// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARGUMENTS_H_ #define V8_ARGUMENTS_H_ #include "src/allocation.h" #include "src/isolate.h" namespace v8 { namespace internal { // Arguments provides access to runtime call parameters. // // It uses the fact that the instance fields of Arguments // (length_, arguments_) are "overlayed" with the parameters // (no. of parameters, and the parameter pointer) passed so // that inside the C++ function, the parameters passed can // be accessed conveniently: // // Object* Runtime_function(Arguments args) { // ... use args[i] here ... // } // // Note that length_ (whose value is in the integer range) is defined // as intptr_t to provide endian-neutrality on 64-bit archs. class Arguments BASE_EMBEDDED { public: Arguments(int length, Object** arguments) : length_(length), arguments_(arguments) { } Object*& operator[] (int index) { DCHECK(0 <= index && index < length_); return *(reinterpret_cast(reinterpret_cast(arguments_) - index * kPointerSize)); } template Handle at(int index) { Object** value = &((*this)[index]); // This cast checks that the object we're accessing does indeed have the // expected type. S::cast(*value); return Handle(reinterpret_cast(value)); } int smi_at(int index) { return Smi::cast((*this)[index])->value(); } double number_at(int index) { return (*this)[index]->Number(); } // Get the total number of arguments including the receiver. int length() const { return static_cast(length_); } Object** arguments() { return arguments_; } Object** lowest_address() { return &this->operator[](length() - 1); } Object** highest_address() { return &this->operator[](0); } private: intptr_t length_; Object** arguments_; }; // For each type of callback, we have a list of arguments // They are used to generate the Call() functions below // These aren't included in the list as they have duplicate signatures // F(GenericNamedPropertyEnumeratorCallback, ...) // F(GenericNamedPropertyGetterCallback, ...) #define FOR_EACH_CALLBACK_TABLE_MAPPING_0(F) \ F(IndexedPropertyEnumeratorCallback, v8::Array) #define FOR_EACH_CALLBACK_TABLE_MAPPING_1(F) \ F(AccessorNameGetterCallback, v8::Value, v8::Local) \ F(GenericNamedPropertyQueryCallback, v8::Integer, v8::Local) \ F(GenericNamedPropertyDeleterCallback, v8::Boolean, v8::Local) \ F(IndexedPropertyGetterCallback, v8::Value, uint32_t) \ F(IndexedPropertyQueryCallback, v8::Integer, uint32_t) \ F(IndexedPropertyDeleterCallback, v8::Boolean, uint32_t) #define FOR_EACH_CALLBACK_TABLE_MAPPING_2(F) \ F(GenericNamedPropertySetterCallback, v8::Value, v8::Local, \ v8::Local) \ F(IndexedPropertySetterCallback, v8::Value, uint32_t, v8::Local) #define FOR_EACH_CALLBACK_TABLE_MAPPING_2_VOID_RETURN(F) \ F(AccessorNameSetterCallback, \ void, \ v8::Local, \ v8::Local) \ // Custom arguments replicate a small segment of stack that can be // accessed through an Arguments object the same way the actual stack // can. template class CustomArgumentsBase : public Relocatable { public: virtual inline void IterateInstance(ObjectVisitor* v) { v->VisitPointers(values_, values_ + kArrayLength); } protected: inline Object** begin() { return values_; } explicit inline CustomArgumentsBase(Isolate* isolate) : Relocatable(isolate) {} Object* values_[kArrayLength]; }; template class CustomArguments : public CustomArgumentsBase { public: static const int kReturnValueOffset = T::kReturnValueIndex; typedef CustomArgumentsBase Super; ~CustomArguments() { this->begin()[kReturnValueOffset] = reinterpret_cast(kHandleZapValue); } protected: explicit inline CustomArguments(Isolate* isolate) : Super(isolate) {} template v8::Handle GetReturnValue(Isolate* isolate); inline Isolate* isolate() { return reinterpret_cast(this->begin()[T::kIsolateIndex]); } }; class PropertyCallbackArguments : public CustomArguments > { public: typedef PropertyCallbackInfo T; typedef CustomArguments Super; static const int kArgsLength = T::kArgsLength; static const int kThisIndex = T::kThisIndex; static const int kHolderIndex = T::kHolderIndex; static const int kDataIndex = T::kDataIndex; static const int kReturnValueDefaultValueIndex = T::kReturnValueDefaultValueIndex; static const int kIsolateIndex = T::kIsolateIndex; PropertyCallbackArguments(Isolate* isolate, Object* data, Object* self, JSObject* holder) : Super(isolate) { Object** values = this->begin(); values[T::kThisIndex] = self; values[T::kHolderIndex] = holder; values[T::kDataIndex] = data; values[T::kIsolateIndex] = reinterpret_cast(isolate); // Here the hole is set as default value. // It cannot escape into js as it's remove in Call below. values[T::kReturnValueDefaultValueIndex] = isolate->heap()->the_hole_value(); values[T::kReturnValueIndex] = isolate->heap()->the_hole_value(); DCHECK(values[T::kHolderIndex]->IsHeapObject()); DCHECK(values[T::kIsolateIndex]->IsSmi()); } /* * The following Call functions wrap the calling of all callbacks to handle * calling either the old or the new style callbacks depending on which one * has been registered. * For old callbacks which return an empty handle, the ReturnValue is checked * and used if it's been set to anything inside the callback. * New style callbacks always use the return value. */ #define WRITE_CALL_0(Function, ReturnValue) \ v8::Handle Call(Function f); \ #define WRITE_CALL_1(Function, ReturnValue, Arg1) \ v8::Handle Call(Function f, Arg1 arg1); \ #define WRITE_CALL_2(Function, ReturnValue, Arg1, Arg2) \ v8::Handle Call(Function f, Arg1 arg1, Arg2 arg2); \ #define WRITE_CALL_2_VOID(Function, ReturnValue, Arg1, Arg2) \ void Call(Function f, Arg1 arg1, Arg2 arg2); \ FOR_EACH_CALLBACK_TABLE_MAPPING_0(WRITE_CALL_0) FOR_EACH_CALLBACK_TABLE_MAPPING_1(WRITE_CALL_1) FOR_EACH_CALLBACK_TABLE_MAPPING_2(WRITE_CALL_2) FOR_EACH_CALLBACK_TABLE_MAPPING_2_VOID_RETURN(WRITE_CALL_2_VOID) #undef WRITE_CALL_0 #undef WRITE_CALL_1 #undef WRITE_CALL_2 #undef WRITE_CALL_2_VOID }; class FunctionCallbackArguments : public CustomArguments > { public: typedef FunctionCallbackInfo T; typedef CustomArguments Super; static const int kArgsLength = T::kArgsLength; static const int kHolderIndex = T::kHolderIndex; static const int kDataIndex = T::kDataIndex; static const int kReturnValueDefaultValueIndex = T::kReturnValueDefaultValueIndex; static const int kIsolateIndex = T::kIsolateIndex; static const int kCalleeIndex = T::kCalleeIndex; static const int kContextSaveIndex = T::kContextSaveIndex; FunctionCallbackArguments(internal::Isolate* isolate, internal::Object* data, internal::JSFunction* callee, internal::Object* holder, internal::Object** argv, int argc, bool is_construct_call) : Super(isolate), argv_(argv), argc_(argc), is_construct_call_(is_construct_call) { Object** values = begin(); values[T::kDataIndex] = data; values[T::kCalleeIndex] = callee; values[T::kHolderIndex] = holder; values[T::kContextSaveIndex] = isolate->heap()->the_hole_value(); values[T::kIsolateIndex] = reinterpret_cast(isolate); // Here the hole is set as default value. // It cannot escape into js as it's remove in Call below. values[T::kReturnValueDefaultValueIndex] = isolate->heap()->the_hole_value(); values[T::kReturnValueIndex] = isolate->heap()->the_hole_value(); DCHECK(values[T::kCalleeIndex]->IsJSFunction()); DCHECK(values[T::kHolderIndex]->IsHeapObject()); DCHECK(values[T::kIsolateIndex]->IsSmi()); } /* * The following Call function wraps the calling of all callbacks to handle * calling either the old or the new style callbacks depending on which one * has been registered. * For old callbacks which return an empty handle, the ReturnValue is checked * and used if it's been set to anything inside the callback. * New style callbacks always use the return value. */ v8::Handle Call(FunctionCallback f); private: internal::Object** argv_; int argc_; bool is_construct_call_; }; double ClobberDoubleRegisters(double x1, double x2, double x3, double x4); #ifdef DEBUG #define CLOBBER_DOUBLE_REGISTERS() ClobberDoubleRegisters(1, 2, 3, 4); #else #define CLOBBER_DOUBLE_REGISTERS() #endif #define DECLARE_RUNTIME_FUNCTION(Name) \ Object* Name(int args_length, Object** args_object, Isolate* isolate) #define RUNTIME_FUNCTION_RETURNS_TYPE(Type, Name) \ static INLINE(Type __RT_impl_##Name(Arguments args, Isolate* isolate)); \ Type Name(int args_length, Object** args_object, Isolate* isolate) { \ CLOBBER_DOUBLE_REGISTERS(); \ Arguments args(args_length, args_object); \ return __RT_impl_##Name(args, isolate); \ } \ static Type __RT_impl_##Name(Arguments args, Isolate* isolate) #define RUNTIME_FUNCTION(Name) RUNTIME_FUNCTION_RETURNS_TYPE(Object*, Name) #define RUNTIME_FUNCTION_RETURN_PAIR(Name) \ RUNTIME_FUNCTION_RETURNS_TYPE(ObjectPair, Name) #define RUNTIME_ARGUMENTS(isolate, args) \ args.length(), args.arguments(), isolate } } // namespace v8::internal #endif // V8_ARGUMENTS_H_