'use strict'; module.exports = Readable; Readable.ReadableState = ReadableState; const EE = require('events'); const Stream = require('stream'); const Buffer = require('buffer').Buffer; const util = require('util'); const debug = util.debuglog('stream'); var StringDecoder; util.inherits(Readable, Stream); function ReadableState(options, stream) { options = options || {}; // object stream flag. Used to make read(n) ignore n and to // make all the buffer merging and length checks go away this.objectMode = !!options.objectMode; if (stream instanceof Stream.Duplex) this.objectMode = this.objectMode || !!options.readableObjectMode; // the point at which it stops calling _read() to fill the buffer // Note: 0 is a valid value, means "don't call _read preemptively ever" var hwm = options.highWaterMark; var defaultHwm = this.objectMode ? 16 : 16 * 1024; this.highWaterMark = (hwm || hwm === 0) ? hwm : defaultHwm; // cast to ints. this.highWaterMark = ~~this.highWaterMark; this.buffer = []; this.length = 0; this.pipes = null; this.pipesCount = 0; this.flowing = null; this.ended = false; this.endEmitted = false; this.reading = false; // a flag to be able to tell if the onwrite cb is called immediately, // or on a later tick. We set this to true at first, because any // actions that shouldn't happen until "later" should generally also // not happen before the first write call. this.sync = true; // whenever we return null, then we set a flag to say // that we're awaiting a 'readable' event emission. this.needReadable = false; this.emittedReadable = false; this.readableListening = false; this.resumeScheduled = false; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = options.defaultEncoding || 'utf8'; // when piping, we only care about 'readable' events that happen // after read()ing all the bytes and not getting any pushback. this.ranOut = false; // the number of writers that are awaiting a drain event in .pipe()s this.awaitDrain = 0; // if true, a maybeReadMore has been scheduled this.readingMore = false; this.decoder = null; this.encoding = null; if (options.encoding) { if (!StringDecoder) StringDecoder = require('string_decoder').StringDecoder; this.decoder = new StringDecoder(options.encoding); this.encoding = options.encoding; } } function Readable(options) { if (!(this instanceof Readable)) return new Readable(options); this._readableState = new ReadableState(options, this); // legacy this.readable = true; if (options && typeof options.read === 'function') this._read = options.read; Stream.call(this); } // Manually shove something into the read() buffer. // This returns true if the highWaterMark has not been hit yet, // similar to how Writable.write() returns true if you should // write() some more. Readable.prototype.push = function(chunk, encoding) { var state = this._readableState; if (!state.objectMode && typeof chunk === 'string') { encoding = encoding || state.defaultEncoding; if (encoding !== state.encoding) { chunk = new Buffer(chunk, encoding); encoding = ''; } } return readableAddChunk(this, state, chunk, encoding, false); }; // Unshift should *always* be something directly out of read() Readable.prototype.unshift = function(chunk) { var state = this._readableState; return readableAddChunk(this, state, chunk, '', true); }; Readable.prototype.isPaused = function() { return this._readableState.flowing === false; }; function readableAddChunk(stream, state, chunk, encoding, addToFront) { var er = chunkInvalid(state, chunk); if (er) { stream.emit('error', er); } else if (chunk === null) { state.reading = false; onEofChunk(stream, state); } else if (state.objectMode || chunk && chunk.length > 0) { if (state.ended && !addToFront) { const e = new Error('stream.push() after EOF'); stream.emit('error', e); } else if (state.endEmitted && addToFront) { const e = new Error('stream.unshift() after end event'); stream.emit('error', e); } else { var skipAdd; if (state.decoder && !addToFront && !encoding) { chunk = state.decoder.write(chunk); skipAdd = (!state.objectMode && chunk.length === 0); } if (!addToFront) state.reading = false; // Don't add to the buffer if we've decoded to an empty string chunk and // we're not in object mode if (!skipAdd) { // if we want the data now, just emit it. if (state.flowing && state.length === 0 && !state.sync) { stream.emit('data', chunk); stream.read(0); } else { // update the buffer info. state.length += state.objectMode ? 