'use strict'; const common = require('../common'); const assert = require('assert'); if (!common.hasCrypto) { common.skip('missing crypto'); return; } const crypto = require('crypto'); const DH_NOT_SUITABLE_GENERATOR = crypto.constants.DH_NOT_SUITABLE_GENERATOR; // Test Diffie-Hellman with two parties sharing a secret, // using various encodings as we go along const dh1 = crypto.createDiffieHellman(common.hasFipsCrypto ? 1024 : 256); const p1 = dh1.getPrime('buffer'); const dh2 = crypto.createDiffieHellman(p1, 'buffer'); let key1 = dh1.generateKeys(); let key2 = dh2.generateKeys('hex'); let secret1 = dh1.computeSecret(key2, 'hex', 'base64'); let secret2 = dh2.computeSecret(key1, 'latin1', 'buffer'); assert.strictEqual(secret2.toString('base64'), secret1); assert.strictEqual(dh1.verifyError, 0); assert.strictEqual(dh2.verifyError, 0); const argumentsError = /^TypeError: First argument should be number, string or Buffer$/; assert.throws(() => { crypto.createDiffieHellman([0x1, 0x2]); }, argumentsError); assert.throws(() => { crypto.createDiffieHellman(() => { }); }, argumentsError); assert.throws(() => { crypto.createDiffieHellman(/abc/); }, argumentsError); assert.throws(() => { crypto.createDiffieHellman({}); }, argumentsError); // Create "another dh1" using generated keys from dh1, // and compute secret again const dh3 = crypto.createDiffieHellman(p1, 'buffer'); const privkey1 = dh1.getPrivateKey(); dh3.setPublicKey(key1); dh3.setPrivateKey(privkey1); assert.deepStrictEqual(dh1.getPrime(), dh3.getPrime()); assert.deepStrictEqual(dh1.getGenerator(), dh3.getGenerator()); assert.deepStrictEqual(dh1.getPublicKey(), dh3.getPublicKey()); assert.deepStrictEqual(dh1.getPrivateKey(), dh3.getPrivateKey()); assert.strictEqual(dh3.verifyError, 0); const secret3 = dh3.computeSecret(key2, 'hex', 'base64'); assert.strictEqual(secret1, secret3); const wrongBlockLength = new RegExp('^Error: error:0606506D:digital envelope' + ' routines:EVP_DecryptFinal_ex:wrong final block length$'); // Run this one twice to make sure that the dh3 clears its error properly { const c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), ''); assert.throws(() => { c.final('utf8'); }, wrongBlockLength); } { const c = crypto.createDecipheriv('aes-128-ecb', crypto.randomBytes(16), ''); assert.throws(() => { c.final('utf8'); }, wrongBlockLength); } assert.throws(() => { dh3.computeSecret(''); }, /^Error: Supplied key is too small$/); // Create a shared using a DH group. const alice = crypto.createDiffieHellmanGroup('modp5'); const bob = crypto.createDiffieHellmanGroup('modp5'); alice.generateKeys(); bob.generateKeys(); const aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex'); const bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex'); assert.strictEqual(aSecret, bSecret); assert.strictEqual(alice.verifyError, DH_NOT_SUITABLE_GENERATOR); assert.strictEqual(bob.verifyError, DH_NOT_SUITABLE_GENERATOR); /* Ensure specific generator (buffer) works as expected. * The values below (modp2/modp2buf) are for a 1024 bits long prime from * RFC 2412 E.2, see https://tools.ietf.org/html/rfc2412. */ const modp2 = crypto.createDiffieHellmanGroup('modp2'); const modp2buf = Buffer.from([ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, 0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff, 0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed, 0xee, 0x38, 0x6b, 0xfb, 0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11, 0x7c, 0x4b, 0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe6, 0x53, 0x81, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff ]); const exmodp2 = crypto.createDiffieHellman(modp2buf, Buffer.from([2])); modp2.generateKeys(); exmodp2.generateKeys(); let modp2Secret = modp2.computeSecret(exmodp2.getPublicKey()).toString('hex'); const exmodp2Secret = exmodp2.computeSecret(modp2.getPublicKey()) .toString('hex'); assert.strictEqual(modp2Secret, exmodp2Secret); assert.strictEqual(modp2.verifyError, DH_NOT_SUITABLE_GENERATOR); assert.strictEqual(exmodp2.verifyError, DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (string with encoding) works as expected. const exmodp2_2 = crypto.createDiffieHellman(modp2buf, '02', 'hex'); exmodp2_2.generateKeys(); modp2Secret = modp2.computeSecret(exmodp2_2.getPublicKey()).toString('hex'); const exmodp2_2Secret = exmodp2_2.computeSecret(modp2.getPublicKey()) .toString('hex'); assert.strictEqual(modp2Secret, exmodp2_2Secret); assert.strictEqual(exmodp2_2.verifyError, DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (string without encoding) works as expected. const exmodp2_3 = crypto.createDiffieHellman(modp2buf, '\x02'); exmodp2_3.generateKeys(); modp2Secret = modp2.computeSecret(exmodp2_3.getPublicKey()).toString('hex'); const exmodp2_3Secret = exmodp2_3.computeSecret(modp2.getPublicKey()) .toString('hex'); assert.strictEqual(modp2Secret, exmodp2_3Secret); assert.strictEqual(exmodp2_3.verifyError, DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (numeric) works as expected. const exmodp2_4 = crypto.createDiffieHellman(modp2buf, 2); exmodp2_4.generateKeys(); modp2Secret = modp2.computeSecret(exmodp2_4.getPublicKey()).toString('hex'); const exmodp2_4Secret = exmodp2_4.computeSecret(modp2.getPublicKey()) .toString('hex'); assert.strictEqual(modp2Secret, exmodp2_4Secret); assert.strictEqual(exmodp2_4.verifyError, DH_NOT_SUITABLE_GENERATOR); const