// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_MIPS64 #include "src/codegen.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- a0 : number of arguments excluding receiver // -- a1 : called function (only guaranteed when // -- extra_args requires it) // -- cp : context // -- sp[0] : last argument // -- ... // -- sp[8 * (argc - 1)] : first argument // -- sp[8 * agrc] : receiver // ----------------------------------- // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(a1); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects s0 to contain the number of arguments // including the receiver and the extra arguments. __ Daddu(s0, a0, num_extra_args + 1); __ dsll(s1, s0, kPointerSizeLog2); __ Dsubu(s1, s1, kPointerSize); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ ld(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ld(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ ld(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ ld(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ld(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the Array function from the native context. __ ld(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(zero_reg)); __ GetObjectType(a2, a3, a4); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction, a4, Operand(MAP_TYPE)); } // Run the native code for the InternalArray function called as a normal // function. // Tail call a stub. InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code; // Get the Array function. GenerateLoadArrayFunction(masm, a1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(a2, a4); __ Assert(ne, kUnexpectedInitialMapForArrayFunction1, a4, Operand(zero_reg)); __ GetObjectType(a2, a3, a4); __ Assert(eq, kUnexpectedInitialMapForArrayFunction2, a4, Operand(MAP_TYPE)); } // Run the native code for the Array function called as a normal function. // Tail call a stub. __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3); Register function = a1; if (FLAG_debug_code) { __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2); __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2)); } // Load the first arguments in a0 and get rid of the rest. Label no_arguments; __ Branch(&no_arguments, eq, a0, Operand(zero_reg)); // First args = sp[(argc - 1) * 8]. __ Dsubu(a0, a0, Operand(1)); __ dsll(a0, a0, kPointerSizeLog2); __ Daddu(sp, a0, sp); __ ld(a0, MemOperand(sp)); // sp now point to args[0], drop args[0] + receiver. __ Drop(2); Register argument = a2; Label not_cached, argument_is_string; __ LookupNumberStringCache(a0, // Input. argument, // Result. a3, // Scratch. a4, // Scratch. a5, // Scratch. ¬_cached); __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, a4); __ bind(&argument_is_string); // ----------- S t a t e ------------- // -- a2 : argument converted to string // -- a1 : constructor function // -- ra : return address // ----------------------------------- Label gc_required; __ Allocate(JSValue::kSize, v0, // Result. a3, // Scratch. a4, // Scratch. &gc_required, TAG_OBJECT); // Initialising the String Object. Register map = a3; __ LoadGlobalFunctionInitialMap(function, map, a4); if (FLAG_debug_code) { __ lbu(a4, FieldMemOperand(map, Map::kInstanceSizeOffset)); __ Assert(eq, kUnexpectedStringWrapperInstanceSize, a4, Operand(JSValue::kSize >> kPointerSizeLog2)); __ lbu(a4, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset)); __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper, a4, Operand(zero_reg)); } __ sd(map, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex); __ sd(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sd(a3, FieldMemOperand(v0, JSObject::kElementsOffset)); __ sd(argument, FieldMemOperand(v0, JSValue::kValueOffset)); // Ensure the object is fully initialized. STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // The argument was not found in the number to string cache. Check // if it's a string already before calling the conversion builtin. Label convert_argument; __ bind(¬_cached); __ JumpIfSmi(a0, &convert_argument); // Is it a String? __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ And(a4, a3, Operand(kIsNotStringMask)); __ Branch(&convert_argument, ne, a4, Operand(zero_reg)); __ mov(argument, a0); __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4); __ Branch(&argument_is_string); // Invoke the conversion builtin and put the result into a2. __ bind(&convert_argument); __ push(function); // Preserve the function. __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, a4); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(a0); __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION); } __ pop(function); __ mov(argument, v0); __ Branch(&argument_is_string); // Load the empty string into a2, remove the receiver from the // stack, and jump back to the case where the argument is a string. __ bind(&no_arguments); __ LoadRoot(argument, Heap::kempty_stringRootIndex); __ Drop(1); __ Branch(&argument_is_string); // At this point the argument is already a string. Call runtime to // create a string wrapper. __ bind(&gc_required); __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, a4); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(argument); __ CallRuntime(Runtime::kNewStringWrapper, 1); } __ Ret(); } static void CallRuntimePassFunction( MacroAssembler* masm, Runtime::FunctionId function_id) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push call kind information and function as parameter to the runtime call. __ Push(a1, a1); __ CallRuntime(function_id, 1); // Restore call kind information and receiver. __ Pop(a1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset)); __ Daddu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ Daddu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(a4, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(a4)); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_memento) { // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- a2 : allocation site or undefined // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Should never create mementos for api functions. DCHECK(!is_api_function || !create_memento); Isolate* isolate = masm->isolate(); // ----------- S t a t e ------------- // -- a0 : number of arguments // -- a1 : constructor function // -- ra : return address // -- sp[...]: constructor arguments // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); if (create_memento) { __ AssertUndefinedOrAllocationSite(a2, a3); __ push(a2); } // Preserve the two incoming parameters on the stack. // Tag arguments count. __ dsll32(a0, a0, 0); __ MultiPushReversed(a0.bit() | a1.bit()); Label rt_call, allocated; // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. if (FLAG_inline_new) { Label undo_allocation; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ li(a2, Operand(debug_step_in_fp)); __ ld(a2, MemOperand(a2)); __ Branch(&rt_call, ne, a2, Operand(zero_reg)); // Load the initial map and verify that it is in fact a map. // a1: constructor function __ ld(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(a2, &rt_call); __ GetObjectType(a2, a3, t0); __ Branch(&rt_call, ne, t0, Operand(MAP_TYPE)); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // a1: constructor function // a2: initial map __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset)); __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE)); if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset); // Check if slack tracking is enabled. __ lwu(a4, bit_field3); __ DecodeField(a6, a4); __ Branch(&allocate, eq, a6, Operand(static_cast(JSFunction::kNoSlackTracking))); // Decrease generous allocation count. __ Dsubu(a4, a4, Operand(1 << Map::ConstructionCount::kShift)); __ Branch(USE_DELAY_SLOT, &allocate, ne, a6, Operand(JSFunction::kFinishSlackTracking)); __ sw(a4, bit_field3); // In delay slot. __ Push(a1, a2, a1); // a1 = Constructor. __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ Pop(a1, a2); // Slack tracking counter is kNoSlackTracking after runtime call. DCHECK(JSFunction::kNoSlackTracking == 0); __ mov(a6, zero_reg); __ bind(&allocate); } // Now allocate the JSObject on the heap. // a1: constructor function // a2: initial map __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset)); if (create_memento) { __ Daddu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize)); } __ Allocate(a3, t0, t1, t2, &rt_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // a1: constructor function // a2: initial map // a3: object size (not including memento if create_memento) // t0: JSObject (not tagged) __ LoadRoot(t2, Heap::kEmptyFixedArrayRootIndex); __ mov(t1, t0); __ sd(a2, MemOperand(t1, JSObject::kMapOffset)); __ sd(t2, MemOperand(t1, JSObject::kPropertiesOffset)); __ sd(t2, MemOperand(t1, JSObject::kElementsOffset)); __ Daddu(t1, t1, Operand(3*kPointerSize)); DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset); DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset); // Fill all the in-object properties with appropriate filler. // a1: constructor function // a2: initial map // a3: object size (in words, including memento if create_memento) // t0: JSObject (not tagged) // t1: First in-object property of JSObject (not tagged) // a6: slack tracking counter (non-API function case) DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize); // Use