1 : chunk.length; if (addToFront) state.buffer.unshift(chunk); else state.buffer.push(chunk); if (state.needReadable) emitReadable(stream); } } maybeReadMore(stream, state); } } else if (!addToFront) { state.reading = false; } return needMoreData(state); } // if it's past the high water mark, we can push in some more. // Also, if we have no data yet, we can stand some // more bytes. This is to work around cases where hwm=0, // such as the repl. Also, if the push() triggered a // readable event, and the user called read(largeNumber) such that // needReadable was set, then we ought to push more, so that another // 'readable' event will be triggered. function needMoreData(state) { return !state.ended && (state.needReadable || state.length < state.highWaterMark || state.length === 0); } // backwards compatibility. Readable.prototype.setEncoding = function(enc) { if (!StringDecoder) StringDecoder = require('string_decoder').StringDecoder; this._readableState.decoder = new StringDecoder(enc); this._readableState.encoding = enc; return this; }; // Don't raise the hwm > 8MB const MAX_HWM = 0x800000; function computeNewHighWaterMark(n) { if (n >= MAX_HWM) { n = MAX_HWM; } else { // Get the next highest power of 2 n--; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; n++; } return n; } function howMuchToRead(n, state) { if (state.length === 0 && state.ended) return 0; if (state.objectMode) return n === 0 ? 0 : 1; if (n === null || isNaN(n)) { // only flow one buffer at a time if (state.flowing && state.buffer.length) return state.buffer[0].length; else return state.length; } if (n <= 0) return 0; // If we're asking for more than the target buffer level, // then raise the water mark. Bump up to the next highest // power of 2, to prevent increasing it excessively in tiny // amounts. if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n); // don't have that much. return null, unless we've ended. if (n > state.length) { if (!state.ended) { state.needReadable = true; return 0; } else { return state.length; } } return n; } // you can override either this method, or the async _read(n) below. Readable.prototype.read = function(n) { debug('read', n); var state = this._readableState; var nOrig = n; if (typeof n !== 'number' || n > 0) state.emittedReadable = false; // if we're doing read(0) to trigger a readable event, but we // already have a bunch of data in the buffer, then just trigger // the 'readable' event and move on. if (n === 0 && state.needReadable && (state.length >= state.highWaterMark || state.ended)) { debug('read: emitReadable', state.length, state.ended); if (state.length === 0 && state.ended) endReadable(this); else emitReadable(this); return null; } n = howMuchToRead(n, state); // if we've ended, and we're now clear, then finish it up. if (n === 0 && state.ended) { if (state.length === 0) endReadable(this); return null; } // All the actual chunk generation logic needs to be // *below* the call to _read. The reason is that in certain // synthetic stream cases, such as passthrough streams, _read // may be a completely synchronous operation which may change // the state of the read buffer, providing enough data when // before there was *not* enough. // // So, the steps are: // 1. Figure out what the state of things will be after we do // a read from the buffer. // // 2. If that resulting state will trigger a _read, then call _read. // Note that this may be asynchronous, or synchronous. Yes, it is // deeply ugly to write APIs this way, but that still doesn't mean // that the Readable class should behave improperly, as streams are // designed to be sync/async agnostic. // Take note if the _read call is sync or async (ie, if the read call // has returned yet), so that we know whether or not it's safe to emit // 'readable' etc. // // 3. Actually pull the requested chunks out of the buffer and return. // if we need a readable event, then we need to do some reading. var doRead = state.needReadable; debug('need readable', doRead); // if we currently have less than the highWaterMark, then also read some if (state.length === 0 || state.length - n < state.highWaterMark) { doRead = true; debug('length less than watermark', doRead); } // however, if we've ended, then there's no point, and if we're already // reading, then it's unnecessary. if (state.ended || state.reading) { doRead = false; debug('reading or ended', doRead); } if (doRead) { debug('do read'); state.reading = true; state.sync = true; // if the length is currently zero, then we *need* a readable event. if (state.length === 0) state.needReadable = true; // call internal read method this._read(state.highWaterMark); state.sync = false; } // If _read pushed data synchronously, then `reading` will be false, // and we need to re-evaluate how much data we can return to the user. if (doRead && !state.reading) n = howMuchToRead(nOrig, state); var ret; if (n > 0) ret = fromList(n, state); else ret = null; if (ret === null) { state.needReadable = true; n = 0; } state.length -= n; // If we have nothing in the buffer, then we want to know // as soon as we *do* get something into the buffer. if (state.length === 0 && !state.ended) state.needReadable = true; // If we tried to read() past the EOF, then emit end on the next tick. if (nOrig !== n && state.ended && state.length === 0) endReadable(this); if (ret !== null) this.emit('data', ret); return ret; }; function chunkInvalid(state, chunk) { var er = null; if (!(chunk instanceof Buffer) && typeof chunk !== 'string' && chunk !== null && chunk !== undefined && !state.objectMode) { er = new TypeError('Invalid non-string/buffer chunk'); } return er; } function onEofChunk(stream, state) { if (state.ended) return; if (state.decoder) { var chunk = state.decoder.end(); if (chunk && chunk.length) { state.buffer.push(chunk); state.length += state.objectMode ? 1 : chunk.length; } } state.ended = true; // emit 'readable' now to make sure it gets picked up. emitReadable(stream); } // Don't emit readable right away in sync mode, because this can trigger // another read() call => stack overflow. This way, it might trigger // a nextTick recursion warning, but that's not so bad. function emitReadable(stream) { var state = stream._readableState; state.needReadable = false; if (!state.emittedReadable) { debug('emitReadable', state.flowing); state.emittedReadable = true; if (state.sync) process.nextTick(emitReadable_, stream); else emitReadable_(stream); } } function emitReadable_(stream) { debug('emit readable'); stream.emit('readable'); flow(stream); } // at this point, the user has presumably seen the 'readable' event, // and called read() to consume some data. that may have triggered // in turn another _read(n) call, in which case reading = true if // it's in progress. // However, if we're not ended, or reading, and the length < hwm, // then go ahead and try to read some more preemptively. function maybeReadMore(stream, state) { if (!state.readingMore) { state.readingMore = true; process.nextTick(maybeReadMore_, stream, state); } } function maybeReadMore_(stream, state) { var len = state.length; while (!state.reading && !state.flowing && !state.ended && state.length < state.highWaterMark) { debug('maybeReadMore read 0'); stream.read(0); if (len === state.length) // didn't get any data, stop spinning. break; else len = state.length; } state.readingMore = false; } // abstract method. to be overridden in specific implementation classes. // call cb(er, data) where data is <= n in length. // for virtual (non-string, non-buffer) streams, "length" is somewhat // arbitrary, and perhaps not very meaningful. Readable.prototype._read = function(n) { this.emit('error', new Error('not implemented')); }; Readable.prototype.pipe = function(dest, pipeOpts) { var src = this; var state = this._readableState; switch (state.pipesCount) { case 0: state.pipes = dest; break; case 1: state.pipes = [state.pipes, dest]; break; default: state.pipes.push(dest); break; } state.pipesCount += 1; debug('pipe count=%d opts=%j', state.pipesCount, pipeOpts); var doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr; var endFn = doEnd ? onend : cleanup; if (state.endEmitted) process.nextTick(endFn); else src.once('end', endFn); dest.on('unpipe', onunpipe); function onunpipe(readable) { debug('onunpipe'); if (readable === src) { cleanup(); } } function onend() { debug('onend'); dest.end(); } // when the dest drains, it reduces the awaitDrain counter // on the source. This would be more elegant with a .once() // handler in flow(), but adding and removing repeatedly is // too slow. var ondrain = pipeOnDrain(src); dest.on('drain', ondrain); var cleanedUp = false; function cleanup() { debug('cleanup'); // cleanup event handlers once the pipe is broken