printf with no arguments.\n"; char const * test_substring = "'This is a substring.'"; __ PrintfNoPreserve(test_plain_string); // NOLINT(runtime/printf) __ Mov(x19, x0); // Test simple integer arguments. __ Mov(x0, 1234); __ Mov(x1, 0x1234); __ PrintfNoPreserve("x0: %" PRId64", x1: 0x%08" PRIx64 "\n", x0, x1); __ Mov(x20, x0); // Test simple floating-point arguments. __ Fmov(d0, 1.234); __ PrintfNoPreserve("d0: %f\n", d0); __ Mov(x21, x0); // Test pointer (string) arguments. __ Mov(x2, reinterpret_cast(test_substring)); __ PrintfNoPreserve("Test %%s: %s\n", x2); __ Mov(x22, x0); // Test the maximum number of arguments, and sign extension. __ Mov(w3, 0xffffffff); __ Mov(w4, 0xffffffff); __ Mov(x5, 0xffffffffffffffff); __ Mov(x6, 0xffffffffffffffff); __ PrintfNoPreserve("w3(uint32): %" PRIu32 "\nw4(int32): %" PRId32 "\n" "x5(uint64): %" PRIu64 "\nx6(int64): %" PRId64 "\n", w3, w4, x5, x6); __ Mov(x23, x0); __ Fmov(s1, 1.234); __ Fmov(s2, 2.345); __ Fmov(d3, 3.456); __ Fmov(d4, 4.567); __ PrintfNoPreserve("%%f: %f\n%%g: %g\n%%e: %e\n%%E: %E\n", s1, s2, d3, d4); __ Mov(x24, x0); // Test printing callee-saved registers. __ Mov(x28, 0x123456789abcdef); __ PrintfNoPreserve("0x%08" PRIx32 ", 0x%016" PRIx64 "\n", x28, x28); __ Mov(x25, x0); __ Fmov(d10, 42.0); __ PrintfNoPreserve("%g\n", d10); __ Mov(x26, x0); // Test with a different stack pointer. const Register old_stack_pointer = __ StackPointer(); __ Mov(x29, old_stack_pointer); __ SetStackPointer(x29); __ PrintfNoPreserve("old_stack_pointer: 0x%016" PRIx64 "\n", old_stack_pointer); __ Mov(x27, x0); __ Mov(old_stack_pointer, __ StackPointer()); __ SetStackPointer(old_stack_pointer); // Test with three arguments. __ Mov(x3, 3); __ Mov(x4, 40); __ Mov(x5, 500); __ PrintfNoPreserve("3=%u, 4=%u, 5=%u\n", x3, x4, x5); __ Mov(x28, x0); END(); RUN(); // We cannot easily test the exact output of the Printf sequences, but we can // use the return code to check that the string length was correct. // Printf with no arguments. ASSERT_EQUAL_64(strlen(test_plain_string), x19); // x0: 1234, x1: 0x00001234 ASSERT_EQUAL_64(25, x20); // d0: 1.234000 ASSERT_EQUAL_64(13, x21); // Test %s: 'This is a substring.' ASSERT_EQUAL_64(32, x22); // w3(uint32): 4294967295 // w4(int32): -1 // x5(uint64): 18446744073709551615 // x6(int64): -1 ASSERT_EQUAL_64(23 + 14 + 33 + 14, x23); // %f: 1.234000 // %g: 2.345 // %e: 3.456000e+00 // %E: 4.567000E+00 ASSERT_EQUAL_64(13 + 10 + 17 + 17, x24); // 0x89abcdef, 0x0123456789abcdef ASSERT_EQUAL_64(31, x25); // 42 ASSERT_EQUAL_64(3, x26); // old_stack_pointer: 0x00007fb037ae2370 // Note: This is an example value, but the field width is fixed here so the // string length is still predictable. ASSERT_EQUAL_64(38, x27); // 3=3, 4=40, 5=500 ASSERT_EQUAL_64(17, x28); TEARDOWN(); } // This is a V8-specific test. static void CopyFieldsHelper(CPURegList temps) { static const uint64_t kLiteralBase = 0x0100001000100101UL; static const uint64_t src[] = {kLiteralBase * 1, kLiteralBase * 2, kLiteralBase * 3, kLiteralBase * 4, kLiteralBase * 5, kLiteralBase * 6, kLiteralBase * 7, kLiteralBase * 8, kLiteralBase * 9, kLiteralBase * 10, kLiteralBase * 11}; static