t3 to hold undefined, which is used in several places below. __ LoadRoot(t3, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ Branch(&no_inobject_slack_tracking, eq, a6, Operand(static_cast(JSFunction::kNoSlackTracking))); // Allocate object with a slack. __ lwu(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); __ Ext(a0, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ dsll(at, a0, kPointerSizeLog2); __ daddu(a0, t1, at); // a0: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ dsll(at, a3, kPointerSizeLog2); __ Daddu(t2, t0, Operand(at)); // End of object. __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields, a0, Operand(t2)); } __ InitializeFieldsWithFiller(t1, a0, t3); // To allow for truncation. __ LoadRoot(t3, Heap::kOnePointerFillerMapRootIndex); // Fill the remaining fields with one pointer filler map. __ bind(&no_inobject_slack_tracking); } if (create_memento) { __ Dsubu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize)); __ dsll(a0, a0, kPointerSizeLog2); __ Daddu(a0, t0, Operand(a0)); // End of object. __ InitializeFieldsWithFiller(t1, a0, t3); // Fill in memento fields. // t1: points to the allocated but uninitialized memento. __ LoadRoot(t3, Heap::kAllocationMementoMapRootIndex); DCHECK_EQ(0 * kPointerSize, AllocationMemento::kMapOffset); __ sd(t3, MemOperand(t1)); __ Daddu(t1, t1, kPointerSize); // Load the AllocationSite. __ ld(t3, MemOperand(sp, 2 * kPointerSize)); DCHECK_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset); __ sd(t3, MemOperand(t1)); __ Daddu(t1, t1, kPointerSize); } else { __ dsll(at, a3, kPointerSizeLog2); __ Daddu(a0, t0, Operand(at)); // End of object. __ InitializeFieldsWithFiller(t1, a0, t3); } // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. Any // failures need to undo the allocation, so that the heap is in a // consistent state and verifiable. __ Daddu(t0, t0, Operand(kHeapObjectTag)); // Check if a non-empty properties array is needed. Continue with // allocated object if not fall through to runtime call if it is. // a1: constructor function // t0: JSObject // t1: start of next object (not tagged) __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset)); // The field instance sizes contains both pre-allocated property fields // and in-object properties. __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset)); __ Ext(t2, a0, Map::kPreAllocatedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ Daddu(a3, a3, Operand(t2)); __ Ext(t2, a0, Map::kInObjectPropertiesByte * kBitsPerByte, kBitsPerByte); __ dsubu(a3, a3, t2); // Done if no extra properties are to be allocated. __ Branch(&allocated, eq, a3, Operand(zero_reg)); __ Assert(greater_equal, kPropertyAllocationCountFailed, a3, Operand(zero_reg)); // Scale the number of elements by pointer size and add the header for // FixedArrays to the start of the next object calculation from above. // a1: constructor // a3: number of elements in properties array // t0: JSObject // t1: start of next object __ Daddu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize)); __ Allocate( a0, t1, t2, a2, &undo_allocation, static_cast(RESULT_CONTAINS_TOP | SIZE_IN_WORDS)); // Initialize the FixedArray. // a1: constructor // a3: number of elements in properties array (untagged) // t0: JSObject // t1: start of next object __ LoadRoot(t2, Heap::kFixedArrayMapRootIndex); __ mov(a2, t1); __ sd(t2, MemOperand(a2, JSObject::kMapOffset)); // Tag number of elements. __ dsll32(a0, a3, 0); __ sd(a0, MemOperand(a2, FixedArray::kLengthOffset)); __ Daddu(a2, a2, Operand(2 * kPointerSize)); DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset); DCHECK_EQ(1 * kPointerSize, FixedArray::kLengthOffset); // Initialize the fields to undefined. // a1: constructor // a2: First element of FixedArray (not tagged) // a3: number of elements in properties array // t0: JSObject // t1: FixedArray (not tagged) __ dsll(a7, a3, kPointerSizeLog2); __ daddu(t2, a2, a7); // End of object. DCHECK_EQ(2 * kPointerSize, FixedArray::kHeaderSize); { Label loop, entry; if (!is_api_function || create_memento) { __ LoadRoot(t3, Heap::kUndefinedValueRootIndex); } else if (FLAG_debug_code) { __ LoadRoot(a6, Heap::kUndefinedValueRootIndex); __ Assert(eq, kUndefinedValueNotLoaded, t3, Operand(a6)); } __ jmp(&entry); __ bind(&loop); __ sd(t3, MemOperand(a2)); __ daddiu(a2, a2, kPointerSize); __ bind(&entry); __ Branch(&loop, less, a2, Operand(t2)); } // Store the initialized FixedArray into the properties field of // the JSObject. // a1: constructor function // t0: JSObject // t1: FixedArray (not tagged) __ Daddu(t1, t1, Operand(kHeapObjectTag)); // Add the