// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. // a transform stream is a readable/writable stream where you do // something with the data. Sometimes it's called a "filter", // but that's not a great name for it, since that implies a thing where // some bits pass through, and others are simply ignored. (That would // be a valid example of a transform, of course.) // // While the output is causally related to the input, it's not a // necessarily symmetric or synchronous transformation. For example, // a zlib stream might take multiple plain-text writes(), and then // emit a single compressed chunk some time in the future. // // Here's how this works: // // The Transform stream has all the aspects of the readable and writable // stream classes. When you write(chunk), that calls _write(chunk,cb) // internally, and returns false if there's a lot of pending writes // buffered up. When you call read(), that calls _read(n) until // there's enough pending readable data buffered up. // // In a transform stream, the written data is placed in a buffer. When // _read(n) is called, it transforms the queued up data, calling the // buffered _write cb's as it consumes chunks. If consuming a single // written chunk would result in multiple output chunks, then the first // outputted bit calls the readcb, and subsequent chunks just go into // the read buffer, and will cause it to emit 'readable' if necessary. // // This way, back-pressure is actually determined by the reading side, // since _read has to be called to start processing a new chunk. However, // a pathological inflate type of transform can cause excessive buffering // here. For example, imagine a stream where every byte of input is // interpreted as an integer from 0-255, and then results in that many // bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in // 1kb of data being output. In this case, you could write a very small // amount of input, and end up with a very large amount of output. In // such a pathological inflating mechanism, there'd be no way to tell // the system to stop doing the transform. A single 4MB write could // cause the system to run out of memory. // // However, even in such a pathological case, only a single written chunk // would be consumed, and then the rest would wait (un-transformed) until // the results of the previous transformed chunk were consumed. module.exports = Transform; var Duplex = require('_stream_duplex'); var util = require('util'); util.inherits(Transform, Duplex); function TransformState(options, stream) { var ts = this; this.output = function(chunk) { ts.needTransform = false; stream.push(chunk); }; this.afterTransform = function(er, data) { return afterTransform(stream, er, data); }; this.needTransform = false; this.transforming = false; this.writecb = null; this.writechunk = null; } function afterTransform(stream, er, data) { var ts = stream._transformState; ts.transforming = false; var cb = ts.writecb; if (!cb) return this.emit('error', new Error('no writecb in Transform class')); ts.writechunk = null; ts.writecb = null; if (data !== null && data !== undefined) ts.output(data); if (cb) cb(er); var rs = stream._readableState; if (rs.needReadable || rs.length < rs.highWaterMark) { stream._read(rs.bufferSize); } } function Transform(options) { if (!(this instanceof Transform)) return new Transform(options); Duplex.call(this, options); var ts = this._transformState = new TransformState(options, this); // when the writable side finishes, then flush out anything remaining. var stream = this; // start out asking for a readable event once data is transformed. this._readableState.needReadable = true; // we have implemented the _read method, and done the other things // that Readable wants before the first _read call, so unset the // sync guard flag. this._readableState.sync = false; this.once('finish', function() { if ('function' === typeof this._flush) this._flush(ts.output, function(er) { done(stream, er); }); else done(stream); }); } // This is the part where you do stuff! // override this function in implementation classes. // 'chunk' is an input chunk. // // Call `output(newChunk)` to pass along transformed output // to the readable side. You may call 'output' zero or more times. // // Call `cb(err)` when you are done with this chunk. If you pass // an error, then that'll put the hurt on the whole operation. If you // never call cb(), then you'll never get another chunk. Transform.prototype._transform = function(chunk, output, cb) { throw new Error('not implemented'); }; Transform.prototype._write = function(chunk, cb) { var ts = this._transformState; ts.writecb = cb; ts.writechunk = chunk; if (ts.transforming) return; var rs = this._readableState; if (ts.needTransform || rs.needReadable || rs.length < rs.highWaterMark) this._read(rs.bufferSize); }; // Doesn't matter what the args are here. // the output and callback functions passed to _transform do all the work. // That we got here means that the readable side wants more data. Transform.prototype._read = function(n) { var ts = this._transformState; if (ts.writechunk && ts.writecb && !ts.transforming) { ts.transforming = true; this._transform(ts.writechunk, ts.output, ts.afterTransform); return; } // mark that we need a transform, so that any data that comes in // will get processed, now that we've asked for it. ts.needTransform = true; }; function done(stream, er) { if (er) return stream.emit('error', er); // if there's nothing in the write buffer, then that means // that nothing more will ever be provided var ws = stream._writableState; var rs = stream._readableState; var ts = stream._transformState; if (ws.length) throw new Error('calling transform done when ws.length != 0'); if (ts.transforming) throw new Error('calling transform done when still transforming'); return stream.push(null); }