const uint64_t src_tagged = reinterpret_cast(src) + kHeapObjectTag; static const unsigned kTestCount = sizeof(src) / sizeof(src[0]) + 1; uint64_t* dst[kTestCount]; uint64_t dst_tagged[kTestCount]; // The first test will be to copy 0 fields. The destination (and source) // should not be accessed in any way. dst[0] = NULL; dst_tagged[0] = kHeapObjectTag; // Allocate memory for each other test. Each test will have fields. // This is intended to exercise as many paths in CopyFields as possible. for (unsigned i = 1; i < kTestCount; i++) { dst[i] = new uint64_t[i]; memset(dst[i], 0, i * sizeof(kLiteralBase)); dst_tagged[i] = reinterpret_cast(dst[i]) + kHeapObjectTag; } SETUP(); START(); __ Mov(x0, dst_tagged[0]); __ Mov(x1, 0); __ CopyFields(x0, x1, temps, 0); for (unsigned i = 1; i < kTestCount; i++) { __ Mov(x0, dst_tagged[i]); __ Mov(x1, src_tagged); __ CopyFields(x0, x1, temps, i); } END(); RUN(); TEARDOWN(); for (unsigned i = 1; i < kTestCount; i++) { for (unsigned j = 0; j < i; j++) { CHECK(src[j] == dst[i][j]); } delete [] dst[i]; } } // This is a V8-specific test. TEST(copyfields) { INIT_V8(); CopyFieldsHelper(CPURegList(x10)); CopyFieldsHelper(CPURegList(x10, x11)); CopyFieldsHelper(CPURegList(x10, x11, x12)); CopyFieldsHelper(CPURegList(x10, x11, x12, x13)); } static void DoSmiAbsTest(int32_t value, bool must_fail = false) { SETUP(); START(); Label end, slow; __ Mov(x2, 0xc001c0de); __ Mov(x1, value); __ SmiTag(x1); __ SmiAbs(x1, &slow); __ SmiUntag(x1); __ B(&end); __ Bind(&slow); __ Mov(x2, 0xbad); __ Bind(&end); END(); RUN(); if (must_fail) { // We tested an invalid conversion. The code must have jump on slow. ASSERT_EQUAL_64(0xbad, x2); } else { // The conversion is valid, check the result. int32_t result = (value >= 0) ? value : -value; ASSERT_EQUAL_64(result, x1); // Check that we didn't jump on slow. ASSERT_EQUAL_64(0xc001c0de, x2); } TEARDOWN(); } TEST(smi_abs) { INIT_V8(); // Simple and edge cases. DoSmiAbsTest(0); DoSmiAbsTest(0x12345); DoSmiAbsTest(0x40000000); DoSmiAbsTest(0x7fffffff); DoSmiAbsTest(-1); DoSmiAbsTest(-12345); DoSmiAbsTest(0x80000001); // Check that the most negative SMI is detected. DoSmiAbsTest(0x80000000, true); } TEST(blr_lr) { // A simple test to check that the simulator correcty handle "blr lr". INIT_V8(); SETUP(); START(); Label target; Label end; __ Mov(x0, 0x0); __ Adr(lr, &target); __ Blr(lr); __ Mov(x0, 0xdeadbeef); __ B(&end); __ Bind(&target); __ Mov(x0, 0xc001c0de); __ Bind(&end); END(); RUN(); ASSERT_EQUAL_64(0xc001c0de, x0); TEARDOWN(); } TEST(barriers) { // Generate all supported barriers, this is just a smoke test INIT_V8(); SETUP(); START(); // DMB __ Dmb(FullSystem, BarrierAll); __ Dmb(FullSystem, BarrierReads); __ Dmb(FullSystem, BarrierWrites); __ Dmb(FullSystem, BarrierOther); __ Dmb(InnerShareable, BarrierAll); __ Dmb(InnerShareable, BarrierReads); __ Dmb(InnerShareable, BarrierWrites); __ Dmb(InnerShareable, BarrierOther); __ Dmb(NonShareable, BarrierAll); __ Dmb(NonShareable, BarrierReads); __ Dmb(NonShareable, BarrierWrites); __ Dmb(NonShareable, BarrierOther); __ Dmb(OuterShareable, BarrierAll); __ Dmb(OuterShareable, BarrierReads); __ Dmb(OuterShareable, BarrierWrites); __ Dmb(OuterShareable, BarrierOther); // DSB __ Dsb(FullSystem, BarrierAll); __ Dsb(FullSystem, BarrierReads); __ Dsb(FullSystem, BarrierWrites); __ Dsb(FullSystem, BarrierOther); __ Dsb(InnerShareable, BarrierAll); __ Dsb(InnerShareable, BarrierReads); __ Dsb(InnerShareable, BarrierWrites); __ Dsb(InnerShareable, BarrierOther); __ Dsb(NonShareable, BarrierAll); __ Dsb(NonShareable, BarrierReads); __ Dsb(NonShareable, BarrierWrites); __ Dsb(NonShareable, BarrierOther); __ Dsb(OuterShareable, BarrierAll); __ Dsb(OuterShareable, BarrierReads); __ Dsb(OuterShareable, BarrierWrites); __ Dsb(OuterShareable, BarrierOther); // ISB __ Isb(); END(); RUN(); TEARDOWN(); } TEST(process_nan_double) { INIT_V8(); // Make sure that NaN propagation works correctly. double sn = rawbits_to_double(0x7ff5555511111111); double qn = rawbits_to_double(0x7ffaaaaa11111111); ASSERT(IsSignallingNaN(sn)); ASSERT(IsQuietNaN(qn)); // The input NaNs after passing through ProcessNaN. double sn_proc = rawbits_to_double(0x7ffd555511111111); double qn_proc = qn; ASSERT(IsQuietNaN(sn_proc)); ASSERT(IsQuietNaN(qn_proc)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaN, and check that // they all handle the NaN correctly. __ Fmov(d0, sn); __ Fmov(d10, qn); // Operations that always propagate NaNs unchanged, even signalling NaNs. // - Signalling NaN __ Fmov(d1, d0); __ Fabs(d2, d0); __ Fneg(d3, d0); // - Quiet NaN __ Fmov(d11, d10); __ Fabs(d12, d10); __ Fneg(d13, d10); // Operations that use ProcessNaN. // - Signalling NaN __ Fsqrt(d4, d0); __ Frinta(d5, d0); __ Frintn(d6, d0); __ Frintz(d7, d0); // - Quiet NaN __ Fsqrt(d14, d10); __ Frinta(d15, d10); __ Frintn(d16, d10); __ Frintz(d17, d10); // The behaviour of fcvt is checked in TEST(fcvt_sd). END(); RUN(); uint64_t qn_raw = double_to_rawbits(qn); uint64_t sn_raw = double_to_rawbits(sn); // - Signalling NaN ASSERT_EQUAL_FP64(sn, d1); ASSERT_EQUAL_FP64(rawbits_to_double(sn_raw & ~kDSignMask), d2); ASSERT_EQUAL_FP64(rawbits_to_double(sn_raw ^ kDSignMask), d3); // - Quiet NaN ASSERT_EQUAL_FP64(qn, d11); ASSERT_EQUAL_FP64(rawbits_to_double(qn_raw & ~kDSignMask), d12); ASSERT_EQUAL_FP64(rawbits_to_double(qn_raw ^ kDSignMask), d13); // - Signalling NaN ASSERT_EQUAL_FP64(sn_proc, d4); ASSERT_EQUAL_FP64(sn_proc, d5); ASSERT_EQUAL_FP64(sn_proc, d6); ASSERT_EQUAL_FP64(sn_proc, d7); // - Quiet NaN ASSERT_EQUAL_FP64(qn_proc, d14); ASSERT_EQUAL_FP64(qn_proc, d15); ASSERT_EQUAL_FP64(qn_proc, d16); ASSERT_EQUAL_FP64(qn_proc, d17); TEARDOWN(); } TEST(process_nan_float) { INIT_V8(); // Make sure that NaN propagation works correctly. float sn = rawbits_to_float(0x7f951111); float qn = rawbits_to_float(0x7fea1111); ASSERT(IsSignallingNaN(sn)); ASSERT(IsQuietNaN(qn)); // The input NaNs after passing through ProcessNaN. float sn_proc = rawbits_to_float(0x7fd51111); float qn_proc = qn; ASSERT(IsQuietNaN(sn_proc)); ASSERT(IsQuietNaN(qn_proc)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaN, and check that // they all handle the NaN correctly. __ Fmov(s0, sn); __ Fmov(s10, qn); // Operations that always propagate NaNs unchanged, even signalling NaNs. // - Signalling