// Copyright 2007-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "accessors.h" #include "cctest.h" using namespace v8::internal; static MaybeObject* AllocateAfterFailures() { static int attempts = 0; if (++attempts < 3) return Failure::RetryAfterGC(); Heap* heap = Isolate::Current()->heap(); // New space. NewSpace* new_space = heap->new_space(); static const int kNewSpaceFillerSize = ByteArray::SizeFor(0); while (new_space->Available() > kNewSpaceFillerSize) { int available_before = static_cast(new_space->Available()); CHECK(!heap->AllocateByteArray(0)->IsFailure()); if (available_before == new_space->Available()) { // It seems that we are avoiding new space allocations when // allocation is forced, so no need to fill up new space // in order to make the test harder. break; } } CHECK(!heap->AllocateByteArray(100)->IsFailure()); CHECK(!heap->AllocateFixedArray(100, NOT_TENURED)->IsFailure()); // Make sure we can allocate through optimized allocation functions // for specific kinds. CHECK(!heap->AllocateFixedArray(100)->IsFailure()); CHECK(!heap->AllocateHeapNumber(0.42)->IsFailure()); CHECK(!heap->AllocateArgumentsObject(Smi::FromInt(87), 10)->IsFailure()); Object* object = heap->AllocateJSObject( *Isolate::Current()->object_function())->ToObjectChecked(); CHECK(!heap->CopyJSObject(JSObject::cast(object))->IsFailure()); // Old data space. OldSpace* old_data_space = heap->old_data_space(); static const int kOldDataSpaceFillerSize = ByteArray::SizeFor(0); while (old_data_space->Available() > kOldDataSpaceFillerSize) { CHECK(!heap->AllocateByteArray(0, TENURED)->IsFailure()); } CHECK(!heap->AllocateRawAsciiString(100, TENURED)->IsFailure()); // Large object space. while (!heap->OldGenerationAllocationLimitReached()) { CHECK(!heap->AllocateFixedArray(10000, TENURED)->IsFailure()); } CHECK(!heap->AllocateFixedArray(10000, TENURED)->IsFailure()); // Map space. MapSpace* map_space = heap->map_space(); static const int kMapSpaceFillerSize = Map::kSize; InstanceType instance_type = JS_OBJECT_TYPE; int instance_size = JSObject::kHeaderSize; while (map_space->Available() > kMapSpaceFillerSize) { CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure()); } CHECK(!heap->AllocateMap(instance_type, instance_size)->IsFailure()); // Test that we can allocate in old pointer space and code space. CHECK(!heap->AllocateFixedArray(100, TENURED)->IsFailure()); CHECK(!heap->CopyCode(Isolate::Current()->builtins()->builtin( Builtins::kIllegal))->IsFailure()); // Return success. return Smi::FromInt(42); } static Handle Test() { CALL_HEAP_FUNCTION(ISOLATE, AllocateAfterFailures(), Object); } TEST(StressHandles) { v8::Persistent env = v8::Context::New(); v8::HandleScope scope; env->Enter(); Handle o = Test(); CHECK(o->IsSmi() && Smi::cast(*o)->value() == 42); env->Exit(); } static MaybeObject* TestAccessorGet(Object* object, void*) { return AllocateAfterFailures(); } const AccessorDescriptor kDescriptor = { TestAccessorGet, 0, 0 }; TEST(StressJS) { v8::Persistent env = v8::Context::New(); v8::HandleScope scope; env->Enter(); Handle function = FACTORY->NewFunction(FACTORY->function_symbol(), FACTORY->null_value()); // Force the creation of an initial map and set the code to // something empty. FACTORY->NewJSObject(function); function->ReplaceCode(Isolate::Current()->builtins()->builtin( Builtins::kEmptyFunction)); // Patch the map to have an accessor for "get". Handle map(function->initial_map()); Handle instance_descriptors(map->instance_descriptors()); Handle foreign = FACTORY->NewForeign(&kDescriptor); instance_descriptors = FACTORY->CopyAppendForeignDescriptor( instance_descriptors, FACTORY->NewStringFromAscii(Vector("get", 3)), foreign, static_cast(0)); map->set_instance_descriptors(*instance_descriptors); // Add the Foo constructor the global object. env->Global()->Set(v8::String::New("Foo"), v8::Utils::ToLocal(function)); // Call the accessor through JavaScript. v8::Handle result = v8::Script::Compile(v8::String::New("(new Foo).get"))->Run(); CHECK_EQ(42, result->Int32Value()); env->Exit(); } // CodeRange test. // Tests memory management in a CodeRange by allocating and freeing blocks, // using a pseudorandom generator to choose block sizes geometrically // distributed between 2 * Page::kPageSize and 2^5 + 1 * Page::kPageSize. // Ensure that the freed chunks are collected and reused by allocating (in // total) more than the size of the CodeRange. // This pseudorandom generator does not need to be particularly good. // Use the lower half of the V8::Random() generator. unsigned int Pseudorandom() { static uint32_t lo = 2345; lo = 18273 * (lo & 0xFFFF) + (lo >> 16); // Provably not 0. return lo & 0xFFFF; } // Plain old data class. Represents a block of allocated memory. class Block { public: Block(void* base_arg, int size_arg) : base(base_arg), size(size_arg) {} void *base; int size; }; TEST(CodeRange) { const int code_range_size = 16*MB; OS::Setup(); Isolate::Current()->InitializeLoggingAndCounters(); CodeRange* code_range = new CodeRange(Isolate::Current()); code_range->Setup(code_range_size); int current_allocated = 0; int total_allocated = 0; List blocks(1000); while (total_allocated < 5 * code_range_size) { if (current_allocated < code_range_size / 10) { // Allocate a block. // Geometrically distributed sizes, greater than Page::kPageSize. size_t requested = (Page::kPageSize << (Pseudorandom() % 6)) + Pseudorandom() % 5000 + 1; size_t allocated = 0; void* base = code_range->AllocateRawMemory(requested, &allocated); CHECK(base != NULL); blocks.Add(Block(base, static_cast(allocated))); current_allocated += static_cast(allocated); total_allocated += static_cast(allocated); } else { // Free a block. int index = Pseudorandom() % blocks.length(); code_range->FreeRawMemory(blocks[index].base, blocks[index].size); current_allocated -= blocks[index].size; if (index < blocks.length() - 1) { blocks[index] = blocks.RemoveLast(); } else { blocks.RemoveLast(); } } } code_range->TearDown(); delete code_range; }