heap tag. __ sd(t1, FieldMemOperand(t0, JSObject::kPropertiesOffset)); // Continue with JSObject being successfully allocated. // a1: constructor function // a4: JSObject __ jmp(&allocated); // Undo the setting of the new top so that the heap is verifiable. For // example, the map's unused properties potentially do not match the // allocated objects unused properties. // t0: JSObject (previous new top) __ bind(&undo_allocation); __ UndoAllocationInNewSpace(t0, t1); } // Allocate the new receiver object using the runtime call. // a1: constructor function __ bind(&rt_call); if (create_memento) { // Get the cell or allocation site. __ ld(a2, MemOperand(sp, 2 * kPointerSize)); __ push(a2); } __ push(a1); // Argument for Runtime_NewObject. if (create_memento) { __ CallRuntime(Runtime::kNewObjectWithAllocationSite, 2); } else { __ CallRuntime(Runtime::kNewObject, 1); } __ mov(t0, v0); // If we ended up using the runtime, and we want a memento, then the // runtime call made it for us, and we shouldn't do create count // increment. Label count_incremented; if (create_memento) { __ jmp(&count_incremented); } // Receiver for constructor call allocated. // t0: JSObject __ bind(&allocated); if (create_memento) { __ ld(a2, MemOperand(sp, kPointerSize * 2)); __ LoadRoot(t1, Heap::kUndefinedValueRootIndex); __ Branch(&count_incremented, eq, a2, Operand(t1)); // a2 is an AllocationSite. We are creating a memento from it, so we // need to increment the memento create count. __ ld(a3, FieldMemOperand(a2, AllocationSite::kPretenureCreateCountOffset)); __ Daddu(a3, a3, Operand(Smi::FromInt(1))); __ sd(a3, FieldMemOperand(a2, AllocationSite::kPretenureCreateCountOffset)); __ bind(&count_incremented); } __ Push(t0, t0); // Reload the number of arguments from the stack. // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) __ ld(a1, MemOperand(sp, 2 * kPointerSize)); __ ld(a3, MemOperand(sp, 3 * kPointerSize)); // Set up pointer to last argument. __ Daddu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Set up number of arguments for function call below. __ SmiUntag(a0, a3); // Copy arguments and receiver to the expression stack. // a0: number of arguments // a1: constructor function // a2: address of last argument (caller sp) // a3: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: constructor function // sp[3]: number of arguments (smi-tagged) Label loop, entry; __ SmiUntag(a3); __ jmp(&entry); __ bind(&loop); __ dsll(a4, a3, kPointerSizeLog2); __ Daddu(a4, a2, Operand(a4)); __ ld(a5, MemOperand(a4)); __ push(a5); __ bind(&entry); __ Daddu(a3, a3, Operand(-1)); __ Branch(&loop, greater_equal, a3, Operand(zero_reg)); // Call the function. // a0: number of arguments // a1: constructor function if (is_api_function) { __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(a0); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ ld(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(v0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ GetObjectType(v0, a1, a3); __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ ld(v0, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // v0: result // sp[0]: receiver (newly allocated object) // sp[1]: constructor function // sp[2]: number of arguments (smi-tagged) __ ld(a1, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); __ Daddu(sp, sp, kPointerSize); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2); __ Ret(); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, false); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody // ----------- S t a t e ------------- // -- a0: code entry // -- a1: function // -- a2: receiver_pointer // -- a3: argc // -- s0: argv // ----------------------------------- ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the JS frame. __ mov(cp, zero_reg); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Set up the context from the function argument. __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Push the function and the receiver onto the stack. __ Push(a1, a2); // Copy arguments to the stack in a loop. // a3: argc // s0: argv, i.e. points to first arg Label loop, entry; __ dsll(a4, a3, kPointerSizeLog2); __ daddu(a6, s0, a4); __ b(&entry); __ nop(); // Branch delay slot nop. // a6 points past last arg. __ bind(&loop); __ ld(a4, MemOperand(s0)); // Read next parameter. __ daddiu(s0, s0, kPointerSize); __ ld(a4, MemOperand(a4)); // Dereference handle. __ push(a4); // Push parameter. __ bind(&entry); __ Branch(&loop, ne, s0, Operand(a6)); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(a4, Heap::kUndefinedValueRootIndex); __ mov(s1, a4); __ mov(s2, a4); __ mov(s3, a4); __ mov(s4, a4); __ mov(s5, a4); // s6 holds the root address. Do not clobber. // s7 is cp. Do not init. // Invoke the code and pass argc as a0. __ mov(a0, a3); if (is_construct) { // No type feedback cell is available __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS); __ CallStub(&stub); } else { ParameterCount actual(a0); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper()); } // Leave internal frame. } __ Jump(ra); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push function as parameter to the runtime call. __ Push(a1, a1); // Whether to compile in a background thread. __ Push(masm->isolate()->factory()->ToBoolean(concurrent)); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ Pop(a1); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Set a0 to point to the head of the PlatformCodeAge sequence. __ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize)); // The following registers must be saved and restored when calling through to // the runtime: // a0 - contains return address (beginning of patch sequence) // a1 - isolate RegList saved_regs = (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit(); FrameScope scope(masm, StackFrame::MANUAL); __ MultiPush(saved_regs); __ PrepareCallCFunction(2, 0, a2); __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ MultiPop(saved_regs); __ Jump(a0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // Set a0 to point to the head of the PlatformCodeAge sequence. __ Dsubu(a0, a0, Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize)); // The following registers must be saved and restored when calling through to // the runtime: // a0 - contains return address (beginning of patch sequence) // a1 - isolate RegList saved_regs = (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit(); FrameScope scope(masm, StackFrame::MANUAL); __ MultiPush(saved_regs); __ PrepareCallCFunction(2, 0, a2); __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); __ MultiPop(saved_regs); // Perform prologue operations usually performed by the young code stub. __ Push(ra, fp, cp, a1); __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Jump to point after the code-age stub. __ Daddu(a0, a0, Operand((kNoCodeAgeSequenceLength))); __ Jump(a0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ MultiPush(kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ MultiPop(kJSCallerSaved | kCalleeSaved); } __ Daddu(sp, sp, Operand(kPointerSize)); // Ignore state __ Jump(ra); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ li(a0, Operand(Smi::FromInt(static_cast(type)))); __ push(a0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> a6. __ ld(a6, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(a6); // Switch on the state. Label with_tos_register, unknown_state; __ Branch(&with_tos_register, ne, a6, Operand(FullCodeGenerator::NO_REGISTERS)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Daddu(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ bind(&with_tos_register); __ ld(v0, MemOperand(sp, 1 * kPointerSize)); __ Branch(&unknown_state, ne, a6, Operand(FullCodeGenerator::TOS_REG)); __ Ret(USE_DELAY_SLOT); // Safe to fill delay slot Addu will emit one instruction. __ Daddu(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ ld(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(a0); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. __ Ret(eq, v0, Operand(Smi::FromInt(0))); // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ ld(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ ld(a1, MemOperand(a1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); __ SmiUntag(a1); // Compute the target address = code_obj + header_size + osr_offset // = + #header_size + __ daddu(v0, v0, a1); __ daddiu(ra, v0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ LoadRoot(at, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(at)); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ Ret(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // a0: actual number of arguments { Label done; __ Branch(&done, ne, a0, Operand(zero_reg)); __ LoadRoot(a6, Heap::kUndefinedValueRootIndex); __ push(a6); __ Daddu(a0, a0, Operand(1)); __ bind(&done); } // 2. Get the function to call (passed as receiver) from the stack, check // if it is a function. // a0: actual number of arguments Label slow, non_function; __ dsll(at, a0, kPointerSizeLog2); __ daddu(at, sp, at); __ ld(a1, MemOperand(at)); __ JumpIfSmi(a1, &non_function); __ GetObjectType(a1, a2, a2); __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE)); // 3a. Patch the first argument if necessary when calling a function. // a0: actual number of arguments // a1: function