p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' + '020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' + '4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF'; const bad_dh = crypto.createDiffieHellman(p, 'hex'); assert.strictEqual(bad_dh.verifyError, DH_NOT_SUITABLE_GENERATOR); // Test ECDH const ecdh1 = crypto.createECDH('prime256v1'); const ecdh2 = crypto.createECDH('prime256v1'); key1 = ecdh1.generateKeys(); key2 = ecdh2.generateKeys('hex'); secret1 = ecdh1.computeSecret(key2, 'hex', 'base64'); secret2 = ecdh2.computeSecret(key1, 'latin1', 'buffer'); assert.strictEqual(secret1, secret2.toString('base64')); // Oakley curves do not clean up ERR stack, it was causing unexpected failure // when accessing other OpenSSL APIs afterwards. crypto.createECDH('Oakley-EC2N-3'); crypto.createHash('sha256'); // Point formats assert.strictEqual(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4); let firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0]; assert(firstByte === 2 || firstByte === 3); firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0]; assert(firstByte === 6 || firstByte === 7); // format value should be string assert.throws(() => { ecdh1.getPublicKey('buffer', 10); }, /^TypeError: Bad format: 10$/); // ECDH should check that point is on curve const ecdh3 = crypto.createECDH('secp256k1'); const key3 = ecdh3.generateKeys(); assert.throws(() => { ecdh2.computeSecret(key3, 'latin1', 'buffer'); }, /^Error: Failed to translate Buffer to a EC_POINT$/); // ECDH should allow .setPrivateKey()/.setPublicKey() const ecdh4 = crypto.createECDH('prime256v1'); ecdh4.setPrivateKey(ecdh1.getPrivateKey()); ecdh4.setPublicKey(ecdh1.getPublicKey()); assert.throws(() => { ecdh4.setPublicKey(ecdh3.getPublicKey()); }, /^Error: Failed to convert Buffer to EC_POINT$/); // Verify that we can use ECDH without having to use newly generated keys. const ecdh5 = crypto.createECDH('secp256k1'); // Verify errors are thrown when retrieving keys from an uninitialized object. assert.throws(() => { ecdh5.getPublicKey(); }, /^Error: Failed to get ECDH public key$/); assert.throws(() => { ecdh5.getPrivateKey(); }, /^Error: Failed to get ECDH private key$/); // A valid private key for the secp256k1 curve. const cafebabeKey = 'cafebabe'.repeat(8); // Associated compressed and uncompressed public keys (points). const cafebabePubPtComp = '03672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3'; const cafebabePubPtUnComp = '04672a31bfc59d3f04548ec9b7daeeba2f61814e8ccc40448045007f5479f693a3' + '2e02c7f93d13dc2732b760ca377a5897b9dd41a1c1b29dc0442fdce6d0a04d1d'; ecdh5.setPrivateKey(cafebabeKey, 'hex'); assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey); // Show that the public point (key) is generated while setting the private key. assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); // Compressed and uncompressed public points/keys for other party's private key // 0xDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEFDEADBEEF const peerPubPtComp = '02c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae'; const peerPubPtUnComp = '04c6b754b20826eb925e052ee2c25285b162b51fdca732bcf67e39d647fb6830ae' + 'b651944a574a362082a77e3f2b5d9223eb54d7f2f76846522bf75f3bedb8178e'; const sharedSecret = '1da220b5329bbe8bfd19ceef5a5898593f411a6f12ea40f2a8eead9a5cf59970'; assert.strictEqual(ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'), sharedSecret); assert.strictEqual(ecdh5.computeSecret(peerPubPtUnComp, 'hex', 'hex'), sharedSecret); // Verify that we still have the same key pair as before the computation. assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey); assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); // Verify setting and getting compressed and non-compressed serializations. ecdh5.setPublicKey(cafebabePubPtComp, 'hex'); assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp); ecdh5.setPublicKey(cafebabePubPtUnComp, 'hex'); assert.strictEqual(ecdh5.getPublicKey('hex'), cafebabePubPtUnComp); assert.strictEqual(ecdh5.getPublicKey('hex', 'compressed'), cafebabePubPtComp); // Show why allowing the public key to be set on this type does not make sense. ecdh5.setPublicKey(peerPubPtComp, 'hex'); assert.strictEqual(ecdh5.getPublicKey('hex'), peerPubPtUnComp); assert.throws(() => { // Error because the public key does not match the private key anymore. ecdh5.computeSecret(peerPubPtComp, 'hex', 'hex'); }, /^Error: Invalid key pair$/); // Set to a valid key to show that later attempts to set an invalid key are // rejected. ecdh5.setPrivateKey(cafebabeKey, 'hex'); [ // Some invalid private keys for the secp256k1 curve. '0000000000000000000000000000000000000000000000000000000000000000', 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141', 'FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF', ].forEach((element) => { assert.throws(() => { ecdh5.setPrivateKey(element, 'hex'); }, /^Error: Private key is not valid for specified curve.$/); // Verify object state did not change. assert.strictEqual(ecdh5.getPrivateKey('hex'), cafebabeKey); }); // invalid test: curve argument is undefined assert.throws(() => { crypto.createECDH(); }, /^TypeError: "curve" argument should be a string$/);