// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_HEAP_INL_H_
#define V8_HEAP_INL_H_
#include "heap.h"
#include "isolate.h"
#include "list-inl.h"
#include "objects.h"
#include "v8-counters.h"
#include "store-buffer.h"
#include "store-buffer-inl.h"
namespace v8 {
namespace internal {
void PromotionQueue::insert(HeapObject* target, int size) {
if (NewSpacePage::IsAtStart(reinterpret_cast
(rear_))) {
NewSpacePage* rear_page =
NewSpacePage::FromAddress(reinterpret_cast(rear_));
ASSERT(!rear_page->prev_page()->is_anchor());
rear_ = reinterpret_cast(rear_page->prev_page()->body_limit());
}
*(--rear_) = reinterpret_cast(target);
*(--rear_) = size;
// Assert no overflow into live objects.
#ifdef DEBUG
SemiSpace::AssertValidRange(HEAP->new_space()->top(),
reinterpret_cast(rear_));
#endif
}
int Heap::MaxObjectSizeInPagedSpace() {
return Page::kMaxHeapObjectSize;
}
MaybeObject* Heap::AllocateStringFromUtf8(Vector str,
PretenureFlag pretenure) {
// Check for ASCII first since this is the common case.
if (String::IsAscii(str.start(), str.length())) {
// If the string is ASCII, we do not need to convert the characters
// since UTF8 is backwards compatible with ASCII.
return AllocateStringFromAscii(str, pretenure);
}
// Non-ASCII and we need to decode.
return AllocateStringFromUtf8Slow(str, pretenure);
}
MaybeObject* Heap::AllocateSymbol(Vector str,
int chars,
uint32_t hash_field) {
unibrow::Utf8InputBuffer<> buffer(str.start(),
static_cast(str.length()));
return AllocateInternalSymbol(&buffer, chars, hash_field);
}
MaybeObject* Heap::AllocateAsciiSymbol(Vector str,
uint32_t hash_field) {
if (str.length() > SeqAsciiString::kMaxLength) {
return Failure::OutOfMemoryException();
}
// Compute map and object size.
Map* map = ascii_symbol_map();
int size = SeqAsciiString::SizeFor(str.length());
// Allocate string.
Object* result;
{ MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast(result)->set_map(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
ASSERT_EQ(size, answer->Size());
// Fill in the characters.
memcpy(answer->address() + SeqAsciiString::kHeaderSize,
str.start(), str.length());
return answer;
}
MaybeObject* Heap::AllocateTwoByteSymbol(Vector str,
uint32_t hash_field) {
if (str.length() > SeqTwoByteString::kMaxLength) {
return Failure::OutOfMemoryException();
}
// Compute map and object size.
Map* map = symbol_map();
int size = SeqTwoByteString::SizeFor(str.length());
// Allocate string.
Object* result;
{ MaybeObject* maybe_result = (size > MaxObjectSizeInPagedSpace())
? lo_space_->AllocateRaw(size, NOT_EXECUTABLE)
: old_data_space_->AllocateRaw(size);
if (!maybe_result->ToObject(&result)) return maybe_result;
}
reinterpret_cast(result)->set_map(map);
// Set length and hash fields of the allocated string.
String* answer = String::cast(result);
answer->set_length(str.length());
answer->set_hash_field(hash_field);
ASSERT_EQ(size, answer->Size());
// Fill in the characters.
memcpy(answer->address() + SeqTwoByteString::kHeaderSize,
str.start(), str.length() * kUC16Size);
return answer;
}
MaybeObject* Heap::CopyFixedArray(FixedArray* src) {
return CopyFixedArrayWithMap(src, src->map());
}
MaybeObject* Heap::CopyFixedDoubleArray(FixedDoubleArray* src) {
return CopyFixedDoubleArrayWithMap(src, src->map());
}
MaybeObject* Heap::AllocateRaw(int size_in_bytes,
AllocationSpace space,
AllocationSpace retry_space) {
ASSERT(allocation_allowed_ && gc_state_ == NOT_IN_GC);
ASSERT(space != NEW_SPACE ||
retry_space == OLD_POINTER_SPACE ||
retry_space == OLD_DATA_SPACE ||
retry_space == LO_SPACE);
#ifdef DEBUG
if (FLAG_gc_interval >= 0 &&
!disallow_allocation_failure_ &&
Heap::allocation_timeout_-- <= 0) {
return Failure::RetryAfterGC(space);
}
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result;
if (NEW_SPACE == space) {
result = new_space_.AllocateRaw(size_in_bytes);
if (always_allocate() && result->IsFailure()) {
space = retry_space;
} else {
return result;
}
}
if (OLD_POINTER_SPACE == space) {
result = old_pointer_space_->AllocateRaw(size_in_bytes);
} else if (OLD_DATA_SPACE == space) {
result = old_data_space_->AllocateRaw(size_in_bytes);
} else if (CODE_SPACE == space) {
result = code_space_->AllocateRaw(size_in_bytes);
} else if (LO_SPACE == space) {
result = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE);
} else if (CELL_SPACE == space) {
result = cell_space_->AllocateRaw(size_in_bytes);
} else {
ASSERT(MAP_SPACE == space);
result = map_space_->AllocateRaw(size_in_bytes);
}
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
MaybeObject* Heap::NumberFromInt32(int32_t value) {
if (Smi::IsValid(value)) return Smi::FromInt(value);
// Bypass NumberFromDouble to avoid various redundant checks.