Label shift_arguments; __ li(a4, Operand(0, RelocInfo::NONE32)); // Indicate regular JS_FUNCTION. { Label convert_to_object, use_global_proxy, patch_receiver; // Change context eagerly in case we need the global receiver. __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Do not transform the receiver for strict mode functions. __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset)); __ And(a7, a3, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ Branch(&shift_arguments, ne, a7, Operand(zero_reg)); // Do not transform the receiver for native (Compilerhints already in a3). __ lbu(a3, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset)); __ And(a7, a3, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ Branch(&shift_arguments, ne, a7, Operand(zero_reg)); // Compute the receiver in sloppy mode. // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2). __ dsll(at, a0, kPointerSizeLog2); __ daddu(a2, sp, at); __ ld(a2, MemOperand(a2, -kPointerSize)); // a0: actual number of arguments // a1: function // a2: first argument __ JumpIfSmi(a2, &convert_to_object, a6); __ LoadRoot(a3, Heap::kUndefinedValueRootIndex); __ Branch(&use_global_proxy, eq, a2, Operand(a3)); __ LoadRoot(a3, Heap::kNullValueRootIndex); __ Branch(&use_global_proxy, eq, a2, Operand(a3)); STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(a2, a3, a3); __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE)); __ bind(&convert_to_object); // Enter an internal frame in order to preserve argument count. { FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(a0); __ Push(a0, a2); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a2, v0); __ pop(a0); __ SmiUntag(a0); // Leave internal frame. } // Restore the function to a1, and the flag to a4. __ dsll(at, a0, kPointerSizeLog2); __ daddu(at, sp, at); __ ld(a1, MemOperand(at)); __ Branch(USE_DELAY_SLOT, &patch_receiver); __ li(a4, Operand(0, RelocInfo::NONE32)); __ bind(&use_global_proxy); __ ld(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ ld(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset)); __ bind(&patch_receiver); __ dsll(at, a0, kPointerSizeLog2); __ daddu(a3, sp, at); __ sd(a2, MemOperand(a3, -kPointerSize)); __ Branch(&shift_arguments); } // 3b. Check for function proxy. __ bind(&slow); __ li(a4, Operand(1, RelocInfo::NONE32)); // Indicate function proxy. __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE)); __ bind(&non_function); __ li(a4, Operand(2, RelocInfo::NONE32)); // Indicate non-function. // 3c. Patch the first argument when calling a non-function. The // CALL_NON_FUNCTION builtin expects the non-function callee as // receiver, so overwrite the first argument which will ultimately // become the receiver. // a0: actual number of arguments // a1: function // a4: call type (0: JS function, 1: function proxy, 2: non-function) __ dsll(at, a0, kPointerSizeLog2); __ daddu(a2, sp, at); __ sd(a1, MemOperand(a2, -kPointerSize)); // 4. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // a0: actual number of arguments // a1: function // a4: call type (0: JS function, 1: function proxy, 2: non-function) __ bind(&shift_arguments); { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ dsll(at, a0, kPointerSizeLog2); __ daddu(a2, sp, at); __ bind(&loop); __ ld(at, MemOperand(a2, -kPointerSize)); __ sd(at, MemOperand(a2)); __ Dsubu(a2, a2, Operand(kPointerSize)); __ Branch(&loop, ne, a2, Operand(sp)); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Dsubu(a0, a0, Operand(1)); __ Pop(); } // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin, // or a function proxy via CALL_FUNCTION_PROXY. // a0: actual number of arguments // a1: function // a4: call type (0: JS function, 1: function proxy, 2: non-function) { Label function, non_proxy; __ Branch(&function, eq, a4, Operand(zero_reg)); // Expected number of arguments is 0 for CALL_NON_FUNCTION. __ mov(a2, zero_reg); __ Branch(&non_proxy, ne, a4, Operand(1)); __ push(a1); // Re-add proxy object as additional argument. __ Daddu(a0, a0, Operand(1)); __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&non_proxy); __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); __ bind(&function); } // 5b. Get the code to call from the function and check that the number of // expected arguments matches what we're providing. If so, jump // (tail-call) to the code in register edx without checking arguments. // a0: actual number of arguments // a1: function __ ld(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); // The argument count is stored as int32_t on 64-bit platforms. // TODO(plind): Smi on 32-bit platforms. __ lw(a2, FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); // Check