NaN __ Fmov(s1, s0); __ Fabs(s2, s0); __ Fneg(s3, s0); // - Quiet NaN __ Fmov(s11, s10); __ Fabs(s12, s10); __ Fneg(s13, s10); // Operations that use ProcessNaN. // - Signalling NaN __ Fsqrt(s4, s0); __ Frinta(s5, s0); __ Frintn(s6, s0); __ Frintz(s7, s0); // - Quiet NaN __ Fsqrt(s14, s10); __ Frinta(s15, s10); __ Frintn(s16, s10); __ Frintz(s17, s10); // The behaviour of fcvt is checked in TEST(fcvt_sd). END(); RUN(); uint32_t qn_raw = float_to_rawbits(qn); uint32_t sn_raw = float_to_rawbits(sn); // - Signalling NaN ASSERT_EQUAL_FP32(sn, s1); ASSERT_EQUAL_FP32(rawbits_to_float(sn_raw & ~kSSignMask), s2); ASSERT_EQUAL_FP32(rawbits_to_float(sn_raw ^ kSSignMask), s3); // - Quiet NaN ASSERT_EQUAL_FP32(qn, s11); ASSERT_EQUAL_FP32(rawbits_to_float(qn_raw & ~kSSignMask), s12); ASSERT_EQUAL_FP32(rawbits_to_float(qn_raw ^ kSSignMask), s13); // - Signalling NaN ASSERT_EQUAL_FP32(sn_proc, s4); ASSERT_EQUAL_FP32(sn_proc, s5); ASSERT_EQUAL_FP32(sn_proc, s6); ASSERT_EQUAL_FP32(sn_proc, s7); // - Quiet NaN ASSERT_EQUAL_FP32(qn_proc, s14); ASSERT_EQUAL_FP32(qn_proc, s15); ASSERT_EQUAL_FP32(qn_proc, s16); ASSERT_EQUAL_FP32(qn_proc, s17); TEARDOWN(); } static void ProcessNaNsHelper(double n, double m, double expected) { ASSERT(std::isnan(n) || std::isnan(m)); ASSERT(isnan(expected)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaNs, and check that // they all propagate NaNs correctly. __ Fmov(d0, n); __ Fmov(d1, m); __ Fadd(d2, d0, d1); __ Fsub(d3, d0, d1); __ Fmul(d4, d0, d1); __ Fdiv(d5, d0, d1); __ Fmax(d6, d0, d1); __ Fmin(d7, d0, d1); END(); RUN(); ASSERT_EQUAL_FP64(expected, d2); ASSERT_EQUAL_FP64(expected, d3); ASSERT_EQUAL_FP64(expected, d4); ASSERT_EQUAL_FP64(expected, d5); ASSERT_EQUAL_FP64(expected, d6); ASSERT_EQUAL_FP64(expected, d7); TEARDOWN(); } TEST(process_nans_double) { INIT_V8(); // Make sure that NaN propagation works correctly. double sn = rawbits_to_double(0x7ff5555511111111); double sm = rawbits_to_double(0x7ff5555522222222); double qn = rawbits_to_double(0x7ffaaaaa11111111); double qm = rawbits_to_double(0x7ffaaaaa22222222); ASSERT(IsSignallingNaN(sn)); ASSERT(IsSignallingNaN(sm)); ASSERT(IsQuietNaN(qn)); ASSERT(IsQuietNaN(qm)); // The input NaNs after passing through ProcessNaN. double sn_proc = rawbits_to_double(0x7ffd555511111111); double sm_proc = rawbits_to_double(0x7ffd555522222222); double qn_proc = qn; double qm_proc = qm; ASSERT(IsQuietNaN(sn_proc)); ASSERT(IsQuietNaN(sm_proc)); ASSERT(IsQuietNaN(qn_proc)); ASSERT(IsQuietNaN(qm_proc)); // Quiet NaNs are propagated. ProcessNaNsHelper(qn, 0, qn_proc); ProcessNaNsHelper(0, qm, qm_proc); ProcessNaNsHelper(qn, qm, qn_proc); // Signalling NaNs are propagated, and made quiet. ProcessNaNsHelper(sn, 0, sn_proc); ProcessNaNsHelper(0, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); // Signalling NaNs take precedence over quiet NaNs. ProcessNaNsHelper(sn, qm, sn_proc); ProcessNaNsHelper(qn, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); } static void ProcessNaNsHelper(float n, float m, float expected) { ASSERT(std::isnan(n) || std::isnan(m)); ASSERT(isnan(expected)); SETUP(); START(); // Execute a number of