dest.removeListener('close', onclose); dest.removeListener('finish', onfinish); dest.removeListener('drain', ondrain); dest.removeListener('error', onerror); dest.removeListener('unpipe', onunpipe); src.removeListener('end', onend); src.removeListener('end', cleanup); src.removeListener('data', ondata); cleanedUp = true; // if the reader is waiting for a drain event from this // specific writer, then it would cause it to never start // flowing again. // So, if this is awaiting a drain, then we just call it now. // If we don't know, then assume that we are waiting for one. if (state.awaitDrain && (!dest._writableState || dest._writableState.needDrain)) ondrain(); } src.on('data', ondata); function ondata(chunk) { debug('ondata'); var ret = dest.write(chunk); if (false === ret) { // If the user unpiped during `dest.write()`, it is possible // to get stuck in a permanently paused state if that write // also returned false. if (state.pipesCount === 1 && state.pipes[0] === dest && src.listenerCount('data') === 1 && !cleanedUp) { debug('false write response, pause', src._readableState.awaitDrain); src._readableState.awaitDrain++; } src.pause(); } } // if the dest has an error, then stop piping into it. // however, don't suppress the throwing behavior for this. function onerror(er) { debug('onerror', er); unpipe(); dest.removeListener('error', onerror); if (EE.listenerCount(dest, 'error') === 0) dest.emit('error', er); } // This is a brutally ugly hack to make sure that our error handler // is attached before any userland ones. NEVER DO THIS. if (!dest._events || !dest._events.error) dest.on('error', onerror); else if (Array.isArray(dest._events.error)) dest._events.error.unshift(onerror); else dest._events.error = [onerror, dest._events.error]; // Both close and finish should trigger unpipe, but only once. function onclose() { dest.removeListener('finish', onfinish); unpipe(); } dest.once('close', onclose); function onfinish() { debug('onfinish'); dest.removeListener('close', onclose); unpipe(); } dest.once('finish', onfinish); function unpipe() { debug('unpipe'); src.unpipe(dest); } // tell the dest that it's being piped to dest.emit('pipe', src); // start the flow if it hasn't been started already. if (!state.flowing) { debug('pipe resume'); src.resume(); } return dest; }; function pipeOnDrain(src) { return function() { var state = src._readableState; debug('pipeOnDrain', state.awaitDrain); if (state.awaitDrain) state.awaitDrain--; if (state.awaitDrain === 0 && EE.listenerCount(src, 'data')) { state.flowing = true; flow(src); } }; } Readable.prototype.unpipe = function(dest) { var state = this._readableState; // if we're not piping anywhere, then do nothing. if (state.pipesCount === 0) return this; // just one destination. most common case. if (state.pipesCount === 1) { // passed in one, but it's not the right one. if (dest && dest !== state.pipes) return this; if (!dest) dest = state.pipes; // got a match. state.pipes = null; state.pipesCount = 0; state.flowing = false; if (dest) dest.emit('unpipe', this); return this; } // slow case. multiple pipe destinations. if (!dest) { // remove all. var dests = state.pipes; var len = state.pipesCount; state.pipes = null; state.pipesCount = 0; state.flowing = false; for (let i = 0; i < len; i++) dests[i].emit('unpipe', this); return this; } // try to find the right one. const i = state.pipes.indexOf(dest); if (i === -1) return this; state.pipes.splice(i, 1); state.pipesCount -= 1; if (state.pipesCount === 1) state.pipes = state.pipes[0]; dest.emit('unpipe', this); return this; }; // set up data events if they are asked for // Ensure readable listeners eventually get something Readable.prototype.on = function(ev, fn) { var res = Stream.prototype.on.call(this, ev, fn); // If listening to data, and it has not explicitly been paused, // then call resume to start the flow of data on the next tick. if (ev === 'data' && false !== this._readableState.flowing) { this.resume(); } if (ev === 'readable' && !this._readableState.endEmitted) { var state = this._readableState; if (!state.readableListening) { state.readableListening = true; state.emittedReadable = false; state.needReadable = true; if (!state.reading) { process.nextTick(nReadingNextTick, this); } else if (state.length) { emitReadable(this, state); } } } return res; }; Readable.prototype.addListener = Readable.prototype.on; function nReadingNextTick(self) { debug('readable nexttick read 0'); self.read(0); } // pause() and resume() are remnants of the legacy readable stream API // If the user uses them, then switch into old mode. Readable.prototype.resume = function() { var state = this._readableState; if (!state.flowing) { debug('resume'); state.flowing = true; resume(this, state); } return this; }; function resume(stream, state) { if (!state.resumeScheduled) { state.resumeScheduled = true; process.nextTick(resume_, stream, state); } } function resume_(stream, state) { if (!state.reading) { debug('resume read 0'); stream.read(0); } state.resumeScheduled = false; stream.emit('resume'); flow(stream); if (state.flowing && !state.reading) stream.read(0); } Readable.prototype.pause = function() { debug('call pause flowing=%j', this._readableState.flowing); if (false !