// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "../include/v8stdint.h" #include "unicode.h" #include "globals.h" #include "checks.h" #include "allocation.h" #include "utils.h" #include "list.h" #include "scanner-base.h" #include "preparse-data.h" #include "preparser.h" namespace v8 { namespace preparser { // Preparsing checks a JavaScript program and emits preparse-data that helps // a later parsing to be faster. // See preparser-data.h for the data. // The PreParser checks that the syntax follows the grammar for JavaScript, // and collects some information about the program along the way. // The grammar check is only performed in order to understand the program // sufficiently to deduce some information about it, that can be used // to speed up later parsing. Finding errors is not the goal of pre-parsing, // rather it is to speed up properly written and correct programs. // That means that contextual checks (like a label being declared where // it is used) are generally omitted. namespace i = ::v8::internal; #define CHECK_OK ok); \ if (!*ok) return -1; \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY void PreParser::ReportUnexpectedToken(i::Token::Value token) { // We don't report stack overflows here, to avoid increasing the // stack depth even further. Instead we report it after parsing is // over, in ParseProgram. if (token == i::Token::ILLEGAL && scanner_->stack_overflow()) { return; } i::JavaScriptScanner::Location source_location = scanner_->location(); // Four of the tokens are treated specially switch (token) { case i::Token::EOS: return ReportMessageAt(source_location.beg_pos, source_location.end_pos, "unexpected_eos", NULL); case i::Token::NUMBER: return ReportMessageAt(source_location.beg_pos, source_location.end_pos, "unexpected_token_number", NULL); case i::Token::STRING: return ReportMessageAt(source_location.beg_pos, source_location.end_pos, "unexpected_token_string", NULL); case i::Token::IDENTIFIER: return ReportMessageAt(source_location.beg_pos, source_location.end_pos, "unexpected_token_identifier", NULL); default: const char* name = i::Token::String(token); ReportMessageAt(source_location.beg_pos, source_location.end_pos, "unexpected_token", name); } } SourceElements PreParser::ParseSourceElements(int end_token, bool* ok) { // SourceElements :: // (Statement)* while (peek() != end_token) { ParseStatement(CHECK_OK); } return kUnknownSourceElements; } Statement PreParser::ParseStatement(bool* ok) { // Statement :: // Block // VariableStatement // EmptyStatement // ExpressionStatement // IfStatement // IterationStatement // ContinueStatement // BreakStatement // ReturnStatement // WithStatement // LabelledStatement // SwitchStatement // ThrowStatement // TryStatement // DebuggerStatement // Note: Since labels can only be used by 'break' and 'continue' // statements, which themselves are only valid within blocks, // iterations or 'switch' statements (i.e., BreakableStatements), // labels can be simply ignored in all other cases; except for // trivial labeled break statements 'label: break label' which is // parsed into an empty statement. // Keep the source position of the statement switch (peek()) { case i::Token::LBRACE: return ParseBlock(ok); case i::Token::CONST: case i::Token::VAR: return ParseVariableStatement(ok); case i::Token::SEMICOLON: Next(); return kUnknownStatement; case i::Token::IF: return ParseIfStatement(ok); case i::Token::DO: return ParseDoWhileStatement(ok); case i::Token::WHILE: return ParseWhileStatement(ok); case i::Token::FOR: return ParseForStatement(ok); case i::Token::CONTINUE: return ParseContinueStatement(ok); case i::Token::BREAK: return ParseBreakStatement(ok); case i::Token::RETURN: return ParseReturnStatement(ok); case i::Token::WITH: return ParseWithStatement(ok); case i::Token::SWITCH: return ParseSwitchStatement(ok); case i::Token::THROW: return ParseThrowStatement(ok); case i::Token::TRY: return ParseTryStatement(ok); case