instructions which all use ProcessNaNs, and check that // they all propagate NaNs correctly. __ Fmov(s0, n); __ Fmov(s1, m); __ Fadd(s2, s0, s1); __ Fsub(s3, s0, s1); __ Fmul(s4, s0, s1); __ Fdiv(s5, s0, s1); __ Fmax(s6, s0, s1); __ Fmin(s7, s0, s1); END(); RUN(); ASSERT_EQUAL_FP32(expected, s2); ASSERT_EQUAL_FP32(expected, s3); ASSERT_EQUAL_FP32(expected, s4); ASSERT_EQUAL_FP32(expected, s5); ASSERT_EQUAL_FP32(expected, s6); ASSERT_EQUAL_FP32(expected, s7); TEARDOWN(); } TEST(process_nans_float) { INIT_V8(); // Make sure that NaN propagation works correctly. float sn = rawbits_to_float(0x7f951111); float sm = rawbits_to_float(0x7f952222); float qn = rawbits_to_float(0x7fea1111); float qm = rawbits_to_float(0x7fea2222); ASSERT(IsSignallingNaN(sn)); ASSERT(IsSignallingNaN(sm)); ASSERT(IsQuietNaN(qn)); ASSERT(IsQuietNaN(qm)); // The input NaNs after passing through ProcessNaN. float sn_proc = rawbits_to_float(0x7fd51111); float sm_proc = rawbits_to_float(0x7fd52222); float qn_proc = qn; float qm_proc = qm; ASSERT(IsQuietNaN(sn_proc)); ASSERT(IsQuietNaN(sm_proc)); ASSERT(IsQuietNaN(qn_proc)); ASSERT(IsQuietNaN(qm_proc)); // Quiet NaNs are propagated. ProcessNaNsHelper(qn, 0, qn_proc); ProcessNaNsHelper(0, qm, qm_proc); ProcessNaNsHelper(qn, qm, qn_proc); // Signalling NaNs are propagated, and made quiet. ProcessNaNsHelper(sn, 0, sn_proc); ProcessNaNsHelper(0, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); // Signalling NaNs take precedence over quiet NaNs. ProcessNaNsHelper(sn, qm, sn_proc); ProcessNaNsHelper(qn, sm, sm_proc); ProcessNaNsHelper(sn, sm, sn_proc); } static void DefaultNaNHelper(float n, float m, float a) { ASSERT(std::isnan(n) || std::isnan(m) || isnan(a)); bool test_1op = std::isnan(n); bool test_2op = std::isnan(n) || std::isnan(m); SETUP(); START(); // Enable Default-NaN mode in the FPCR. __ Mrs(x0, FPCR); __ Orr(x1, x0, DN_mask); __ Msr(FPCR, x1); // Execute a number of instructions which all use ProcessNaNs, and check that // they all produce the default NaN. __ Fmov(s0, n); __ Fmov(s1, m); __ Fmov(s2, a); if (test_1op) { // Operations that always propagate NaNs unchanged, even signalling NaNs. __ Fmov(s10, s0); __ Fabs(s11, s0); __ Fneg(s12, s0); // Operations that use ProcessNaN. __ Fsqrt(s13, s0); __ Frinta(s14, s0); __ Frintn(s15, s0); __ Frintz(s16, s0); // Fcvt usually has special NaN handling, but it respects default-NaN mode. __ Fcvt(d17, s0); } if (test_2op) { __ Fadd(s18, s0, s1); __ Fsub(s19, s0, s1); __ Fmul(s20, s0, s1); __ Fdiv(s21, s0, s1); __ Fmax(s22, s0, s1); __ Fmin(s23, s0, s1); } __ Fmadd(s24, s0, s1, s2); __ Fmsub(s25, s0, s1, s2); __ Fnmadd(s26, s0, s1, s2); __ Fnmsub(s27, s0, s1, s2); // Restore FPCR. __ Msr(FPCR, x0); END(); RUN(); if (test_1op) { uint32_t n_raw = float_to_rawbits(n); ASSERT_EQUAL_FP32(n, s10); ASSERT_EQUAL_FP32(rawbits_to_float(n_raw & ~kSSignMask), s11); ASSERT_EQUAL_FP32(rawbits_to_float(n_raw ^ kSSignMask), s12); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s13); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s14); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s15); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s16); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d17); } if (test_2op) { ASSERT_EQUAL_FP32(kFP32DefaultNaN, s18); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s19); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s20); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s21); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s22); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s23); } ASSERT_EQUAL_FP32(kFP32DefaultNaN, s24); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s25); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s26); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s27); TEARDOWN(); } TEST(default_nan_float) { INIT_V8(); float sn = rawbits_to_float(0x7f951111); float sm = rawbits_to_float(0x7f952222); float sa = rawbits_to_float(0x7f95aaaa); float qn = rawbits_to_float(0x7fea1111); float qm = rawbits_to_float(0x7fea2222); float qa = rawbits_to_float(0x7feaaaaa); ASSERT(IsSignallingNaN(sn)); ASSERT(IsSignallingNaN(sm)); ASSERT(IsSignallingNaN(sa)); ASSERT(IsQuietNaN(qn)); ASSERT(IsQuietNaN(qm)); ASSERT(IsQuietNaN(qa)); // - Signalling NaNs DefaultNaNHelper(sn, 0.0f, 0.0f); DefaultNaNHelper(0.0f, sm, 0.0f); DefaultNaNHelper(0.0f, 0.0f, sa); DefaultNaNHelper(sn, sm, 0.0f); DefaultNaNHelper(0.0f, sm, sa); DefaultNaNHelper(sn, 0.0f, sa); DefaultNaNHelper(sn, sm, sa); // - Quiet NaNs DefaultNaNHelper(qn, 0.0f, 0.0f); DefaultNaNHelper(0.0f, qm, 0.0f); DefaultNaNHelper(0.0f, 0.0f, qa); DefaultNaNHelper(qn, qm, 0.0f); DefaultNaNHelper(0.0f, qm, qa); DefaultNaNHelper(qn, 0.0f, qa); DefaultNaNHelper(qn, qm, qa); // - Mixed NaNs DefaultNaNHelper(qn, sm, sa); DefaultNaNHelper(sn, qm, sa); DefaultNaNHelper(sn, sm, qa); DefaultNaNHelper(qn, qm, sa); DefaultNaNHelper(sn, qm, qa); DefaultNaNHelper(qn, sm, qa); DefaultNaNHelper(qn, qm, qa); } static void DefaultNaNHelper(double n, double m, double a) { ASSERT(std::isnan(n) || std::isnan(m) || isnan(a)); bool test_1op = std::isnan(n); bool test_2op = std::isnan(n) || std::isnan(m); SETUP(); START(); // Enable Default-NaN mode in the FPCR. __ Mrs(x0, FPCR); __ Orr(x1, x0, DN_mask); __ Msr(FPCR, x1); // Execute a number of instructions which all use ProcessNaNs, and check that // they all produce the default NaN. __ Fmov(d0, n); __ Fmov(d1, m); __ Fmov(d2, a); if (test_1op) { // Operations that always propagate NaNs unchanged, even signalling NaNs. __ Fmov(d10, d0); __ Fabs(d11, d0); __ Fneg(d12, d0); // Operations that use ProcessNaN. __ Fsqrt(d13, d0); __ Frinta(d14, d0); __ Frintn(d15, d0); __ Frintz(d16, d0); // Fcvt usually has special NaN handling, but it respects default-NaN mode. __ Fcvt(s17, d0); } if (test_2op) { __ Fadd(d18, d0, d1); __ Fsub(d19, d0, d1); __ Fmul(d20, d0, d1); __ Fdiv(d21, d0, d1); __ Fmax(d22, d0, d1); __ Fmin(d23, d0, d1); } __ Fmadd(d24, d0, d1, d2); __ Fmsub(d25, d0, d1, d2); __ Fnmadd(d26, d0, d1, d2); __ Fnmsub(d27, d0, d1, d2); // Restore FPCR. __ Msr(FPCR, x0); END(); RUN(); if (test_1op) { uint64_t n_raw = double_to_rawbits(n); ASSERT_EQUAL_FP64(n, d10); ASSERT_EQUAL_FP64(rawbits_to_double(n_raw & ~kDSignMask), d11); ASSERT_EQUAL_FP64(rawbits_to_double(n_raw ^ kDSignMask), d12); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d13); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d14); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d15); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d16); ASSERT_EQUAL_FP32(kFP32DefaultNaN, s17); } if (test_2op) { ASSERT_EQUAL_FP64(kFP64DefaultNaN, d18); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d19); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d20); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d21); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d22); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d23); } ASSERT_EQUAL_FP64(kFP64DefaultNaN, d24); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d25); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d26); ASSERT_EQUAL_FP64(kFP64DefaultNaN, d27); TEARDOWN(); } TEST(default_nan_double) { INIT_V8(); double sn = rawbits_to_double(0x7ff5555511111111); double sm = rawbits_to_double(0x7ff5555522222222); double sa = rawbits_to_double(0x7ff55555aaaaaaaa); double qn = rawbits_to_double(0x7ffaaaaa11111111); double qm = rawbits_to_double(0x7ffaaaaa22222222); double qa = rawbits_to_double(0x7ffaaaaaaaaaaaaa); ASSERT(IsSignallingNaN(sn)); ASSERT(IsSignallingNaN(sm)); ASSERT(IsSignallingNaN(sa)); ASSERT(IsQuietNaN(qn)); ASSERT(IsQuietNaN(qm)); ASSERT(IsQuietNaN(qa)); // - Signalling NaNs DefaultNaNHelper(sn, 0.0, 0.0); DefaultNaNHelper(0.0, sm, 0.0); DefaultNaNHelper(0.0, 0.0, sa); DefaultNaNHelper(sn, sm, 0.0); DefaultNaNHelper(0.0, sm, sa); DefaultNaNHelper(sn, 0.0, sa); DefaultNaNHelper(sn, sm, sa); // - Quiet NaNs DefaultNaNHelper(qn, 0.0, 0.0); DefaultNaNHelper(0.0, qm, 0.0); DefaultNaNHelper(0.0, 0.0, qa); DefaultNaNHelper(qn, qm, 0.0); DefaultNaNHelper(0.0, qm, qa); DefaultNaNHelper(qn, 0.0, qa); DefaultNaNHelper(qn, qm, qa); // - Mixed NaNs DefaultNaNHelper(qn, sm, sa); DefaultNaNHelper(sn, qm, sa); DefaultNaNHelper(sn, sm, qa); DefaultNaNHelper(qn, qm, sa); DefaultNaNHelper(sn, qm, qa); DefaultNaNHelper(qn, sm, qa); DefaultNaNHelper(qn, qm, qa); } TEST(call_no_relocation) { Address call_start; Address return_address; INIT_V8(); SETUP(); START(); Label function; Label test; __ B(&test); __ Bind(&function); __ Mov(x0, 0x1); __ Ret(); __ Bind(&test); __ Mov(x0, 0x0); __ Push(lr, xzr); { Assembler::BlockConstPoolScope scope(&masm); call_start = buf + __ pc_offset(); __ Call(buf + function.pos(), RelocInfo::NONE64); return_address = buf + __ pc_offset(); } __ Pop(xzr, lr); END(); RUN(); ASSERT_EQUAL_64(1, x0); // The return_address_from_call_start function doesn't currently encounter any // non-relocatable sequences, so we check it here to make sure it works. // TODO(jbramley): Once Crankshaft is complete, decide if we need to support // non-relocatable calls at all. CHECK(return_address == Assembler::return_address_from_call_start(call_start)); TEARDOWN(); } static void AbsHelperX(int64_t value) { int64_t expected; SETUP(); START(); Label fail; Label done; __ Mov(x0, 0); __ Mov(x1, value); if (value != kXMinInt) { expected = labs(value); Label next; // The result is representable. __ Abs(x10, x1); __ Abs(x11, x1, &fail); __ Abs(x12, x1, &fail, &next); __ Bind(&next); __ Abs(x13, x1, NULL, &done); } else { // labs is undefined for kXMinInt but our implementation in the // MacroAssembler will return kXMinInt in such a case. expected = kXMinInt; Label next; // The result is not representable. __ Abs(x10, x1); __ Abs(x11, x1, NULL, &fail); __ Abs(x12, x1, &next, &fail); __ Bind(&next); __ Abs(x13, x1, &done); } __ Bind(&fail); __ Mov(x0, -1); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_64(0, x0); ASSERT_EQUAL_64(value, x1); ASSERT_EQUAL_64(expected, x10); ASSERT_EQUAL_64(expected, x11); ASSERT_EQUAL_64(expected, x12); ASSERT_EQUAL_64(expected, x13); TEARDOWN(); } static void AbsHelperW(int32_t value) { int32_t expected; SETUP(); START(); Label fail; Label done; __ Mov(w0, 0); // TODO(jbramley): The cast is needed to avoid a sign-extension bug in VIXL. // Once it is fixed, we should remove the cast. __ Mov(w1, static_cast(value)); if (value != kWMinInt) { expected = abs(value); Label next; // The result is representable. __ Abs(w10, w1); __ Abs(w11, w1, &fail); __ Abs(w12, w1, &fail, &next); __ Bind(&next); __ Abs(w13, w1, NULL, &done); } else { // abs is undefined for kWMinInt but our implementation in the // MacroAssembler will return kWMinInt in such a case. expected = kWMinInt; Label next; // The result is not representable. __ Abs(w10, w1); __ Abs(w11, w1, NULL, &fail); __ Abs(w12, w1, &next, &fail); __ Bind(&next); __ Abs(w13, w1, &done); } __ Bind(&fail); __ Mov(w0, -1); __ Bind(&done); END(); RUN(); ASSERT_EQUAL_32(0, w0); ASSERT_EQUAL_32(value, w1); ASSERT_EQUAL_32(expected, w10); ASSERT_EQUAL_32(expected, w11); ASSERT_EQUAL_32(expected, w12); ASSERT_EQUAL_32(expected, w13); TEARDOWN(); } TEST(abs) { INIT_V8(); AbsHelperX(0); AbsHelperX(42); AbsHelperX(-42); AbsHelperX(kXMinInt); AbsHelperX(kXMaxInt); AbsHelperW(0); AbsHelperW(42); AbsHelperW(-42); AbsHelperW(kWMinInt); AbsHelperW(kWMaxInt); } TEST(pool_size) { INIT_V8(); SETUP(); // This test does not execute any code. It only tests that the size of the // pools is read correctly from the RelocInfo. Label exit; __ b(&exit); const unsigned constant_pool_size = 312; const unsigned veneer_pool_size = 184; __ RecordConstPool(constant_pool_size); for (unsigned i = 0; i < constant_pool_size / 4; ++i) { __ dc32(0); } __ RecordVeneerPool(masm.pc_offset(), veneer_pool_size); for (unsigned i = 0; i < veneer_pool_size / kInstructionSize; ++i) { __ nop(); } __ bind(&exit); Heap* heap = isolate->heap(); CodeDesc desc; Object* code_object = NULL; Code* code; masm.GetCode(&desc); MaybeObject* maybe_code = heap->CreateCode(desc, 0, masm.CodeObject()); maybe_code->ToObject(&code_object); code = Code::cast(code_object); unsigned pool_count = 0; int pool_mask = RelocInfo::ModeMask(RelocInfo::CONST_POOL) | RelocInfo::ModeMask(RelocInfo::VENEER_POOL); for (RelocIterator it(code, pool_mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); if (RelocInfo::IsConstPool(info->rmode())) { ASSERT(info->data() == constant_pool_size); ++pool_count; } if (RelocInfo::IsVeneerPool(info->rmode())) { ASSERT(info->data() == veneer_pool_size); ++pool_count; } } ASSERT(pool_count == 2); TEARDOWN(); }