== this._readableState.flowing) { debug('pause'); this._readableState.flowing = false; this.emit('pause'); } return this; }; function flow(stream) { var state = stream._readableState; debug('flow', state.flowing); if (state.flowing) { do { var chunk = stream.read(); } while (null !== chunk && state.flowing); } } // wrap an old-style stream as the async data source. // This is *not* part of the readable stream interface. // It is an ugly unfortunate mess of history. Readable.prototype.wrap = function(stream) { var state = this._readableState; var paused = false; var self = this; stream.on('end', function() { debug('wrapped end'); if (state.decoder && !state.ended) { var chunk = state.decoder.end(); if (chunk && chunk.length) self.push(chunk); } self.push(null); }); stream.on('data', function(chunk) { debug('wrapped data'); if (state.decoder) chunk = state.decoder.write(chunk); // don't skip over falsy values in objectMode if (state.objectMode && (chunk === null || chunk === undefined)) return; else if (!state.objectMode && (!chunk || !chunk.length)) return; var ret = self.push(chunk); if (!ret) { paused = true; stream.pause(); } }); // proxy all the other methods. // important when wrapping filters and duplexes. for (var i in stream) { if (this[i] === undefined && typeof stream[i] === 'function') { this[i] = function(method) { return function() { return stream[method].apply(stream, arguments); }; }(i); } } // proxy certain important events. const events = ['error', 'close', 'destroy', 'pause', 'resume']; events.forEach(function(ev) { stream.on(ev, self.emit.bind(self, ev)); }); // when we try to consume some more bytes, simply unpause the // underlying stream. self._read = function(n) { debug('wrapped _read', n); if (paused) { paused = false; stream.resume(); } }; return self; }; // exposed for testing purposes only. Readable._fromList = fromList; // Pluck off n bytes from an array of buffers. // Length is the combined lengths of all the buffers in the list. function fromList(n, state) { var list = state.buffer; var length = state.length; var stringMode = !!state.decoder; var objectMode = !!state.objectMode; var ret; // nothing in the list, definitely empty. if (list.length === 0) return null; if (length === 0) ret = null; else if (objectMode) ret = list.shift(); else if (!n || n >= length) { // read it all, truncate the array. if (stringMode) ret = list.join(''); else if (list.length === 1) ret = list[0]; else ret = Buffer.concat(list, length); list.length = 0; } else { // read just some of it. if (n < list[0].length) { // just take a part of the first list item. // slice is the same for buffers and strings. const buf = list[0]; ret = buf.slice(0, n); list[0] = buf.slice(n); } else if (n === list[0].length) { // first list is a perfect match ret = list.shift(); } else { // complex case. // we have enough to cover it, but it spans past the first buffer. if (stringMode) ret = ''; else ret = new Buffer(n); var c = 0; for (var i = 0, l = list.length; i < l && c < n; i++) { const buf = list[0]; var cpy = Math.min(n - c, buf.length); if (stringMode) ret += buf.slice(0, cpy); else buf.copy(ret, c, 0, cpy); if (cpy < buf.length) list[0] = buf.slice(cpy); else list.shift(); c += cpy; } } } return ret; } function endReadable(stream) { var state = stream._readableState; // If we get here before consuming all the bytes, then that is a // bug in node. Should never happen. if (state.length > 0) throw new Error('endReadable called on non-empty stream'); if (!state.endEmitted) { state.ended = true; process.nextTick(endReadableNT, state, stream); } } function endReadableNT(state, stream) { // Check that we didn't get one last unshift. if (!state.endEmitted && state.length === 0) { state.endEmitted = true; stream.readable = false; stream.emit('end'); } }