return AllocateHeapNumber(FastI2D(value));
}
MaybeObject* Heap::NumberFromUint32(uint32_t value) {
if ((int32_t)value >= 0 && Smi::IsValid((int32_t)value)) {
return Smi::FromInt((int32_t)value);
}
// Bypass NumberFromDouble to avoid various redundant checks.
return AllocateHeapNumber(FastUI2D(value));
}
void Heap::FinalizeExternalString(String* string) {
ASSERT(string->IsExternalString());
v8::String::ExternalStringResourceBase** resource_addr =
reinterpret_cast(
reinterpret_cast(string) +
ExternalString::kResourceOffset -
kHeapObjectTag);
// Dispose of the C++ object if it has not already been disposed.
if (*resource_addr != NULL) {
(*resource_addr)->Dispose();
}
// Clear the resource pointer in the string.
*resource_addr = NULL;
}
MaybeObject* Heap::AllocateRawMap() {
#ifdef DEBUG
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result = map_space_->AllocateRaw(Map::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
#ifdef DEBUG
if (!result->IsFailure()) {
// Maps have their own alignment.
CHECK((reinterpret_cast(result) & kMapAlignmentMask) ==
static_cast(kHeapObjectTag));
}
#endif
return result;
}
MaybeObject* Heap::AllocateRawCell() {
#ifdef DEBUG
isolate_->counters()->objs_since_last_full()->Increment();
isolate_->counters()->objs_since_last_young()->Increment();
#endif
MaybeObject* result = cell_space_->AllocateRaw(JSGlobalPropertyCell::kSize);
if (result->IsFailure()) old_gen_exhausted_ = true;
return result;
}
bool Heap::InNewSpace(Object* object) {
bool result = new_space_.Contains(object);
ASSERT(!result || // Either not in new space
gc_state_ != NOT_IN_GC || // ... or in the middle of GC
InToSpace(object)); // ... or in to-space (where we allocate).
return result;
}
bool Heap::InNewSpace(Address addr) {
return new_space_.Contains(addr);
}
bool Heap::InFromSpace(Object* object) {
return new_space_.FromSpaceContains(object);
}
bool Heap::InToSpace(Object* object) {
return new_space_.ToSpaceContains(object);
}
bool Heap::OldGenerationAllocationLimitReached() {
if (!incremental_marking()->IsStopped()) return false;
return OldGenerationSpaceAvailable() < 0;
}
bool Heap::ShouldBePromoted(Address old_address, int object_size) {
// An object should be promoted if:
// - the object has survived a scavenge operation or
// - to space is already 25% full.
NewSpacePage* page = NewSpacePage::FromAddress(old_address);
Address age_mark = new_space_.age_mark();
bool below_mark = page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) &&
(!page->ContainsLimit(age_mark) || old_address < age_mark);
return below_mark || (new_space_.Size() + object_size) >=
(new_space_.EffectiveCapacity() >> 2);
}
void Heap::RecordWrite(Address address, int offset) {
if (!InNewSpace(address)) store_buffer_.Mark(address + offset);
}
void Heap::RecordWrites(Address address, int start, int len) {
if (!InNewSpace(address)) {
for (int i = 0; i < len; i++) {
store_buffer_.Mark(address + start + i * kPointerSize);
}
}
}
OldSpace* Heap::TargetSpace(HeapObject* object) {
InstanceType type = object->map()->instance_type();
AllocationSpace space = TargetSpaceId(type);
return (space == OLD_POINTER_SPACE)
? old_pointer_space_
: old_data_space_;
}
AllocationSpace Heap::TargetSpaceId(InstanceType type) {
// Heap numbers and sequential strings are promoted to old data space, all
// other object types are promoted to old pointer space. We do not use
// object->IsHeapNumber() and object->IsSeqString() because we already
// know that object has the heap object tag.
// These objects are never allocated in new space.
ASSERT(type != MAP_TYPE);
ASSERT(type != CODE_TYPE);
ASSERT(type != ODDBALL_TYPE);
ASSERT(type != JS_GLOBAL_PROPERTY_CELL_TYPE);
if (type < FIRST_NONSTRING_TYPE) {
// There are four string representations: sequential strings, external
// strings, cons strings, and sliced strings.
// Only the latter two contain non-map-word pointers to heap objects.
return ((type & kIsIndirectStringMask) == kIsIndirectStringTag)
? OLD_POINTER_SPACE
: OLD_DATA_SPACE;
} else {
return (type <= LAST_DATA_TYPE) ? OLD_DATA_SPACE : OLD_POINTER_SPACE;
}
}
void Heap::CopyBlock(Address dst, Address src, int byte_size) {
ASSERT(IsAligned(byte_size, kPointerSize));
CopyWords(reinterpret_cast