// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "parser.h" #include "scopes.h" #include "string-stream.h" #include "type-info.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // All the Accept member functions for each syntax tree node type. #define DECL_ACCEPT(type) \ void type::Accept(AstVisitor* v) { v->Visit##type(this); } AST_NODE_LIST(DECL_ACCEPT) #undef DECL_ACCEPT // ---------------------------------------------------------------------------- // Implementation of other node functionality. Assignment* ExpressionStatement::StatementAsSimpleAssignment() { return (expression()->AsAssignment() != NULL && !expression()->AsAssignment()->is_compound()) ? expression()->AsAssignment() : NULL; } CountOperation* ExpressionStatement::StatementAsCountOperation() { return expression()->AsCountOperation(); } VariableProxy::VariableProxy(Isolate* isolate, Variable* var) : Expression(isolate), name_(var->name()), var_(NULL), // Will be set by the call to BindTo. is_this_(var->is_this()), inside_with_(false), is_trivial_(false), position_(RelocInfo::kNoPosition) { BindTo(var); } VariableProxy::VariableProxy(Isolate* isolate, Handle name, bool is_this, bool inside_with, int position) : Expression(isolate), name_(name), var_(NULL), is_this_(is_this), inside_with_(inside_with), is_trivial_(false), position_(position) { // Names must be canonicalized for fast equality checks. ASSERT(name->IsSymbol()); } void VariableProxy::BindTo(Variable* var) { ASSERT(var_ == NULL); // must be bound only once ASSERT(var != NULL); // must bind ASSERT((is_this() && var->is_this()) || name_.is_identical_to(var->name())); // Ideally CONST-ness should match. However, this is very hard to achieve // because we don't know the exact semantics of conflicting (const and // non-const) multiple variable declarations, const vars introduced via // eval() etc. Const-ness and variable declarations are a complete mess // in JS. Sigh... var_ = var; var->set_is_used(true); } Assignment::Assignment(Isolate* isolate, Token::Value op, Expression* target, Expression* value, int pos) : Expression(isolate), op_(op), target_(target), value_(value), pos_(pos), binary_operation_(NULL), compound_load_id_(kNoNumber), assignment_id_(GetNextId(isolate)), block_start_(false), block_end_(false), is_monomorphic_(false) { ASSERT(Token::IsAssignmentOp(op)); if (is_compound()) { binary_operation_ = new(isolate->zone()) BinaryOperation(isolate, binary_op(), target, value, pos + 1); compound_load_id_ = GetNextId(isolate); } } Token::Value Assignment::binary_op() const { switch (op_) { case Token::ASSIGN_BIT_OR: return Token::BIT_OR; case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR; case Token::ASSIGN_BIT_AND: return Token::BIT_AND; case Token::ASSIGN_SHL: return Token::SHL; case Token::ASSIGN_SAR: return Token::SAR; case Token::ASSIGN_SHR: return Token::SHR; case Token::ASSIGN_ADD: return Token::ADD; case Token::ASSIGN_SUB: return Token::SUB; case Token::ASSIGN_MUL: return Token::MUL; case Token::ASSIGN_DIV: return Token::DIV; case Token::ASSIGN_MOD: return Token::MOD; default: UNREACHABLE(); } return Token::ILLEGAL; } bool FunctionLiteral::AllowsLazyCompilation() { return scope()->AllowsLazyCompilation(); } ObjectLiteral::Property::Property(Literal* key, Expression* value) { emit_store_ = true; key_ = key; value_ = value; Object* k = *key->handle(); if (k->IsSymbol() && HEAP->Proto_symbol()->Equals(String::cast(k))) { kind_ = PROTOTYPE; } else if (value_->AsMaterializedLiteral() != NULL) { kind_ = MATERIALIZED_LITERAL; } else if (value_->AsLiteral() != NULL) { kind_ = CONSTANT; } else { kind_ = COMPUTED; } } ObjectLiteral::Property::Property(bool is_getter, FunctionLiteral* value) { Isolate* isolate = Isolate::Current(); emit_store_ = true; key_ = new(isolate->zone()) Literal(isolate, value->name()); value_ = value; kind_ = is_getter ? GETTER : SETTER; } bool ObjectLiteral::Property::IsCompileTimeValue() { return kind_ == CONSTANT || (kind_ == MATERIALIZED_LITERAL && CompileTimeValue::IsCompileTimeValue(value_)); } void ObjectLiteral::Property::set_emit_store(bool emit_store) { emit_store_ = emit_store; } bool ObjectLiteral::Property::emit_store() { return emit_store_; } bool IsEqualString(void* first, void* second) { ASSERT((*reinterpret_cast(first))->IsString()); ASSERT((*reinterpret_cast(second))->IsString()); Handle h1(reinterpret_cast(first)); Handle h2(reinterpret_cast(second)); return (*h1)->Equals(*h2); } bool IsEqualNumber(void* first, void* second) { ASSERT((*reinterpret_cast(first))->IsNumber()); ASSERT((*reinterpret_cast(second))->IsNumber()); Handle h1(reinterpret_cast(first)); Handle h2(reinterpret_cast(second)); if (h1->IsSmi()) { return h2->IsSmi() && *h1 == *h2; } if (h2->IsSmi()) return false; Handle n1 = Handle::cast(h1); Handle n2 = Handle::cast(h2); ASSERT(isfinite(n1->value())); ASSERT(isfinite(n2->value())); return n1->value() == n2->value(); } void ObjectLiteral::CalculateEmitStore() { HashMap properties(&IsEqualString); HashMap elements(&IsEqualNumber); for (int i = this->properties()->length() - 1; i >= 0; i--) { ObjectLiteral::Property* property = this->properties()->at(i); Literal* literal = property->key(); Handle handle = literal->handle(); if (handle->IsNull()) { continue; } uint32_t hash; HashMap* table; void* key; Factory* factory = Isolate::Current()->factory(); if (handle->IsSymbol()) { Handle name(String::cast(*handle)); if (name->AsArrayIndex(&hash)) { Handle key_handle = factory->NewNumberFromUint(hash); key = key_handle.location(); table = &elements; } else { key = name.location(); hash = name->Hash(); table = &properties; } } else if (handle->ToArrayIndex(&hash)) { key = handle.location(); table = &elements; } else { ASSERT(handle->IsNumber()); double num = handle->Number(); char arr[100]; Vector buffer(arr, ARRAY_SIZE(arr)); const char* str = DoubleToCString(num, buffer); Handle name = factory->NewStringFromAscii(CStrVector(str)); key = name.location(); hash = name->Hash(); table = &properties; } // If the key of a computed property is in the table, do not emit // a store for the property later. if (property->kind() == ObjectLiteral::Property::COMPUTED) { if (table->Lookup(key, hash, false) != NULL) { property->set_emit_store(false); } } // Add key to the table. table->Lookup(key, hash, true); } } void TargetCollector::AddTarget(Label* target) { // Add the label to the collector, but discard duplicates. int length = targets_.length(); for (int i = 0; i < length; i++) { if (targets_[i] == target) return; } targets_.Add(target); } bool UnaryOperation::ResultOverwriteAllowed() { switch (op_) { case Token::BIT_NOT: case Token::SUB: return true; default: return false; } } bool BinaryOperation::ResultOverwriteAllowed() { switch (op_) { case Token::COMMA: case Token::OR: case Token::AND: return false; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SHL: case Token::SAR: case Token::SHR: case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: return true; default: UNREACHABLE(); } return false; } static bool IsTypeof(Expression* expr) { UnaryOperation* maybe_unary = expr->AsUnaryOperation(); return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF; } // Check for the pattern: typeof equals . static bool MatchLiteralCompareTypeof(Expression* left, Token::Value op, Expression* right, Expression** expr, Handle* check) { if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) { *expr = left->AsUnaryOperation()->expression(); *check = Handle::cast(right->AsLiteral()->handle()); return true; } return false; } bool CompareOperation::IsLiteralCompareTypeof(Expression** expr, Handle* check) { return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) || MatchLiteralCompareTypeof(right_, op_, left_, expr, check); } static bool IsVoidOfLiteral(Expression* expr) { UnaryOperation* maybe_unary = expr->AsUnaryOperation(); return maybe_unary != NULL && maybe_unary->op() == Token::VOID && maybe_unary->expression()->AsLiteral() != NULL; } // Check for the pattern: void equals static bool MatchLiteralCompareUndefined(Expression* left, Token::Value op, Expression* right, Expression** expr) { if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) { *expr = right; return true; } return false; } bool CompareOperation::IsLiteralCompareUndefined(Expression** expr) { return MatchLiteralCompareUndefined(left_, op_, right_, expr) || MatchLiteralCompareUndefined(right_, op_, left_, expr); } // Check for the pattern: null equals static bool MatchLiteralCompareNull(Expression* left, Token::Value op, Expression* right, Expression** expr) { if (left->IsNullLiteral() && Token::IsEqualityOp(op)) { *expr = right; return true; } return false; } bool CompareOperation::IsLiteralCompareNull(Expression** expr) { return MatchLiteralCompareNull(left_, op_, right_, expr) || MatchLiteralCompareNull(right_, op_, left_, expr); } // ---------------------------------------------------------------------------- // Inlining support bool Declaration::IsInlineable() const { return proxy()->var()->IsStackAllocated() && fun() == NULL; } bool TargetCollector::IsInlineable() const { UNREACHABLE(); return false; } bool ForInStatement::IsInlineable() const { return false; } bool WithStatement::IsInlineable() const { return false; } bool SwitchStatement::IsInlineable() const { return false; } bool TryStatement::IsInlineable() const { return false; } bool TryCatchStatement::IsInlineable() const { return false; } bool TryFinallyStatement::IsInlineable() const { return false; } bool DebuggerStatement::IsInlineable() const { return false; } bool Throw::IsInlineable() const { return exception()->IsInlineable(); } bool MaterializedLiteral::IsInlineable() const { // TODO(1322): Allow materialized literals. return false; } bool FunctionLiteral::IsInlineable() const { // TODO(1322): Allow materialized literals. return false; } bool ThisFunction::IsInlineable() const { return false; } bool SharedFunctionInfoLiteral::IsInlineable() const { return false; } bool ForStatement::IsInlineable() const { return (init() == NULL || init()->IsInlineable()) && (cond() == NULL || cond()->IsInlineable()) && (next() == NULL || next()->IsInlineable()) && body()->IsInlineable(); } bool WhileStatement::IsInlineable() const { return cond()->IsInlineable() && body()->IsInlineable(); } bool DoWhileStatement::IsInlineable() const { return cond()->IsInlineable() && body()->IsInlineable(); } bool ContinueStatement::IsInlineable() const { return true; } bool BreakStatement::IsInlineable() const { return true; } bool EmptyStatement::IsInlineable() const { return true; } bool Literal::IsInlineable() const { return true; } bool Block::IsInlineable() const { const int count = statements_.length(); for (int i = 0; i < count; ++i) { if (!statements_[i]->IsInlineable()) return false; } return true; } bool ExpressionStatement::IsInlineable() const { return expression()->IsInlineable(); } bool IfStatement::IsInlineable() const { return condition()->IsInlineable() && then_statement()->IsInlineable() && else_statement()->IsInlineable(); } bool ReturnStatement::IsInlineable() const { return expression()->IsInlineable(); } bool Conditional::IsInlineable() const { return condition()->IsInlineable() && then_expression()->IsInlineable() && else_expression()->IsInlineable(); } bool VariableProxy::IsInlineable() const { return var()->IsUnallocated() || var()->IsStackAllocated() || var()->IsContextSlot(); } bool Assignment::IsInlineable() const { return target()->IsInlineable() && value()->IsInlineable(); } bool Property::IsInlineable() const { return obj()->IsInlineable() && key()->IsInlineable(); } bool Call::IsInlineable() const { if (!expression()->IsInlineable()) return false; const int count = arguments()->length(); for (int i = 0; i < count; ++i) { if (!arguments()->at(i)->IsInlineable()) return false; } return true; } bool CallNew::IsInlineable() const { if (!expression()->IsInlineable()) return false; const int count = arguments()->length(); for (int i = 0; i < count; ++i) { if (!arguments()->at(i)->IsInlineable()) return false; } return true; } bool CallRuntime::IsInlineable() const { // Don't try to inline JS runtime calls because we don't (currently) even // optimize them. if (is_jsruntime()) return false; // Don't inline the %_ArgumentsLength or %_Arguments because their // implementation will not work. There is no stack frame to get them // from. if (function()->intrinsic_type == Runtime::INLINE && (name()->IsEqualTo(CStrVector("_ArgumentsLength")) || name()->IsEqualTo(CStrVector("_Arguments")))) { return false; } const int count = arguments()->length(); for (int i = 0; i < count; ++i) { if (!arguments()->at(i)->IsInlineable()) return false; } return true; } bool UnaryOperation::IsInlineable() const { return expression()->IsInlineable(); } bool BinaryOperation::IsInlineable() const { return left()->IsInlineable() && right()->IsInlineable(); } bool CompareOperation::IsInlineable() const { return left()->IsInlineable() && right()->IsInlineable(); } bool CountOperation::IsInlineable() const { return expression()->IsInlineable(); } // ---------------------------------------------------------------------------- // Recording of type feedback void Property::RecordTypeFeedback(TypeFeedbackOracle* oracle) { // Record type feedback from the oracle in the AST. is_monomorphic_ = oracle->LoadIsMonomorphicNormal(this); receiver_types_.Clear(); if (key()->IsPropertyName()) { if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_ArrayLength)) { is_array_length_ = true; } else if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_StringLength)) { is_string_length_ = true; } else if (oracle->LoadIsBuiltin(this, Builtins::kLoadIC_FunctionPrototype)) { is_function_prototype_ = true; } else { Literal* lit_key = key()->AsLiteral(); ASSERT(lit_key != NULL && lit_key->handle()->IsString()); Handle name = Handle::cast(lit_key->handle()); oracle->LoadReceiverTypes(this, name, &receiver_types_); } } else if (oracle->LoadIsBuiltin(this, Builtins::kKeyedLoadIC_String)) { is_string_access_ = true; } else if (is_monomorphic_) { receiver_types_.Add(oracle->LoadMonomorphicReceiverType(this)); } else if (oracle->LoadIsMegamorphicWithTypeInfo(this)) { receiver_types_.Reserve(kMaxKeyedPolymorphism); oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_); } } void Assignment::RecordTypeFeedback(TypeFeedbackOracle* oracle) { Property* prop = target()->AsProperty(); ASSERT(prop != NULL); is_monomorphic_ = oracle->StoreIsMonomorphicNormal(this); receiver_types_.Clear(); if (prop->key()->IsPropertyName()) { Literal* lit_key = prop->key()->AsLiteral(); ASSERT(lit_key != NULL && lit_key->handle()->IsString()); Handle name = Handle::cast(lit_key->handle()); oracle->StoreReceiverTypes(this, name, &receiver_types_); } else if (is_monomorphic_) { // Record receiver type for monomorphic keyed stores. receiver_types_.Add(oracle->StoreMonomorphicReceiverType(this)); } else if (oracle->StoreIsMegamorphicWithTypeInfo(this)) { receiver_types_.Reserve(kMaxKeyedPolymorphism); oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_); } } void CountOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle) { is_monomorphic_ = oracle->StoreIsMonomorphicNormal(this); receiver_types_.Clear(); if (is_monomorphic_) { // Record receiver type for monomorphic keyed stores. receiver_types_.Add(oracle->StoreMonomorphicReceiverType(this)); } else if (oracle->StoreIsMegamorphicWithTypeInfo(this)) { receiver_types_.Reserve(kMaxKeyedPolymorphism); oracle->CollectKeyedReceiverTypes(this->id(), &receiver_types_); } } void CaseClause::RecordTypeFeedback(TypeFeedbackOracle* oracle) { TypeInfo info = oracle->SwitchType(this); if (info.IsSmi()) { compare_type_ = SMI_ONLY; } else if (info.IsNonPrimitive()) { compare_type_ = OBJECT_ONLY; } else { ASSERT(compare_type_ == NONE); } } static bool CanCallWithoutIC(Handle target, int arity) { SharedFunctionInfo* info = target->shared(); // If the number of formal parameters of the target function does // not match the number of arguments we're passing, we don't want to // deal with it. Otherwise, we can call it directly. return !target->NeedsArgumentsAdaption() || info->formal_parameter_count() == arity; } bool Call::ComputeTarget(Handle type, Handle name) { if (check_type_ == RECEIVER_MAP_CHECK) { // For primitive checks the holder is set up to point to the // corresponding prototype object, i.e. one step of the algorithm // below has been already performed. // For non-primitive checks we clear it to allow computing targets // for polymorphic calls. holder_ = Handle::null(); } while (true) { LookupResult lookup; type->LookupInDescriptors(NULL, *name, &lookup); // If the function wasn't found directly in the map, we start // looking upwards through the prototype chain. if (!lookup.IsFound() && type->prototype()->IsJSObject()) { holder_ = Handle(JSObject::cast(type->prototype())); type = Handle(holder()->map()); } else if (lookup.IsProperty() && lookup.type() == CONSTANT_FUNCTION) { target_ = Handle(lookup.GetConstantFunctionFromMap(*type)); return CanCallWithoutIC(target_, arguments()->length()); } else { return false; } } } bool Call::ComputeGlobalTarget(Handle global, LookupResult* lookup) { target_ = Handle::null(); cell_ = Handle::null(); ASSERT(lookup->IsProperty() && lookup->type() == NORMAL && lookup->holder() == *global); cell_ = Handle(global->GetPropertyCell(lookup)); if (cell_->value()->IsJSFunction()) { Handle candidate(JSFunction::cast(cell_->value())); // If the function is in new space we assume it's more likely to // change and thus prefer the general IC code. if (!HEAP->InNewSpace(*candidate) && CanCallWithoutIC(candidate, arguments()->length())) { target_ = candidate; return true; } } return false; } void Call::RecordTypeFeedback(TypeFeedbackOracle* oracle, CallKind call_kind) { is_monomorphic_ = oracle->CallIsMonomorphic(this); Property* property = expression()->AsProperty(); if (property == NULL) { // Function call. Specialize for monomorphic calls. if (is_monomorphic_) target_ = oracle->GetCallTarget(this); } else { // Method call. Specialize for the receiver types seen at runtime. Literal* key = property->key()->AsLiteral(); ASSERT(key != NULL && key->handle()->IsString()); Handle name = Handle::cast(key->handle()); receiver_types_.Clear(); oracle->CallReceiverTypes(this, name, call_kind, &receiver_types_); #ifdef DEBUG if (FLAG_enable_slow_asserts) { int length = receiver_types_.length(); for (int i = 0; i < length; i++) { Handle map = receiver_types_.at(i); ASSERT(!map.is_null() && *map != NULL); } } #endif check_type_ = oracle->GetCallCheckType(this); if (is_monomorphic_) { Handle map; if (receiver_types_.length() > 0) { ASSERT(check_type_ == RECEIVER_MAP_CHECK); map = receiver_types_.at(0); } else { ASSERT(check_type_ != RECEIVER_MAP_CHECK); holder_ = Handle( oracle->GetPrototypeForPrimitiveCheck(check_type_)); map = Handle(holder_->map()); } is_monomorphic_ = ComputeTarget(map, name); } } } void CompareOperation::RecordTypeFeedback(TypeFeedbackOracle* oracle) { TypeInfo info = oracle->CompareType(this); if (info.IsSmi()) { compare_type_ = SMI_ONLY; } else if (info.IsNonPrimitive()) { compare_type_ = OBJECT_ONLY; } else { ASSERT(compare_type_ == NONE); } } // ---------------------------------------------------------------------------- // Implementation of AstVisitor bool AstVisitor::CheckStackOverflow() { if (stack_overflow_) return true; StackLimitCheck check(isolate_); if (!check.HasOverflowed()) return false; return (stack_overflow_ = true); } void AstVisitor::VisitDeclarations(ZoneList* declarations) { for (int i = 0; i < declarations->length(); i++) { Visit(declarations->at(i)); } } void AstVisitor::VisitStatements(ZoneList* statements) { for (int i = 0; i < statements->length(); i++) { Visit(statements->at(i)); } } void AstVisitor::VisitExpressions(ZoneList* expressions) { for (int i = 0; i < expressions->length(); i++) { // The variable statement visiting code may pass NULL expressions // to this code. Maybe this should be handled by introducing an // undefined expression or literal? Revisit this code if this // changes Expression* expression = expressions->at(i); if (expression != NULL) Visit(expression); } } // ---------------------------------------------------------------------------- // Regular expressions #define MAKE_ACCEPT(Name) \ void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \ return visitor->Visit##Name(this, data); \ } FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT) #undef MAKE_ACCEPT #define MAKE_TYPE_CASE(Name) \ RegExp##Name* RegExpTree::As##Name() { \ return NULL; \ } \ bool RegExpTree::Is##Name() { return false; } FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) #undef MAKE_TYPE_CASE #define MAKE_TYPE_CASE(Name) \ RegExp##Name* RegExp##Name::As##Name() { \ return this; \ } \ bool RegExp##Name::Is##Name() { return true; } FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) #undef MAKE_TYPE_CASE RegExpEmpty RegExpEmpty::kInstance; static Interval ListCaptureRegisters(ZoneList* children) { Interval result = Interval::Empty(); for (int i = 0; i < children->length(); i++) result = result.Union(children->at(i)->CaptureRegisters()); return result; } Interval RegExpAlternative::CaptureRegisters() { return ListCaptureRegisters(nodes()); } Interval RegExpDisjunction::CaptureRegisters() { return ListCaptureRegisters(alternatives()); } Interval RegExpLookahead::CaptureRegisters() { return body()->CaptureRegisters(); } Interval RegExpCapture::CaptureRegisters() { Interval self(StartRegister(index()), EndRegister(index())); return self.Union(body()->CaptureRegisters()); } Interval RegExpQuantifier::CaptureRegisters() { return body()->CaptureRegisters(); } bool RegExpAssertion::IsAnchoredAtStart() { return type() == RegExpAssertion::START_OF_INPUT; } bool RegExpAssertion::IsAnchoredAtEnd() { return type() == RegExpAssertion::END_OF_INPUT; } bool RegExpAlternative::IsAnchoredAtStart() { ZoneList* nodes = this->nodes(); for (int i = 0; i < nodes->length(); i++) { RegExpTree* node = nodes->at(i); if (node->IsAnchoredAtStart()) { return true; } if (node->max_match() > 0) { return false; } } return false; } bool RegExpAlternative::IsAnchoredAtEnd() { ZoneList* nodes = this->nodes(); for (int i = nodes->length() - 1; i >= 0; i--) { RegExpTree* node = nodes->at(i); if (node->IsAnchoredAtEnd()) { return true; } if (node->max_match() > 0) { return false; } } return false; } bool RegExpDisjunction::IsAnchoredAtStart() { ZoneList* alternatives = this->alternatives(); for (int i = 0; i < alternatives->length(); i++) { if (!alternatives->at(i)->IsAnchoredAtStart()) return false; } return true; } bool RegExpDisjunction::IsAnchoredAtEnd() { ZoneList* alternatives = this->alternatives(); for (int i = 0; i < alternatives->length(); i++) { if (!alternatives->at(i)->IsAnchoredAtEnd()) return false; } return true; } bool RegExpLookahead::IsAnchoredAtStart() { return is_positive() && body()->IsAnchoredAtStart(); } bool RegExpCapture::IsAnchoredAtStart() { return body()->IsAnchoredAtStart(); } bool RegExpCapture::IsAnchoredAtEnd() { return body()->IsAnchoredAtEnd(); } // Convert regular expression trees to a simple sexp representation. // This representation should be different from the input grammar // in as many cases as possible, to make it more difficult for incorrect // parses to look as correct ones which is likely if the input and // output formats are alike. class RegExpUnparser: public RegExpVisitor { public: RegExpUnparser(); void VisitCharacterRange(CharacterRange that); SmartArrayPointer ToString() { return stream_.ToCString(); } #define MAKE_CASE(Name) virtual void* Visit##Name(RegExp##Name*, void* data); FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE) #undef MAKE_CASE private: StringStream* stream() { return &stream_; } HeapStringAllocator alloc_; StringStream stream_; }; RegExpUnparser::RegExpUnparser() : stream_(&alloc_) { } void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) { stream()->Add("(|"); for (int i = 0; i < that->alternatives()->length(); i++) { stream()->Add(" "); that->alternatives()->at(i)->Accept(this, data); } stream()->Add(")"); return NULL; } void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) { stream()->Add("(:"); for (int i = 0; i < that->nodes()->length(); i++) { stream()->Add(" "); that->nodes()->at(i)->Accept(this, data); } stream()->Add(")"); return NULL; } void RegExpUnparser::VisitCharacterRange(CharacterRange that) { stream()->Add("%k", that.from()); if (!that.IsSingleton()) { stream()->Add("-%k", that.to()); } } void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that, void* data) { if (that->is_negated()) stream()->Add("^"); stream()->Add("["); for (int i = 0; i < that->ranges()->length(); i++) { if (i > 0) stream()->Add(" "); VisitCharacterRange(that->ranges()->at(i)); } stream()->Add("]"); return NULL; } void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) { switch (that->type()) { case RegExpAssertion::START_OF_INPUT: stream()->Add("@^i"); break; case RegExpAssertion::END_OF_INPUT: stream()->Add("@$i"); break; case RegExpAssertion::START_OF_LINE: stream()->Add("@^l"); break; case RegExpAssertion::END_OF_LINE: stream()->Add("@$l"); break; case RegExpAssertion::BOUNDARY: stream()->Add("@b"); break; case RegExpAssertion::NON_BOUNDARY: stream()->Add("@B"); break; } return NULL; } void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) { stream()->Add("'"); Vector chardata = that->data(); for (int i = 0; i < chardata.length(); i++) { stream()->Add("%k", chardata[i]); } stream()->Add("'"); return NULL; } void* RegExpUnparser::VisitText(RegExpText* that, void* data) { if (that->elements()->length() == 1) { that->elements()->at(0).data.u_atom->Accept(this, data); } else { stream()->Add("(!"); for (int i = 0; i < that->elements()->length(); i++) { stream()->Add(" "); that->elements()->at(i).data.u_atom->Accept(this, data); } stream()->Add(")"); } return NULL; } void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) { stream()->Add("(# %i ", that->min()); if (that->max() == RegExpTree::kInfinity) { stream()->Add("- "); } else { stream()->Add("%i ", that->max()); } stream()->Add(that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n "); that->body()->Accept(this, data); stream()->Add(")"); return NULL; } void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) { stream()->Add("(^ "); that->body()->Accept(this, data); stream()->Add(")"); return NULL; } void* RegExpUnparser::VisitLookahead(RegExpLookahead* that, void* data) { stream()->Add("(-> "); stream()->Add(that->is_positive() ? "+ " : "- "); that->body()->Accept(this, data); stream()->Add(")"); return NULL; } void* RegExpUnparser::VisitBackReference(RegExpBackReference* that, void* data) { stream()->Add("(<- %i)", that->index()); return NULL; } void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) { stream()->Put('%'); return NULL; } SmartArrayPointer RegExpTree::ToString() { RegExpUnparser unparser; Accept(&unparser, NULL); return unparser.ToString(); } RegExpDisjunction::RegExpDisjunction(ZoneList* alternatives) : alternatives_(alternatives) { ASSERT(alternatives->length() > 1); RegExpTree* first_alternative = alternatives->at(0); min_match_ = first_alternative->min_match(); max_match_ = first_alternative->max_match(); for (int i = 1; i < alternatives->length(); i++) { RegExpTree* alternative = alternatives->at(i); min_match_ = Min(min_match_, alternative->min_match()); max_match_ = Max(max_match_, alternative->max_match()); } } RegExpAlternative::RegExpAlternative(ZoneList* nodes) : nodes_(nodes) { ASSERT(nodes->length() > 1); min_match_ = 0; max_match_ = 0; for (int i = 0; i < nodes->length(); i++) { RegExpTree* node = nodes->at(i); min_match_ += node->min_match(); int node_max_match = node->max_match(); if (kInfinity - max_match_ < node_max_match) { max_match_ = kInfinity; } else { max_match_ += node->max_match(); } } } CaseClause::CaseClause(Isolate* isolate, Expression* label, ZoneList* statements, int pos) : label_(label), statements_(statements), position_(pos), compare_type_(NONE), compare_id_(AstNode::GetNextId(isolate)), entry_id_(AstNode::GetNextId(isolate)) { } } } // namespace v8::internal