i::Token::FUNCTION: return ParseFunctionDeclaration(ok); case i::Token::NATIVE: return ParseNativeDeclaration(ok); case i::Token::DEBUGGER: return ParseDebuggerStatement(ok); default: return ParseExpressionOrLabelledStatement(ok); } } Statement PreParser::ParseFunctionDeclaration(bool* ok) { // FunctionDeclaration :: // 'function' Identifier '(' FormalParameterListopt ')' '{' FunctionBody '}' Expect(i::Token::FUNCTION, CHECK_OK); ParseIdentifier(CHECK_OK); ParseFunctionLiteral(CHECK_OK); return kUnknownStatement; } // Language extension which is only enabled for source files loaded // through the API's extension mechanism. A native function // declaration is resolved by looking up the function through a // callback provided by the extension. Statement PreParser::ParseNativeDeclaration(bool* ok) { Expect(i::Token::NATIVE, CHECK_OK); Expect(i::Token::FUNCTION, CHECK_OK); ParseIdentifier(CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); bool done = (peek() == i::Token::RPAREN); while (!done) { ParseIdentifier(CHECK_OK); done = (peek() == i::Token::RPAREN); if (!done) { Expect(i::Token::COMMA, CHECK_OK); } } Expect(i::Token::RPAREN, CHECK_OK); Expect(i::Token::SEMICOLON, CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseBlock(bool* ok) { // Block :: // '{' Statement* '}' // Note that a Block does not introduce a new execution scope! // (ECMA-262, 3rd, 12.2) // Expect(i::Token::LBRACE, CHECK_OK); while (peek() != i::Token::RBRACE) { ParseStatement(CHECK_OK); } Expect(i::Token::RBRACE, CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseVariableStatement(bool* ok) { // VariableStatement :: // VariableDeclarations ';' Statement result = ParseVariableDeclarations(true, NULL, CHECK_OK); ExpectSemicolon(CHECK_OK); return result; } // If the variable declaration declares exactly one non-const // variable, then *var is set to that variable. In all other cases, // *var is untouched; in particular, it is the caller's responsibility // to initialize it properly. This mechanism is also used for the parsing // of 'for-in' loops. Statement PreParser::ParseVariableDeclarations(bool accept_IN, int* num_decl, bool* ok) { // VariableDeclarations :: // ('var' | 'const') (Identifier ('=' AssignmentExpression)?)+[','] if (peek() == i::Token::VAR) { Consume(i::Token::VAR); } else if (peek() == i::Token::CONST) { Consume(i::Token::CONST); } else { *ok = false; return 0; } // The scope of a variable/const declared anywhere inside a function // is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). . int nvars = 0; // the number of variables declared do { // Parse variable name. if (nvars > 0) Consume(i::Token::COMMA); ParseIdentifier(CHECK_OK); nvars++; if (peek() == i::Token::ASSIGN) { Expect(i::Token::ASSIGN, CHECK_OK); ParseAssignmentExpression(accept_IN, CHECK_OK); } } while (peek() == i::Token::COMMA); if (num_decl != NULL) *num_decl = nvars; return kUnknownStatement; } Statement PreParser::ParseExpressionOrLabelledStatement( bool* ok) { // ExpressionStatement | LabelledStatement :: // Expression ';' // Identifier ':' Statement Expression expr = ParseExpression(true, CHECK_OK); if (peek() == i::Token::COLON && expr == kIdentifierExpression) { Consume(i::Token::COLON); return ParseStatement(ok); } // Parsed expression statement. ExpectSemicolon(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseIfStatement(bool* ok) { // IfStatement :: // 'if' '(' Expression ')' Statement ('else' Statement)? Expect(i::Token::IF, CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); ParseStatement(CHECK_OK); if (peek() == i::Token::ELSE) { Next(); ParseStatement(CHECK_OK); } return kUnknownStatement; } Statement PreParser::ParseContinueStatement(bool* ok) { // ContinueStatement :: // 'continue' [no line terminator] Identifier? ';' Expect(i::Token::CONTINUE, CHECK_OK); i::Token::Value tok = peek(); if (!scanner_->has_line_terminator_before_next() && tok != i::Token::SEMICOLON && tok != i::Token::RBRACE && tok != i::Token::EOS) { ParseIdentifier(CHECK_OK); } ExpectSemicolon(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseBreakStatement(bool* ok) { // BreakStatement :: // 'break' [no line terminator] Identifier? ';' Expect(i::Token::BREAK, CHECK_OK); i::Token::Value tok = peek(); if (!scanner_->has_line_terminator_before_next() && tok != i::Token::SEMICOLON && tok != i::Token::RBRACE && tok != i::Token::EOS) { ParseIdentifier(CHECK_OK); } ExpectSemicolon(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseReturnStatement(bool* ok) { // ReturnStatement :: // 'return' [no line terminator] Expression? ';' // Consume the return token. It is necessary to do the before // reporting any errors on it, because of the way errors are // reported (underlining). Expect(i::Token::RETURN, CHECK_OK); // An ECMAScript program is considered syntactically incorrect if it // contains a return statement that is not within the body of a // function. See ECMA-262, section 12.9, page 67. // This is not handled during preparsing. i::Token::Value tok = peek(); if (!scanner_->has_line_terminator_before_next() && tok != i::Token::SEMICOLON && tok != i::Token::RBRACE && tok != i::Token::EOS) { ParseExpression(true, CHECK_OK); } ExpectSemicolon(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseWithStatement(bool* ok) { // WithStatement :: // 'with' '(' Expression ')' Statement Expect(i::Token::WITH, CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); scope_->EnterWith(); ParseStatement(CHECK_OK); scope_->LeaveWith(); return kUnknownStatement; } Statement PreParser::ParseSwitchStatement(bool* ok) { // SwitchStatement :: // 'switch' '(' Expression ')' '{' CaseClause* '}' Expect(i::Token::SWITCH, CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); Expect(i::Token::LBRACE, CHECK_OK); i::Token::Value token = peek(); while (token != i::Token::RBRACE) { if (token == i::Token::CASE) { Expect(i::Token::CASE, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::COLON, CHECK_OK); } else if (token == i::Token::DEFAULT) { Expect(i::Token::DEFAULT, CHECK_OK); Expect(i::Token::COLON, CHECK_OK); } else { ParseStatement(CHECK_OK); } token = peek(); } Expect(i::Token::RBRACE, CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseDoWhileStatement(bool* ok) { // DoStatement :: // 'do' Statement 'while' '(' Expression ')' ';' Expect(i::Token::DO, CHECK_OK); ParseStatement(CHECK_OK); Expect(i::Token::WHILE, CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseWhileStatement(bool* ok) { // WhileStatement :: // 'while' '(' Expression ')' Statement Expect(i::Token::WHILE, CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); ParseStatement(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseForStatement(bool* ok) { // ForStatement :: // 'for' '(' Expression? ';' Expression? ';' Expression? ')' Statement Expect(i::Token::FOR, CHECK_OK); Expect(i::Token::LPAREN, CHECK_OK); if (peek() != i::Token::SEMICOLON) { if (peek() == i::Token::VAR || peek() == i::Token::CONST) { int decl_count; ParseVariableDeclarations(false, &decl_count, CHECK_OK); if (peek() == i::Token::IN && decl_count == 1) { Expect(i::Token::IN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); ParseStatement(CHECK_OK); return kUnknownStatement; } } else { ParseExpression(false, CHECK_OK); if (peek() == i::Token::IN) { Expect(i::Token::IN, CHECK_OK); ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); ParseStatement(CHECK_OK); return kUnknownStatement; } } } // Parsed initializer at this point. Expect(i::Token::SEMICOLON, CHECK_OK); if (peek() != i::Token::SEMICOLON) { ParseExpression(true, CHECK_OK); } Expect(i::Token::SEMICOLON, CHECK_OK); if (peek() != i::Token::RPAREN) { ParseExpression(true, CHECK_OK); } Expect(i::Token::RPAREN, CHECK_OK); ParseStatement(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseThrowStatement(bool* ok) { // ThrowStatement :: // 'throw' [no line terminator] Expression ';' Expect(i::Token::THROW, CHECK_OK); if (scanner_->has_line_terminator_before_next()) { i::JavaScriptScanner::Location pos = scanner_->location(); ReportMessageAt(pos.beg_pos, pos.end_pos, "newline_after_throw", NULL); *ok = false; return kUnknownStatement; } ParseExpression(true, CHECK_OK); ExpectSemicolon(CHECK_OK); return kUnknownStatement; } Statement PreParser::ParseTryStatement(bool* ok) { // TryStatement :: // 'try' Block Catch // 'try' Block Finally // 'try' Block Catch Finally // // Catch :: // 'catch' '(' Identifier ')' Block // // Finally :: // 'finally' Block // In preparsing, allow any number of catch/finally blocks, including zero // of both. Expect(i::Token::TRY, CHECK_OK); ParseBlock(CHECK_OK); bool catch_or_finally_seen = false; if (peek() == i::Token::CATCH) { Consume(i::Token::CATCH); Expect(i::Token::LPAREN, CHECK_OK); ParseIdentifier(CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); scope_->EnterWith(); ParseBlock(ok); scope_->LeaveWith(); if (!*ok) return kUnknownStatement; catch_or_finally_seen = true; } if (peek() == i::Token::FINALLY) { Consume(i::Token::FINALLY); ParseBlock(CHECK_OK); catch_or_finally_seen = true; } if (!catch_or_finally_seen) { *ok = false; } return kUnknownStatement; } Statement PreParser::ParseDebuggerStatement(bool* ok) { // In ECMA-262 'debugger' is defined as a reserved keyword. In some browser // contexts this is used as a statement which invokes the debugger as if a // break point is present. // DebuggerStatement :: // 'debugger' ';' Expect(i::Token::DEBUGGER, CHECK_OK); ExpectSemicolon(CHECK_OK); return kUnknownStatement; } // Precedence = 1 Expression PreParser::ParseExpression(bool accept_IN, bool* ok) { // Expression :: // AssignmentExpression // Expression ',' AssignmentExpression Expression result = ParseAssignmentExpression(accept_IN, CHECK_OK); while (peek() == i::Token::COMMA) { Expect(i::Token::COMMA, CHECK_OK); ParseAssignmentExpression(accept_IN, CHECK_OK); result = kUnknownExpression; } return result; } // Precedence = 2 Expression PreParser::ParseAssignmentExpression(bool accept_IN, bool* ok) { // AssignmentExpression :: // ConditionalExpression // LeftHandSideExpression AssignmentOperator AssignmentExpression Expression expression = ParseConditionalExpression(accept_IN, CHECK_OK); if (!i::Token::IsAssignmentOp(peek())) { // Parsed conditional expression only (no assignment). return expression; } i::Token::Value op = Next(); // Get assignment operator. ParseAssignmentExpression(accept_IN, CHECK_OK); if ((op == i::Token::ASSIGN) && (expression == kThisPropertyExpression)) { scope_->AddProperty(); } return kUnknownExpression; } // Precedence = 3 Expression PreParser::ParseConditionalExpression(bool accept_IN, bool* ok) { // ConditionalExpression :: // LogicalOrExpression // LogicalOrExpression '?' AssignmentExpression ':' AssignmentExpression // We start using the binary expression parser for prec >= 4 only! Expression expression = ParseBinaryExpression(4, accept_IN, CHECK_OK); if (peek() != i::Token::CONDITIONAL) return expression; Consume(i::Token::CONDITIONAL); // In parsing the first assignment expression in conditional // expressions we always accept the 'in' keyword; see ECMA-262, // section 11.12, page 58. ParseAssignmentExpression(true, CHECK_OK); Expect(i::Token::COLON, CHECK_OK); ParseAssignmentExpression(accept_IN, CHECK_OK); return kUnknownExpression; } int PreParser::Precedence(i::Token::Value tok, bool accept_IN) { if (tok == i::Token::IN && !accept_IN) return 0; // 0 precedence will terminate binary expression parsing return i::Token::Precedence(tok); } // Precedence >= 4 Expression PreParser::ParseBinaryExpression(int prec, bool accept_IN, bool* ok) { Expression result = ParseUnaryExpression(CHECK_OK); for (int prec1 = Precedence(peek(), accept_IN); prec1 >= prec; prec1--) { // prec1 >= 4 while (Precedence(peek(), accept_IN) == prec1) { Next(); ParseBinaryExpression(prec1 + 1, accept_IN, CHECK_OK); result = kUnknownExpression; } } return result; } Expression PreParser::ParseUnaryExpression(bool* ok) { // UnaryExpression :: // PostfixExpression // 'delete' UnaryExpression // 'void' UnaryExpression // 'typeof' UnaryExpression // '++' UnaryExpression // '--' UnaryExpression // '+' UnaryExpression // '-' UnaryExpression // '~' UnaryExpression // '!' UnaryExpression i::Token::Value op = peek(); if (i::Token::IsUnaryOp(op) || i::Token::IsCountOp(op)) { op = Next(); ParseUnaryExpression(ok); return kUnknownExpression; } else { return ParsePostfixExpression(ok); } } Expression PreParser::ParsePostfixExpression(bool* ok) { // PostfixExpression :: // LeftHandSideExpression ('++' | '--')? Expression expression = ParseLeftHandSideExpression(CHECK_OK); if (!scanner_->has_line_terminator_before_next() && i::Token::IsCountOp(peek())) { Next(); return kUnknownExpression; } return expression; } Expression PreParser::ParseLeftHandSideExpression(bool* ok) { // LeftHandSideExpression :: // (NewExpression | MemberExpression) ... Expression result; if (peek() == i::Token::NEW) { result = ParseNewExpression(CHECK_OK); } else { result = ParseMemberExpression(CHECK_OK); } while (true) { switch (peek()) { case i::Token::LBRACK: { Consume(i::Token::LBRACK); ParseExpression(true, CHECK_OK); Expect(i::Token::RBRACK, CHECK_OK); if (result == kThisExpression) { result = kThisPropertyExpression; } else { result = kUnknownExpression; } break; } case i::Token::LPAREN: { ParseArguments(CHECK_OK); result = kUnknownExpression; break; } case i::Token::PERIOD: { Consume(i::Token::PERIOD); ParseIdentifierName(CHECK_OK); if (result == kThisExpression) { result = kThisPropertyExpression; } else { result = kUnknownExpression; } break; } default: return result; } } } Expression PreParser::ParseNewExpression(bool* ok) { // NewExpression :: // ('new')+ MemberExpression // The grammar for new expressions is pretty warped. The keyword // 'new' can either be a part of the new expression (where it isn't // followed by an argument list) or a part of the member expression, // where it must be followed by an argument list. To accommodate // this, we parse the 'new' keywords greedily and keep track of how // many we have parsed. This information is then passed on to the // member expression parser, which is only allowed to match argument // lists as long as it has 'new' prefixes left unsigned new_count = 0; do { Consume(i::Token::NEW); new_count++; } while (peek() == i::Token::NEW); return ParseMemberWithNewPrefixesExpression(new_count, ok); } Expression PreParser::ParseMemberExpression(bool* ok) { return ParseMemberWithNewPrefixesExpression(0, ok); } Expression PreParser::ParseMemberWithNewPrefixesExpression( unsigned new_count, bool* ok) { // MemberExpression :: // (PrimaryExpression | FunctionLiteral) // ('[' Expression ']' | '.' Identifier | Arguments)* // Parse the initial primary or function expression. Expression result = kUnknownExpression; if (peek() == i::Token::FUNCTION) { Consume(i::Token::FUNCTION); if (peek() == i::Token::IDENTIFIER) { ParseIdentifier(CHECK_OK); } result = ParseFunctionLiteral(CHECK_OK); } else { result = ParsePrimaryExpression(CHECK_OK); } while (true) { switch (peek()) { case i::Token::LBRACK: { Consume(i::Token::LBRACK); ParseExpression(true, CHECK_OK); Expect(i::Token::RBRACK, CHECK_OK); if (result == kThisExpression) { result = kThisPropertyExpression; } else { result = kUnknownExpression; } break; } case i::Token::PERIOD: { Consume(i::Token::PERIOD); ParseIdentifierName(CHECK_OK); if (result == kThisExpression) { result = kThisPropertyExpression; } else { result = kUnknownExpression; } break; } case i::Token::LPAREN: { if (new_count == 0) return result; // Consume one of the new prefixes (already parsed). ParseArguments(CHECK_OK); new_count--; result = kUnknownExpression; break; } default: return result; } } } Expression PreParser::ParsePrimaryExpression(bool* ok) { // PrimaryExpression :: // 'this' // 'null' // 'true' // 'false' // Identifier // Number // String // ArrayLiteral // ObjectLiteral // RegExpLiteral // '(' Expression ')' Expression result = kUnknownExpression; switch (peek()) { case i::Token::THIS: { Next(); result = kThisExpression; break; } case i::Token::IDENTIFIER: { ParseIdentifier(CHECK_OK); result = kIdentifierExpression; break; } case i::Token::NULL_LITERAL: case i::Token::TRUE_LITERAL: case i::Token::FALSE_LITERAL: case i::Token::NUMBER: { Next(); break; } case i::Token::STRING: { Next(); result = GetStringSymbol(); break; } case i::Token::ASSIGN_DIV: result = ParseRegExpLiteral(true, CHECK_OK); break; case i::Token::DIV: result = ParseRegExpLiteral(false, CHECK_OK); break; case i::Token::LBRACK: result = ParseArrayLiteral(CHECK_OK); break; case i::Token::LBRACE: result = ParseObjectLiteral(CHECK_OK); break; case i::Token::LPAREN: Consume(i::Token::LPAREN); result = ParseExpression(true, CHECK_OK); Expect(i::Token::RPAREN, CHECK_OK); if (result == kIdentifierExpression) result = kUnknownExpression; break; case i::Token::MOD: result = ParseV8Intrinsic(CHECK_OK); break; default: { Next(); *ok = false; return kUnknownExpression; } } return result; } Expression PreParser::ParseArrayLiteral(bool* ok) { // ArrayLiteral :: // '[' Expression? (',' Expression?)* ']' Expect(i::Token::LBRACK, CHECK_OK); while (peek() != i::Token::RBRACK) { if (peek() != i::Token::COMMA) { ParseAssignmentExpression(true, CHECK_OK); } if (peek() != i::Token::RBRACK) { Expect(i::Token::COMMA, CHECK_OK); } } Expect(i::Token::RBRACK, CHECK_OK); scope_->NextMaterializedLiteralIndex(); return kUnknownExpression; } Expression PreParser::ParseObjectLiteral(bool* ok) { // ObjectLiteral :: // '{' ( // ((IdentifierName | String | Number) ':' AssignmentExpression) // | (('get' | 'set') (IdentifierName | String | Number) FunctionLiteral) // )*[','] '}' Expect(i::Token::LBRACE, CHECK_OK); while (peek() != i::Token::RBRACE) { i::Token::Value next = peek(); switch (next) { case i::Token::IDENTIFIER: { bool is_getter = false; bool is_setter = false; ParseIdentifierOrGetOrSet(&is_getter, &is_setter, CHECK_OK); if ((is_getter || is_setter) && peek() != i::Token::COLON) { i::Token::Value name = Next(); if (name != i::Token::IDENTIFIER && name != i::Token::NUMBER && name != i::Token::STRING && !i::Token::IsKeyword(name)) { *ok = false; return kUnknownExpression; } ParseFunctionLiteral(CHECK_OK); if (peek() != i::Token::RBRACE) { Expect(i::Token::COMMA, CHECK_OK); } continue; // restart the while } break; } case i::Token::STRING: Consume(next); GetStringSymbol(); break; case i::Token::NUMBER: Consume(next); break; default: if (i::Token::IsKeyword(next)) { Consume(next); } else { // Unexpected token. *ok = false; return kUnknownExpression; } } Expect(i::Token::COLON, CHECK_OK); ParseAssignmentExpression(true, CHECK_OK); // TODO(1240767): Consider allowing trailing comma. if (peek() != i::Token::RBRACE) Expect(i::Token::COMMA, CHECK_OK); } Expect(i::Token::RBRACE, CHECK_OK); scope_->NextMaterializedLiteralIndex(); return kUnknownExpression; } Expression PreParser::ParseRegExpLiteral(bool seen_equal, bool* ok) { if (!scanner_->ScanRegExpPattern(seen_equal)) { Next(); i::JavaScriptScanner::Location location = scanner_->location(); ReportMessageAt(location.beg_pos, location.end_pos, "unterminated_regexp", NULL); *ok = false; return kUnknownExpression; } scope_->NextMaterializedLiteralIndex(); if (!scanner_->ScanRegExpFlags()) { Next(); i::JavaScriptScanner::Location location = scanner_->location(); ReportMessageAt(location.beg_pos, location.end_pos, "invalid_regexp_flags", NULL); *ok = false; return kUnknownExpression; } Next(); return kUnknownExpression; } Arguments PreParser::ParseArguments(bool* ok) { // Arguments :: // '(' (AssignmentExpression)*[','] ')' Expect(i::Token::LPAREN, CHECK_OK); bool done = (peek() == i::Token::RPAREN); int argc = 0; while (!done) { ParseAssignmentExpression(true, CHECK_OK); argc++; done = (peek() == i::Token::RPAREN); if (!done) Expect(i::Token::COMMA, CHECK_OK); } Expect(i::Token::RPAREN, CHECK_OK); return argc; } Expression PreParser::ParseFunctionLiteral(bool* ok) { // Function :: // '(' FormalParameterList? ')' '{' FunctionBody '}' // Parse function body. ScopeType outer_scope_type = scope_->type(); bool inside_with = scope_->IsInsideWith(); Scope function_scope(&scope_, kFunctionScope); // FormalParameterList :: // '(' (Identifier)*[','] ')' Expect(i::Token::LPAREN, CHECK_OK); bool done = (peek() == i::Token::RPAREN); while (!done) { ParseIdentifier(CHECK_OK); done = (peek() == i::Token::RPAREN); if (!done) { Expect(i::Token::COMMA, CHECK_OK); } } Expect(i::Token::RPAREN, CHECK_OK); Expect(i::Token::LBRACE, CHECK_OK); int function_block_pos = scanner_->location().beg_pos; // Determine if the function will be lazily compiled. // Currently only happens to top-level functions. // Optimistically assume that all top-level functions are lazily compiled. bool is_lazily_compiled = (outer_scope_type == kTopLevelScope && !inside_with && allow_lazy_); if (is_lazily_compiled) { log_->PauseRecording(); ParseSourceElements(i::Token::RBRACE, ok); log_->ResumeRecording(); if (!*ok) return kUnknownExpression; Expect(i::Token::RBRACE, CHECK_OK); int end_pos = scanner_->location().end_pos; log_->LogFunction(function_block_pos, end_pos, function_scope.materialized_literal_count(), function_scope.expected_properties()); } else { ParseSourceElements(i::Token::RBRACE, CHECK_OK); Expect(i::Token::RBRACE, CHECK_OK); } return kUnknownExpression; } Expression PreParser::ParseV8Intrinsic(bool* ok) { // CallRuntime :: // '%' Identifier Arguments Expect(i::Token::MOD, CHECK_OK); ParseIdentifier(CHECK_OK); ParseArguments(CHECK_OK); return kUnknownExpression; } void PreParser::ExpectSemicolon(bool* ok) { // Check for automatic semicolon insertion according to // the rules given in ECMA-262, section 7.9, page 21. i::Token::Value tok = peek(); if (tok == i::Token::SEMICOLON) { Next(); return; } if (scanner_->has_line_terminator_before_next() || tok == i::Token::RBRACE || tok == i::Token::EOS) { return; } Expect(i::Token::SEMICOLON, ok); } Identifier PreParser::GetIdentifierSymbol() { const char* literal_chars = scanner_->literal_string(); int literal_length = scanner_->literal_length(); int identifier_pos = scanner_->location().beg_pos; log_->LogSymbol(identifier_pos, literal_chars, literal_length); return kUnknownExpression; } Expression PreParser::GetStringSymbol() { const char* literal_chars = scanner_->literal_string(); int literal_length = scanner_->literal_length(); int literal_position = scanner_->location().beg_pos; log_->LogSymbol(literal_position, literal_chars, literal_length); return kUnknownExpression; } Identifier PreParser::ParseIdentifier(bool* ok) { Expect(i::Token::IDENTIFIER, ok); if (!*ok) return kUnknownIdentifier; return GetIdentifierSymbol(); } Identifier PreParser::ParseIdentifierName(bool* ok) { i::Token::Value next = Next(); if (i::Token::IsKeyword(next)) { int pos = scanner_->location().beg_pos; const char* keyword = i::Token::String(next); log_->LogSymbol(pos, keyword, i::StrLength(keyword)); return kUnknownExpression; } if (next == i::Token::IDENTIFIER) { return GetIdentifierSymbol(); } *ok = false; return kUnknownIdentifier; } // This function reads an identifier and determines whether or not it // is 'get' or 'set'. The reason for not using ParseIdentifier and // checking on the output is that this involves heap allocation which // we can't do during preparsing. Identifier PreParser::ParseIdentifierOrGetOrSet(bool* is_get, bool* is_set, bool* ok) { Expect(i::Token::IDENTIFIER, CHECK_OK); if (scanner_->literal_length() == 3) { const char* token = scanner_->literal_string(); *is_get = strncmp(token, "get", 3) == 0; *is_set = !*is_get && strncmp(token, "set", 3) == 0; } return GetIdentifierSymbol(); } #undef CHECK_OK } } // v8::preparser