formal and actual parameter counts. __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET, ne, a2, Operand(a0)); __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); ParameterCount expected(0); __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper()); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { const int kIndexOffset = StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize); const int kLimitOffset = StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize); const int kArgsOffset = 2 * kPointerSize; const int kRecvOffset = 3 * kPointerSize; const int kFunctionOffset = 4 * kPointerSize; { FrameScope frame_scope(masm, StackFrame::INTERNAL); __ ld(a0, MemOperand(fp, kFunctionOffset)); // Get the function. __ push(a0); __ ld(a0, MemOperand(fp, kArgsOffset)); // Get the args array. __ push(a0); // Returns (in v0) number of arguments to copy to stack as Smi. __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); // Make a2 the space we have left. The stack might already be overflowed // here which will cause a2 to become negative. __ dsubu(a2, sp, a2); // Check if the arguments will overflow the stack. __ SmiScale(a7, v0, kPointerSizeLog2); __ Branch(&okay, gt, a2, Operand(a7)); // Signed comparison. // Out of stack space. __ ld(a1, MemOperand(fp, kFunctionOffset)); __ Push(a1, v0); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); // End of stack check. // Push current limit and index. __ bind(&okay); __ mov(a1, zero_reg); __ Push(v0, a1); // Limit and initial index. // Get the receiver. __ ld(a0, MemOperand(fp, kRecvOffset)); // Check that the function is a JS function (otherwise it must be a proxy). Label push_receiver; __ ld(a1, MemOperand(fp, kFunctionOffset)); __ GetObjectType(a1, a2, a2); __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE)); // Change context eagerly to get the right global object if necessary. __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // Load the shared function info while the function is still in a1. __ ld(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); // Compute the receiver. // Do not transform the receiver for strict mode functions. Label call_to_object, use_global_proxy; __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kStrictModeByteOffset)); __ And(a7, a7, Operand(1 << SharedFunctionInfo::kStrictModeBitWithinByte)); __ Branch(&push_receiver, ne, a7, Operand(zero_reg)); // Do not transform the receiver for native (Compilerhints already in a2). __ lbu(a7, FieldMemOperand(a2, SharedFunctionInfo::kNativeByteOffset)); __ And(a7, a7, Operand(1 << SharedFunctionInfo::kNativeBitWithinByte)); __ Branch(&push_receiver, ne, a7, Operand(zero_reg)); // Compute the receiver in sloppy mode. __ JumpIfSmi(a0, &call_to_object); __ LoadRoot(a1, Heap::kNullValueRootIndex); __ Branch(&use_global_proxy, eq, a0, Operand(a1)); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ Branch(&use_global_proxy, eq, a0, Operand(a2)); // Check if the receiver is already a JavaScript object. // a0: receiver STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE); __ GetObjectType(a0, a1, a1); __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); // Convert the receiver to a regular object. // a0: receiver __ bind(&call_to_object); __ push(a0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver. __ Branch(&push_receiver); __ bind(&use_global_proxy); __ ld(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); __ ld(a0, FieldMemOperand(a0, GlobalObject::kGlobalProxyOffset)); // Push the receiver. // a0: receiver __ bind(&push_receiver); __ push(a0); // Copy all arguments from the array to the stack. Label entry, loop; __ ld(a0, MemOperand(fp, kIndexOffset)); __ Branch(&entry); // Load the current argument from the arguments array and push it to the // stack. // a0: current argument index __ bind(&loop); __ ld(a1, MemOperand(fp, kArgsOffset)); __ Push(a1, a0); // Call the runtime to access the property in the arguments array. __ CallRuntime(Runtime::kGetProperty, 2); __ push(v0); // Use inline caching to access the arguments. __ ld(a0, MemOperand(fp, kIndexOffset)); __ Daddu(a0, a0, Operand(Smi::FromInt(1))); __ sd(a0, MemOperand(fp, kIndexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ ld(a1, MemOperand(fp, kLimitOffset)); __ Branch(&loop, ne, a0, Operand(a1)); // Call the function. Label call_proxy; ParameterCount actual(a0); __ SmiUntag(a0); __ ld(a1, MemOperand(fp, kFunctionOffset)); __ GetObjectType(a1, a2, a2); __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE)); __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper()); frame_scope.GenerateLeaveFrame(); __ Ret(USE_DELAY_SLOT); __ Daddu(sp, sp, Operand(3 * kPointerSize)); // In delay slot. // Call the function proxy. __ bind(&call_proxy); __ push(a1); // Add function proxy as last argument. __ Daddu(a0, a0, Operand(1)); __ li(a2, Operand(0, RelocInfo::NONE32)); __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY); __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ Ret(USE_DELAY_SLOT); __ Daddu(sp, sp, Operand(3 * kPointerSize)); // In delay slot. } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- a0 : actual number of arguments // -- a1 : function (passed through to callee) // -- a2 : expected number of arguments // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(a5, Heap::kRealStackLimitRootIndex); // Make a5 the space we have left. The stack might already be overflowed // here which will cause a5 to become negative. __ dsubu(a5, sp, a5); // Check if the arguments will overflow the stack. __ dsll(at, a2, kPointerSizeLog2); // Signed comparison. __ Branch(stack_overflow, le, a5, Operand(at)); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { // __ sll(a0, a0, kSmiTagSize); __ dsll32(a0, a0, 0); __ li(a4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ MultiPush(a0.bit() | a1.bit() | a4.bit() | fp.bit() | ra.bit()); __ Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- v0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ ld(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ mov(sp, fp); __ MultiPop(fp.bit() | ra.bit()); __ SmiScale(a4, a1, kPointerSizeLog2); __ Daddu(sp, sp, a4); // Adjust for the receiver. __ Daddu(sp, sp, Operand(kPointerSize)); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // State setup as expected by MacroAssembler::InvokePrologue. // ----------- S t a t e ------------- // -- a0: actual arguments count // -- a1: function (passed through to callee) // -- a2: expected arguments count // ----------------------------------- Label stack_overflow; ArgumentAdaptorStackCheck(masm, &stack_overflow); Label invoke, dont_adapt_arguments; Label enough, too_few; __ ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); __ Branch(&dont_adapt_arguments, eq, a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); // We use Uless as the number of argument should always be greater than 0. __ Branch(&too_few, Uless, a0, Operand(a2)); { // Enough parameters: actual >= expected. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: code entry to call __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into a0 and copy end address into a2. __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. __ dsll(a2, a2, kPointerSizeLog2); __ dsubu(a2, a0, a2); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: copy end address // a3: code entry to call Label copy; __ bind(©); __ ld(a4, MemOperand(a0)); __ push(a4); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a2)); __ daddiu(a0, a0, -kPointerSize); // In delay slot. __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into a0 and copy end address is fp. // a0: actual number of arguments as a smi // a1: function // a2: expected number of arguments // a3: code entry to call __ SmiScale(a0, a0, kPointerSizeLog2); __ Daddu(a0, fp, a0); // Adjust for return address and receiver. __ Daddu(a0, a0, Operand(2 * kPointerSize)); // Compute copy end address. Also adjust for return address. __ Daddu(a7, fp, kPointerSize); // Copy the arguments (including the receiver) to the new stack frame. // a0: copy start address // a1: function // a2: expected number of arguments // a3: code entry to call // a7: copy end address Label copy; __ bind(©); __ ld(a4, MemOperand(a0)); // Adjusted above for return addr and receiver. __ Dsubu(sp, sp, kPointerSize); __ Dsubu(a0, a0, kPointerSize); __ Branch(USE_DELAY_SLOT, ©, ne, a0, Operand(a7)); __ sd(a4, MemOperand(sp)); // In the delay slot. // Fill the remaining expected arguments with undefined. // a1: function // a2: expected number of arguments // a3: code entry to call __ LoadRoot(a4, Heap::kUndefinedValueRootIndex); __ dsll(a6, a2, kPointerSizeLog2); __ Dsubu(a2, fp, Operand(a6)); // Adjust for frame. __ Dsubu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ Dsubu(sp, sp, kPointerSize); __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2)); __ sd(a4, MemOperand(sp)); } // Call the entry point. __ bind(&invoke); __ Call(a3); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // ------------------------------------------- // Don't adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ Jump(a3); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); __ break_(0xCC); } } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS64