/* * libeio implementation * * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann * All rights reserved. * * Redistribution and use in source and binary forms, with or without modifica- * tion, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH- * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * * Alternatively, the contents of this file may be used under the terms of * the GNU General Public License ("GPL") version 2 or any later version, * in which case the provisions of the GPL are applicable instead of * the above. If you wish to allow the use of your version of this file * only under the terms of the GPL and not to allow others to use your * version of this file under the BSD license, indicate your decision * by deleting the provisions above and replace them with the notice * and other provisions required by the GPL. If you do not delete the * provisions above, a recipient may use your version of this file under * either the BSD or the GPL. */ #include "eio.h" #ifdef EIO_STACKSIZE # define XTHREAD_STACKSIZE EIO_STACKSIZE #endif // For statically-linked pthreads-w32, use: // #ifdef _WIN32 // # define PTW32_STATIC_LIB 1 // #endif #include "xthread.h" #include #include #include #include #include #include #include #include #include #include #ifndef _WIN32 #include #endif #ifndef EIO_FINISH # define EIO_FINISH(req) ((req)->finish) && !EIO_CANCELLED (req) ? (req)->finish (req) : 0 #endif #ifndef EIO_DESTROY # define EIO_DESTROY(req) do { if ((req)->destroy) (req)->destroy (req); } while (0) #endif #ifndef EIO_FEED # define EIO_FEED(req) do { if ((req)->feed ) (req)->feed (req); } while (0) #endif #ifdef _WIN32 # include # include # include # include # include # include # include # define ENOTSOCK WSAENOTSOCK # define EOPNOTSUPP WSAEOPNOTSUPP # define ECANCELED 140 # ifndef EIO_STRUCT_DIRENT # define EIO_STRUCT_DIRENT struct dirent # endif #else # include "config.h" # include # include # include # include # include # include #if _POSIX_MEMLOCK || _POSIX_MEMLOCK_RANGE || _POSIX_MAPPED_FILES # include #endif /* POSIX_SOURCE is useless on bsd's, and XOPEN_SOURCE is unreliable there, too */ # if __FreeBSD__ || defined __NetBSD__ || defined __OpenBSD__ # define _DIRENT_HAVE_D_TYPE /* sigh */ # define D_INO(de) (de)->d_fileno # define D_NAMLEN(de) (de)->d_namlen # elif __linux || defined d_ino || _XOPEN_SOURCE >= 600 # define D_INO(de) (de)->d_ino # endif #ifdef _D_EXACT_NAMLEN # undef D_NAMLEN # define D_NAMLEN(de) _D_EXACT_NAMLEN (de) #endif # ifdef _DIRENT_HAVE_D_TYPE # define D_TYPE(de) (de)->d_type # endif # ifndef EIO_STRUCT_DIRENT # define EIO_STRUCT_DIRENT struct dirent # endif #endif #if HAVE_SENDFILE # if __linux # include # elif __FreeBSD__ || defined __APPLE__ # include # include # elif __hpux # include # elif __solaris # include # else # error sendfile support requested but not available # endif #endif #ifndef D_TYPE # define D_TYPE(de) 0 #endif #ifndef D_INO # define D_INO(de) 0 #endif #ifndef D_NAMLEN # define D_NAMLEN(de) strlen ((de)->d_name) #endif /* number of seconds after which an idle threads exit */ #define IDLE_TIMEOUT 10 /* used for struct dirent, AIX doesn't provide it */ #ifndef NAME_MAX # define NAME_MAX 4096 #endif /* used for readlink etc. */ #ifndef PATH_MAX # define PATH_MAX 4096 #endif /* buffer size for various temporary buffers */ #define EIO_BUFSIZE 65536 #define dBUF \ char *eio_buf; \ ETP_WORKER_LOCK (self); \ self->dbuf = eio_buf = malloc (EIO_BUFSIZE); \ ETP_WORKER_UNLOCK (self); \ errno = ENOMEM; \ if (!eio_buf) \ return -1; #define EIO_TICKS ((1000000 + 1023) >> 10) /*****************************************************************************/ #if __GNUC__ >= 3 # define expect(expr,value) __builtin_expect ((expr),(value)) #else # define expect(expr,value) (expr) #endif #define expect_false(expr) expect ((expr) != 0, 0) #define expect_true(expr) expect ((expr) != 0, 1) /*****************************************************************************/ #define ETP_PRI_MIN EIO_PRI_MIN #define ETP_PRI_MAX EIO_PRI_MAX struct etp_worker; #define ETP_REQ eio_req #define ETP_DESTROY(req) eio_destroy (req) static int eio_finish (eio_req *req); #define ETP_FINISH(req) eio_finish (req) static void eio_execute (struct etp_worker *self, eio_req *req); #define ETP_EXECUTE(wrk,req) eio_execute (wrk,req) #define ETP_WORKER_CLEAR(req) \ if (wrk->dbuf) \ { \ free (wrk->dbuf); \ wrk->dbuf = 0; \ } \ \ if (wrk->dirp) \ { \ closedir (wrk->dirp); \ wrk->dirp = 0; \ } #define ETP_WORKER_COMMON \ void *dbuf; \ DIR *dirp; /*****************************************************************************/ #define ETP_NUM_PRI (ETP_PRI_MAX - ETP_PRI_MIN + 1) /* calculate time difference in ~1/EIO_TICKS of a second */ static int tvdiff (struct timeval *tv1, struct timeval *tv2) { return (tv2->tv_sec - tv1->tv_sec ) * EIO_TICKS + ((tv2->tv_usec - tv1->tv_usec) >> 10); } static unsigned int started, idle, wanted = 4; static void (*want_poll_cb) (void); static void (*done_poll_cb) (void); static unsigned int max_poll_time; /* reslock */ static unsigned int max_poll_reqs; /* reslock */ static volatile unsigned int nreqs; /* reqlock */ static volatile unsigned int nready; /* reqlock */ static volatile unsigned int npending; /* reqlock */ static volatile unsigned int max_idle = 4; static xmutex_t wrklock = X_MUTEX_INIT; static xmutex_t reslock = X_MUTEX_INIT; static xmutex_t reqlock = X_MUTEX_INIT; static xcond_t reqwait = X_COND_INIT; #if defined (__APPLE__) static xmutex_t apple_bug_writelock = X_MUTEX_INIT; #endif #if !HAVE_PREADWRITE /* * make our pread/pwrite emulation safe against themselves, but not against * normal read/write by using a mutex. slows down execution a lot, * but that's your problem, not mine. */ static xmutex_t preadwritelock = X_MUTEX_INIT; #endif typedef struct etp_worker { /* locked by wrklock */ struct etp_worker *prev, *next; xthread_t tid; /* locked by reslock, reqlock or wrklock */ ETP_REQ *req; /* currently processed request */ ETP_WORKER_COMMON } etp_worker; static etp_worker wrk_first = { &wrk_first, &wrk_first, 0 }; /* NOT etp */ #define ETP_WORKER_LOCK(wrk) X_LOCK (wrklock) #define ETP_WORKER_UNLOCK(wrk) X_UNLOCK (wrklock) /* worker threads management */ static void etp_worker_clear (etp_worker *wrk) { ETP_WORKER_CLEAR (wrk); } static void etp_worker_free (etp_worker *wrk) { wrk->next->prev = wrk->prev; wrk->prev->next = wrk->next; free (wrk); } static unsigned int etp_nreqs (void) { int retval; if (WORDACCESS_UNSAFE) X_LOCK (reqlock); retval = nreqs; if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock); return retval; } static unsigned int etp_nready (void) { unsigned int retval; if (WORDACCESS_UNSAFE) X_LOCK (reqlock); retval = nready; if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock); return retval; } static unsigned int etp_npending (void) { unsigned int retval; if (WORDACCESS_UNSAFE) X_LOCK (reqlock); retval = npending; if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock); return retval; } static unsigned int etp_nthreads (void) { unsigned int retval; if (WORDACCESS_UNSAFE) X_LOCK (reqlock); retval = started; if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock); return retval; } /* * a somewhat faster data structure might be nice, but * with 8 priorities this actually needs <20 insns * per shift, the most expensive operation. */ typedef struct { ETP_REQ *qs[ETP_NUM_PRI], *qe[ETP_NUM_PRI]; /* qstart, qend */ int size; } etp_reqq; static etp_reqq req_queue; static etp_reqq res_queue; static int reqq_push (etp_reqq *q, ETP_REQ *req) { int pri = req->pri; req->next = 0; if (q->qe[pri]) { q->qe[pri]->next = req; q->qe[pri] = req; } else q->qe[pri] = q->qs[pri] = req; return q->size++; } static ETP_REQ *reqq_shift (etp_reqq *q) { int pri; if (!q->size) return 0; --q->size; for (pri = ETP_NUM_PRI; pri--; ) { eio_req *req = q->qs[pri]; if (req) { if (!(q->qs[pri] = (eio_req *)req->next)) q->qe[pri] = 0; return req; } } abort (); } static void etp_atfork_prepare (void) { X_LOCK (wrklock); X_LOCK (reqlock); X_LOCK (reslock); #if !HAVE_PREADWRITE X_LOCK (preadwritelock); #endif } static void etp_atfork_parent (void) { #if !HAVE_PREADWRITE X_UNLOCK (preadwritelock); #endif X_UNLOCK (reslock); X_UNLOCK (reqlock); X_UNLOCK (wrklock); } static void etp_atfork_child (void) { ETP_REQ *prv; while ((prv = reqq_shift (&req_queue))) ETP_DESTROY (prv); while ((prv = reqq_shift (&res_queue))) ETP_DESTROY (prv); while (wrk_first.next != &wrk_first) { etp_worker *wrk = wrk_first.next; if (wrk->req) ETP_DESTROY (wrk->req); etp_worker_clear (wrk); etp_worker_free (wrk); } started = 0; idle = 0; nreqs = 0; nready = 0; npending = 0; etp_atfork_parent (); } static void etp_once_init (void) { X_THREAD_ATFORK (etp_atfork_prepare, etp_atfork_parent, etp_atfork_child); } static int etp_init (void (*want_poll)(void), void (*done_poll)(void)) { static pthread_once_t doinit = PTHREAD_ONCE_INIT; pthread_once (&doinit, etp_once_init); want_poll_cb = want_poll; done_poll_cb = done_poll; return 0; } X_THREAD_PROC (etp_proc); static void etp_start_thread (void) { etp_worker *wrk = calloc (1, sizeof (etp_worker)); /*TODO*/ assert (("unable to allocate worker thread data", wrk)); X_LOCK (wrklock); if (thread_create (&wrk->tid, etp_proc, (void *)wrk)) { wrk->prev = &wrk_first; wrk->next = wrk_first.next; wrk_first.next->prev = wrk; wrk_first.next = wrk; ++started; } else free (wrk); X_UNLOCK (wrklock); } static void etp_maybe_start_thread (void) { if (expect_true (etp_nthreads () >= wanted)) return; /* todo: maybe use idle here, but might be less exact */ if (expect_true (0 <= (int)etp_nthreads () + (int)etp_npending () - (int)etp_nreqs ())) return; etp_start_thread (); } static void etp_end_thread (void) { eio_req *req = calloc (1, sizeof (eio_req)); req->type = -1; req->pri = ETP_PRI_MAX - ETP_PRI_MIN; X_LOCK (reqlock); reqq_push (&req_queue, req); X_COND_SIGNAL (reqwait); X_UNLOCK (reqlock); X_LOCK (wrklock); --started; X_UNLOCK (wrklock); } static int etp_poll (void) { unsigned int maxreqs; unsigned int maxtime; struct timeval tv_start, tv_now; X_LOCK (reslock); maxreqs = max_poll_reqs; maxtime = max_poll_time; X_UNLOCK (reslock); if (maxtime) gettimeofday (&tv_start, 0); for (;;) { ETP_REQ *req; etp_maybe_start_thread (); X_LOCK (reslock); req = reqq_shift (&res_queue); if (req) { --npending; if (!res_queue.size && done_poll_cb) done_poll_cb (); } X_UNLOCK (reslock); if (!req) return 0; X_LOCK (reqlock); --nreqs; X_UNLOCK (reqlock); if (expect_false (req->type == EIO_GROUP && req->size)) { req->int1 = 1; /* mark request as delayed */ continue; } else { int res = ETP_FINISH (req); if (expect_false (res)) return res; } if (expect_false (maxreqs && !--maxreqs)) break; if (maxtime) { gettimeofday (&tv_now, 0); if (tvdiff (&tv_start, &tv_now) >= maxtime) break; } } errno = EAGAIN; return -1; } static void etp_cancel (ETP_REQ *req) { X_LOCK (wrklock); req->flags |= EIO_FLAG_CANCELLED; X_UNLOCK (wrklock); eio_grp_cancel (req); } static void etp_submit (ETP_REQ *req) { req->pri -= ETP_PRI_MIN; if (expect_false (req->pri < ETP_PRI_MIN - ETP_PRI_MIN)) req->pri = ETP_PRI_MIN - ETP_PRI_MIN; if (expect_false (req->pri > ETP_PRI_MAX - ETP_PRI_MIN)) req->pri = ETP_PRI_MAX - ETP_PRI_MIN; if (expect_false (req->type == EIO_GROUP)) { /* I hope this is worth it :/ */ X_LOCK (reqlock); ++nreqs; X_UNLOCK (reqlock); X_LOCK (reslock); ++npending; if (!reqq_push (&res_queue, req) && want_poll_cb) want_poll_cb (); X_UNLOCK (reslock); } else { X_LOCK (reqlock); ++nreqs; ++nready; reqq_push (&req_queue, req); X_COND_SIGNAL (reqwait); X_UNLOCK (reqlock); etp_maybe_start_thread (); } } static void etp_set_max_poll_time (double nseconds) { if (WORDACCESS_UNSAFE) X_LOCK (reslock); max_poll_time = nseconds * EIO_TICKS; if (WORDACCESS_UNSAFE) X_UNLOCK (reslock); } static void etp_set_max_poll_reqs (unsigned int maxreqs) { if (WORDACCESS_UNSAFE) X_LOCK (reslock); max_poll_reqs = maxreqs; if (WORDACCESS_UNSAFE) X_UNLOCK (reslock); } static void etp_set_max_idle (unsigned int nthreads) { if (WORDACCESS_UNSAFE) X_LOCK (reqlock); max_idle = nthreads <= 0 ? 1 : nthreads; if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock); } static void etp_set_min_parallel (unsigned int nthreads) { if (wanted < nthreads) wanted = nthreads; } static void etp_set_max_parallel (unsigned int nthreads) { if (wanted > nthreads) wanted = nthreads; while (started > wanted) etp_end_thread (); } /*****************************************************************************/ static void grp_try_feed (eio_req *grp) { while (grp->size < grp->int2 && !EIO_CANCELLED (grp)) { grp->flags &= ~EIO_FLAG_GROUPADD; EIO_FEED (grp); /* stop if no progress has been made */ if (!(grp->flags & EIO_FLAG_GROUPADD)) { grp->feed = 0; break; } } } static int grp_dec (eio_req *grp) { --grp->size; /* call feeder, if applicable */ grp_try_feed (grp); /* finish, if done */ if (!grp->size && grp->int1) return eio_finish (grp); else return 0; } void eio_destroy (eio_req *req) { if ((req)->flags & EIO_FLAG_PTR1_FREE) free (req->ptr1); if ((req)->flags & EIO_FLAG_PTR2_FREE) free (req->ptr2); EIO_DESTROY (req); } static int eio_finish (eio_req *req) { int res = EIO_FINISH (req); if (req->grp) { int res2; eio_req *grp = req->grp; /* unlink request */ if (req->grp_next) req->grp_next->grp_prev = req->grp_prev; if (req->grp_prev) req->grp_prev->grp_next = req->grp_next; if (grp->grp_first == req) grp->grp_first = req->grp_next; res2 = grp_dec (grp); if (!res && res2) res = res2; } eio_destroy (req); return res; } void eio_grp_cancel (eio_req *grp) { for (grp = grp->grp_first; grp; grp = grp->grp_next) eio_cancel (grp); } void eio_cancel (eio_req *req) { etp_cancel (req); } void eio_submit (eio_req *req) { etp_submit (req); } unsigned int eio_nreqs (void) { return etp_nreqs (); } unsigned int eio_nready (void) { return etp_nready (); } unsigned int eio_npending (void) { return etp_npending (); } unsigned int eio_nthreads (void) { return etp_nthreads (); } void eio_set_max_poll_time (double nseconds) { etp_set_max_poll_time (nseconds); } void eio_set_max_poll_reqs (unsigned int maxreqs) { etp_set_max_poll_reqs (maxreqs); } void eio_set_max_idle (unsigned int nthreads) { etp_set_max_idle (nthreads); } void eio_set_min_parallel (unsigned int nthreads) { etp_set_min_parallel (nthreads); } void eio_set_max_parallel (unsigned int nthreads) { etp_set_max_parallel (nthreads); } int eio_poll (void) { return etp_poll (); } /*****************************************************************************/ /* work around various missing functions */ #if !HAVE_PREADWRITE # undef pread # undef pwrite # define pread eio__pread # define pwrite eio__pwrite ssize_t eio__pread (int fd, void *buf, size_t count, off_t offset) { ssize_t res; off_t ooffset; X_LOCK (preadwritelock); ooffset = lseek (fd, 0, SEEK_CUR); lseek (fd, offset, SEEK_SET); res = read (fd, buf, count); lseek (fd, ooffset, SEEK_SET); X_UNLOCK (preadwritelock); return res; } ssize_t eio__pwrite (int fd, void *buf, size_t count, off_t offset) { ssize_t res; off_t ooffset; X_LOCK (preadwritelock); ooffset = lseek (fd, 0, SEEK_CUR); lseek (fd, offset, SEEK_SET); res = write (fd, buf, count); lseek (fd, ooffset, SEEK_SET); X_UNLOCK (preadwritelock); return res; } #endif #ifndef HAVE_UTIMES # undef utimes # define utimes(path,times) eio__utimes (path, times) static int eio__utimes (const char *filename, const struct timeval times[2]) { if (times) { struct utimbuf buf; buf.actime = times[0].tv_sec; buf.modtime = times[1].tv_sec; return utime (filename, &buf); } else return utime (filename, 0); } #endif #ifndef HAVE_FUTIMES # undef futimes # define futimes(fd,times) eio__futimes (fd, times) static int eio__futimes (int fd, const struct timeval tv[2]) { errno = ENOSYS; return -1; } #endif #ifdef _WIN32 # define fsync(fd) (FlushFileBuffers((HANDLE)_get_osfhandle(fd)) ? 0 : -1) #endif #if !HAVE_FDATASYNC # undef fdatasync # define fdatasync(fd) fsync (fd) #endif // Use unicode and big file aware stat on windows #ifdef _WIN32 # undef stat # undef fstat # define stat _stati64 # define fstat _fstati64 #endif /* sync_file_range always needs emulation */ int eio__sync_file_range (int fd, off_t offset, size_t nbytes, unsigned int flags) { #if HAVE_SYNC_FILE_RANGE int res; if (EIO_SYNC_FILE_RANGE_WAIT_BEFORE != SYNC_FILE_RANGE_WAIT_BEFORE || EIO_SYNC_FILE_RANGE_WRITE != SYNC_FILE_RANGE_WRITE || EIO_SYNC_FILE_RANGE_WAIT_AFTER != SYNC_FILE_RANGE_WAIT_AFTER) { flags = 0 | (flags & EIO_SYNC_FILE_RANGE_WAIT_BEFORE ? SYNC_FILE_RANGE_WAIT_BEFORE : 0) | (flags & EIO_SYNC_FILE_RANGE_WRITE ? SYNC_FILE_RANGE_WRITE : 0) | (flags & EIO_SYNC_FILE_RANGE_WAIT_AFTER ? SYNC_FILE_RANGE_WAIT_AFTER : 0); } res = sync_file_range (fd, offset, nbytes, flags); if (!res || errno != ENOSYS) return res; #endif /* even though we could play tricks with the flags, it's better to always * call fdatasync, as that matches the expectation of its users best */ return fdatasync (fd); } #if !HAVE_READAHEAD # undef readahead # define readahead(fd,offset,count) eio__readahead (fd, offset, count, self) static ssize_t eio__readahead (int fd, off_t offset, size_t count, etp_worker *self) { size_t todo = count; dBUF; while (todo > 0) { size_t len = todo < EIO_BUFSIZE ? todo : EIO_BUFSIZE; pread (fd, eio_buf, len, offset); offset += len; todo -= len; } errno = 0; return count; } #endif /* sendfile always needs emulation */ static ssize_t eio__sendfile (int ofd, int ifd, off_t offset, size_t count, etp_worker *self) { ssize_t res; if (!count) return 0; #if HAVE_SENDFILE # if __linux res = sendfile (ofd, ifd, &offset, count); # elif __FreeBSD__ /* * Of course, the freebsd sendfile is a dire hack with no thoughts * wasted on making it similar to other I/O functions. */ { off_t sbytes; res = sendfile (ifd, ofd, offset, count, 0, &sbytes, 0); #if 0 /* according to the manpage, this is correct, but broken behaviour */ /* freebsd' sendfile will return 0 on success */ /* freebsd 8 documents it as only setting *sbytes on EINTR and EAGAIN, but */ /* not on e.g. EIO or EPIPE - sounds broken */ if ((res < 0 && (errno == EAGAIN || errno == EINTR) && sbytes) || res == 0) res = sbytes; #endif /* according to source inspection, this is correct, and useful behaviour */ if (sbytes) res = sbytes; } # elif defined (__APPLE__) { off_t sbytes = count; res = sendfile (ifd, ofd, offset, &sbytes, 0, 0); /* according to the manpage, sbytes is always valid */ if (sbytes) res = sbytes; } # elif __hpux res = sendfile (ofd, ifd, offset, count, 0, 0); # elif __solaris { struct sendfilevec vec; size_t sbytes; vec.sfv_fd = ifd; vec.sfv_flag = 0; vec.sfv_off = offset; vec.sfv_len = count; res = sendfilev (ofd, &vec, 1, &sbytes); if (res < 0 && sbytes) res = sbytes; } # endif //#elif defined (_WIN32) // // /* does not work, just for documentation of what would need to be done */ // { // HANDLE h = TO_SOCKET (ifd); // SetFilePointer (h, offset, 0, FILE_BEGIN); // res = TransmitFile (TO_SOCKET (ofd), h, count, 0, 0, 0, 0); // } #else res = -1; errno = ENOSYS; #endif if (res < 0 && (errno == ENOSYS || errno == EINVAL || errno == ENOTSOCK /* BSDs */ #ifdef ENOTSUP /* sigh, if the steenking pile called openbsd would only try to at least compile posix code... */ || errno == ENOTSUP #endif || errno == EOPNOTSUPP /* BSDs */ #if __solaris || errno == EAFNOSUPPORT || errno == EPROTOTYPE #endif ) ) { /* emulate sendfile. this is a major pain in the ass */ dBUF; res = 0; while (count) { ssize_t cnt; cnt = pread (ifd, eio_buf, count > EIO_BUFSIZE ? EIO_BUFSIZE : count, offset); if (cnt <= 0) { if (cnt && !res) res = -1; break; } cnt = write (ofd, eio_buf, cnt); if (cnt <= 0) { if (cnt && !res) res = -1; break; } offset += cnt; res += cnt; count -= cnt; } } return res; } static signed char eio_dent_cmp (const eio_dirent *a, const eio_dirent *b) { return a->score - b->score ? a->score - b->score /* works because our signed char is always 0..100 */ : a->inode < b->inode ? -1 : a->inode > b->inode ? 1 : 0; } #define EIO_DENT_CMP(i,op,j) eio_dent_cmp (&i, &j) op 0 #define EIO_SORT_CUTOFF 30 /* quite high, but performs well on many filesystems */ #define EIO_SORT_FAST 60 /* when to only use insertion sort */ static void eio_dent_radix_sort (eio_dirent *dents, int size, signed char score_bits, ino_t inode_bits) { unsigned char bits [9 + sizeof (ino_t) * 8]; unsigned char *bit = bits; assert (CHAR_BIT == 8); assert (sizeof (eio_dirent) * 8 < 256); assert (offsetof (eio_dirent, inode)); /* we use 0 as sentinel */ assert (offsetof (eio_dirent, score)); /* we use 0 as sentinel */ if (size <= EIO_SORT_FAST) return; /* first prepare an array of bits to test in our radix sort */ /* try to take endianness into account, as well as differences in ino_t sizes */ /* inode_bits must contain all inodes ORed together */ /* which is used to skip bits that are 0 everywhere, which is very common */ { ino_t endianness; int i, j; /* we store the byte offset of byte n into byte n of "endianness" */ for (i = 0; i < sizeof (ino_t); ++i) ((unsigned char *)&endianness)[i] = i; *bit++ = 0; for (i = 0; i < sizeof (ino_t); ++i) { /* shifting off the byte offsets out of "endianness" */ int offs = (offsetof (eio_dirent, inode) + (endianness & 0xff)) * 8; endianness >>= 8; for (j = 0; j < 8; ++j) if (inode_bits & (((ino_t)1) << (i * 8 + j))) *bit++ = offs + j; } for (j = 0; j < 8; ++j) if (score_bits & (1 << j)) *bit++ = offsetof (eio_dirent, score) * 8 + j; } /* now actually do the sorting (a variant of MSD radix sort) */ { eio_dirent *base_stk [9 + sizeof (ino_t) * 8], *base; eio_dirent *end_stk [9 + sizeof (ino_t) * 8], *end; unsigned char *bit_stk [9 + sizeof (ino_t) * 8]; int stk_idx = 0; base_stk [stk_idx] = dents; end_stk [stk_idx] = dents + size; bit_stk [stk_idx] = bit - 1; do { base = base_stk [stk_idx]; end = end_stk [stk_idx]; bit = bit_stk [stk_idx]; for (;;) { unsigned char O = *bit >> 3; unsigned char M = 1 << (*bit & 7); eio_dirent *a = base; eio_dirent *b = end; if (b - a < EIO_SORT_CUTOFF) break; /* now bit-partition the array on the bit */ /* this ugly asymmetric loop seems to perform much better than typical */ /* partition algos found in the literature */ do if (!(((unsigned char *)a)[O] & M)) ++a; else if (!(((unsigned char *)--b)[O] & M)) { eio_dirent tmp = *a; *a = *b; *b = tmp; ++a; } while (b > a); /* next bit, or stop, if no bits left in this path */ if (!*--bit) break; base_stk [stk_idx] = a; end_stk [stk_idx] = end; bit_stk [stk_idx] = bit; ++stk_idx; end = a; } } while (stk_idx--); } } static void eio_dent_insertion_sort (eio_dirent *dents, int size) { /* first move the smallest element to the front, to act as a sentinel */ { int i; eio_dirent *min = dents; /* the radix pre-pass ensures that the minimum element is in the first EIO_SORT_CUTOFF + 1 elements */ for (i = size > EIO_SORT_FAST ? EIO_SORT_CUTOFF + 1 : size; --i; ) if (EIO_DENT_CMP (dents [i], <, *min)) min = &dents [i]; /* swap elements 0 and j (minimum) */ { eio_dirent tmp = *dents; *dents = *min; *min = tmp; } } /* then do standard insertion sort, assuming that all elements are >= dents [0] */ { eio_dirent *i, *j; for (i = dents + 1; i < dents + size; ++i) { eio_dirent value = *i; for (j = i - 1; EIO_DENT_CMP (*j, >, value); --j) j [1] = j [0]; j [1] = value; } } } static void eio_dent_sort (eio_dirent *dents, int size, signed char score_bits, ino_t inode_bits) { if (size <= 1) return; /* our insertion sort relies on size > 0 */ /* first we use a radix sort, but only for dirs >= EIO_SORT_FAST */ /* and stop sorting when the partitions are <= EIO_SORT_CUTOFF */ eio_dent_radix_sort (dents, size, score_bits, inode_bits); /* use an insertion sort at the end, or for small arrays, */ /* as insertion sort is more efficient for small partitions */ eio_dent_insertion_sort (dents, size); } /* read a full directory */ static void eio__scandir (eio_req *req, etp_worker *self) { DIR *dirp; EIO_STRUCT_DIRENT *entp; char *name, *names; int namesalloc = 4096; int namesoffs = 0; int flags = req->int1; eio_dirent *dents = 0; int dentalloc = 128; int dentoffs = 0; ino_t inode_bits = 0; req->result = -1; if (!(flags & EIO_READDIR_DENTS)) flags &= ~(EIO_READDIR_DIRS_FIRST | EIO_READDIR_STAT_ORDER); X_LOCK (wrklock); /* the corresponding closedir is in ETP_WORKER_CLEAR */ self->dirp = dirp = opendir (req->ptr1); req->flags |= EIO_FLAG_PTR1_FREE | EIO_FLAG_PTR2_FREE; req->ptr1 = dents = flags ? malloc (dentalloc * sizeof (eio_dirent)) : 0; req->ptr2 = names = malloc (namesalloc); X_UNLOCK (wrklock); if (dirp && names && (!flags || dents)) for (;;) { errno = 0; entp = readdir (dirp); if (!entp) { if (errno) break; /* sort etc. */ req->int1 = flags; req->result = dentoffs; if (flags & EIO_READDIR_STAT_ORDER) eio_dent_sort (dents, dentoffs, 0, inode_bits); /* sort by inode exclusively */ else if (flags & EIO_READDIR_DIRS_FIRST) if (flags & EIO_READDIR_FOUND_UNKNOWN) eio_dent_sort (dents, dentoffs, 7, inode_bits); /* sort by score and inode */ else { /* in this case, all is known, and we just put dirs first and sort them */ eio_dirent *oth = dents + dentoffs; eio_dirent *dir = dents; /* now partition dirs to the front, and non-dirs to the back */ /* by walking from both sides and swapping if necessary */ /* also clear score, so it doesn't influence sorting */ while (oth > dir) { if (dir->type == EIO_DT_DIR) ++dir; else if ((--oth)->type == EIO_DT_DIR) { eio_dirent tmp = *dir; *dir = *oth; *oth = tmp; ++dir; } } /* now sort the dirs only */ eio_dent_sort (dents, dir - dents, 0, inode_bits); } break; } /* now add the entry to our list(s) */ name = entp->d_name; /* skip . and .. entries */ if (name [0] != '.' || (name [1] && (name [1] != '.' || name [2]))) { int len = D_NAMLEN (entp) + 1; while (expect_false (namesoffs + len > namesalloc)) { namesalloc *= 2; X_LOCK (wrklock); req->ptr2 = names = realloc (names, namesalloc); X_UNLOCK (wrklock); if (!names) break; } memcpy (names + namesoffs, name, len); if (dents) { struct eio_dirent *ent; if (expect_false (dentoffs == dentalloc)) { dentalloc *= 2; X_LOCK (wrklock); req->ptr1 = dents = realloc (dents, dentalloc * sizeof (eio_dirent)); X_UNLOCK (wrklock); if (!dents) break; } ent = dents + dentoffs; ent->nameofs = namesoffs; /* rather dirtily we store the offset in the pointer */ ent->namelen = len - 1; ent->inode = D_INO (entp); inode_bits |= ent->inode; switch (D_TYPE (entp)) { default: ent->type = EIO_DT_UNKNOWN; flags |= EIO_READDIR_FOUND_UNKNOWN; break; #ifdef DT_FIFO case DT_FIFO: ent->type = EIO_DT_FIFO; break; #endif #ifdef DT_CHR case DT_CHR: ent->type = EIO_DT_CHR; break; #endif #ifdef DT_MPC case DT_MPC: ent->type = EIO_DT_MPC; break; #endif #ifdef DT_DIR case DT_DIR: ent->type = EIO_DT_DIR; break; #endif #ifdef DT_NAM case DT_NAM: ent->type = EIO_DT_NAM; break; #endif #ifdef DT_BLK case DT_BLK: ent->type = EIO_DT_BLK; break; #endif #ifdef DT_MPB case DT_MPB: ent->type = EIO_DT_MPB; break; #endif #ifdef DT_REG case DT_REG: ent->type = EIO_DT_REG; break; #endif #ifdef DT_NWK case DT_NWK: ent->type = EIO_DT_NWK; break; #endif #ifdef DT_CMP case DT_CMP: ent->type = EIO_DT_CMP; break; #endif #ifdef DT_LNK case DT_LNK: ent->type = EIO_DT_LNK; break; #endif #ifdef DT_SOCK case DT_SOCK: ent->type = EIO_DT_SOCK; break; #endif #ifdef DT_DOOR case DT_DOOR: ent->type = EIO_DT_DOOR; break; #endif #ifdef DT_WHT case DT_WHT: ent->type = EIO_DT_WHT; break; #endif } ent->score = 7; if (flags & EIO_READDIR_DIRS_FIRST) { if (ent->type == EIO_DT_UNKNOWN) { if (*name == '.') /* leading dots are likely directories, and, in any case, rare */ ent->score = 1; else if (!strchr (name, '.')) /* absense of dots indicate likely dirs */ ent->score = len <= 2 ? 4 - len : len <= 4 ? 4 : len <= 7 ? 5 : 6; /* shorter == more likely dir, but avoid too many classes */ } else if (ent->type == EIO_DT_DIR) ent->score = 0; } } namesoffs += len; ++dentoffs; } if (EIO_CANCELLED (req)) { errno = ECANCELED; break; } } } #ifdef PAGESIZE # define eio_pagesize() PAGESIZE #elif defined(_WIN32) /* Windows */ static intptr_t eio_pagesize (void) { SYSTEM_INFO si; GetSystemInfo(&si); return si.dwPageSize; } #else /* POSIX */ static intptr_t eio_pagesize (void) { static intptr_t page; if (!page) page = sysconf (_SC_PAGESIZE); return page; } #endif static void eio_page_align (void **addr, size_t *length) { intptr_t mask = eio_pagesize () - 1; /* round down addr */ intptr_t adj = mask & (intptr_t)*addr; *addr = (void *)((intptr_t)*addr - adj); *length += adj; /* round up length */ *length = (*length + mask) & ~mask; } #if !_POSIX_MEMLOCK # define eio__mlockall(a) ((errno = ENOSYS), -1) #else static int eio__mlockall (int flags) { #if __GLIBC__ == 2 && __GLIBC_MINOR__ <= 7 extern int mallopt (int, int); mallopt (-6, 238); /* http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=473812 */ #endif if (EIO_MCL_CURRENT != MCL_CURRENT || EIO_MCL_FUTURE != MCL_FUTURE) { flags = 0 | (flags & EIO_MCL_CURRENT ? MCL_CURRENT : 0) | (flags & EIO_MCL_FUTURE ? MCL_FUTURE : 0); } return mlockall (flags); } #endif #if !_POSIX_MEMLOCK_RANGE # define eio__mlock(a,b) ((errno = ENOSYS), -1) #else static int eio__mlock (void *addr, size_t length) { eio_page_align (&addr, &length); return mlock (addr, length); } #endif #if !(_POSIX_MAPPED_FILES && _POSIX_SYNCHRONIZED_IO) # define eio__msync(a,b,c) ((errno = ENOSYS), -1) #else int eio__msync (void *mem, size_t len, int flags) { eio_page_align (&mem, &len); if (EIO_MS_ASYNC != MS_SYNC || EIO_MS_INVALIDATE != MS_INVALIDATE || EIO_MS_SYNC != MS_SYNC) { flags = 0 | (flags & EIO_MS_ASYNC ? MS_ASYNC : 0) | (flags & EIO_MS_INVALIDATE ? MS_INVALIDATE : 0) | (flags & EIO_MS_SYNC ? MS_SYNC : 0); } return msync (mem, len, flags); } #endif int eio__mtouch (void *mem, size_t len, int flags) { eio_page_align (&mem, &len); { intptr_t addr = (intptr_t)mem; intptr_t end = addr + len; intptr_t page = eio_pagesize (); if (addr < end) if (flags & EIO_MT_MODIFY) /* modify */ do { *((volatile sig_atomic_t *)addr) |= 0; } while ((addr += page) < len); else do { *((volatile sig_atomic_t *)addr) ; } while ((addr += page) < len); } return 0; } /*****************************************************************************/ #define ALLOC(len) \ if (!req->ptr2) \ { \ X_LOCK (wrklock); \ req->flags |= EIO_FLAG_PTR2_FREE; \ X_UNLOCK (wrklock); \ req->ptr2 = malloc (len); \ if (!req->ptr2) \ { \ errno = ENOMEM; \ req->result = -1; \ break; \ } \ } X_THREAD_PROC (etp_proc) { ETP_REQ *req; struct timespec ts; etp_worker *self = (etp_worker *)thr_arg; /* try to distribute timeouts somewhat randomly */ ts.tv_nsec = ((unsigned long)self & 1023UL) * (1000000000UL / 1024UL); for (;;) { X_LOCK (reqlock); for (;;) { self->req = req = reqq_shift (&req_queue); if (req) break; ++idle; ts.tv_sec = time (0) + IDLE_TIMEOUT; if (X_COND_TIMEDWAIT (reqwait, reqlock, ts) == ETIMEDOUT) { if (idle > max_idle) { --idle; X_UNLOCK (reqlock); X_LOCK (wrklock); --started; X_UNLOCK (wrklock); goto quit; } /* we are allowed to idle, so do so without any timeout */ X_COND_WAIT (reqwait, reqlock); } --idle; } --nready; X_UNLOCK (reqlock); if (req->type < 0) goto quit; if (!EIO_CANCELLED (req)) ETP_EXECUTE (self, req); X_LOCK (reslock); ++npending; if (!reqq_push (&res_queue, req) && want_poll_cb) want_poll_cb (); self->req = 0; etp_worker_clear (self); X_UNLOCK (reslock); } quit: X_LOCK (wrklock); etp_worker_free (self); X_UNLOCK (wrklock); return 0; } /*****************************************************************************/ int eio_init (void (*want_poll)(void), void (*done_poll)(void)) { return etp_init (want_poll, done_poll); } static void eio_api_destroy (eio_req *req) { free (req); } #define REQ(rtype) \ eio_req *req; \ \ req = (eio_req *)calloc (1, sizeof *req); \ if (!req) \ return 0; \ \ req->type = rtype; \ req->pri = pri; \ req->finish = cb; \ req->data = data; \ req->destroy = eio_api_destroy; #define SEND eio_submit (req); return req #define PATH \ req->flags |= EIO_FLAG_PTR1_FREE; \ req->ptr1 = strdup (path); \ if (!req->ptr1) \ { \ eio_api_destroy (req); \ return 0; \ } static void eio_execute (etp_worker *self, eio_req *req) { switch (req->type) { case EIO_READ: ALLOC (req->size); req->result = req->offs >= 0 ? pread (req->int1, req->ptr2, req->size, req->offs) : read (req->int1, req->ptr2, req->size); break; case EIO_WRITE: #if defined (__APPLE__) pthread_mutex_lock (&apple_bug_writelock); #endif req->result = req->offs >= 0 ? pwrite (req->int1, req->ptr2, req->size, req->offs) : write (req->int1, req->ptr2, req->size); #if defined (__APPLE__) pthread_mutex_unlock (&apple_bug_writelock); #endif break; case EIO_READAHEAD: req->result = readahead (req->int1, req->offs, req->size); break; case EIO_SENDFILE: req->result = eio__sendfile (req->int1, req->int2, req->offs, req->size, self); break; case EIO_STAT: ALLOC (sizeof (EIO_STRUCT_STAT)); req->result = stat (req->ptr1, (EIO_STRUCT_STAT *)req->ptr2); break; #ifndef _WIN32 case EIO_LSTAT: ALLOC (sizeof (EIO_STRUCT_STAT)); req->result = lstat (req->ptr1, (EIO_STRUCT_STAT *)req->ptr2); break; #endif case EIO_FSTAT: ALLOC (sizeof (EIO_STRUCT_STAT)); req->result = fstat (req->int1, (EIO_STRUCT_STAT *)req->ptr2); break; #ifndef _WIN32 case EIO_STATVFS: ALLOC (sizeof (EIO_STRUCT_STATVFS)); req->result = statvfs (req->ptr1, (EIO_STRUCT_STATVFS *)req->ptr2); break; case EIO_FSTATVFS: ALLOC (sizeof (EIO_STRUCT_STATVFS)); req->result = fstatvfs (req->int1, (EIO_STRUCT_STATVFS *)req->ptr2); break; case EIO_CHOWN: req->result = chown (req->ptr1, req->int2, req->int3); break; case EIO_FCHOWN: req->result = fchown (req->int1, req->int2, req->int3); break; #endif case EIO_CHMOD: req->result = chmod (req->ptr1, (mode_t)req->int2); break; #ifndef _WIN32 case EIO_FCHMOD: req->result = fchmod (req->int1, (mode_t)req->int2); break; case EIO_TRUNCATE: req->result = truncate (req->ptr1, req->offs); break; #endif case EIO_FTRUNCATE: req->result = ftruncate (req->int1, req->offs); break; case EIO_OPEN: req->result = open (req->ptr1, req->int1, (mode_t)req->int2); break; case EIO_CLOSE: req->result = close (req->int1); break; case EIO_DUP2: req->result = dup2 (req->int1, req->int2); break; case EIO_UNLINK: req->result = unlink (req->ptr1); break; case EIO_RMDIR: req->result = rmdir (req->ptr1); break; #ifdef _WIN32 case EIO_MKDIR: req->result = mkdir (req->ptr1); break; #else case EIO_MKDIR: req->result = mkdir (req->ptr1, (mode_t)req->int2); break; #endif case EIO_RENAME: req->result = rename (req->ptr1, req->ptr2); break; #ifndef _WIN32 case EIO_LINK: req->result = link (req->ptr1, req->ptr2); break; case EIO_SYMLINK: req->result = symlink (req->ptr1, req->ptr2); break; case EIO_MKNOD: req->result = mknod (req->ptr1, (mode_t)req->int2, (dev_t)req->int3); break; #endif #ifndef _WIN32 case EIO_READLINK: ALLOC (PATH_MAX); req->result = readlink (req->ptr1, req->ptr2, PATH_MAX); break; #endif #ifndef _WIN32 case EIO_SYNC: req->result = 0; sync (); break; #endif case EIO_FSYNC: req->result = fsync (req->int1); break; case EIO_FDATASYNC: req->result = fdatasync (req->int1); break; case EIO_MSYNC: req->result = eio__msync (req->ptr2, req->size, req->int1); break; case EIO_MTOUCH: req->result = eio__mtouch (req->ptr2, req->size, req->int1); break; case EIO_MLOCK: req->result = eio__mlock (req->ptr2, req->size); break; case EIO_MLOCKALL: req->result = eio__mlockall (req->int1); break; case EIO_SYNC_FILE_RANGE: req->result = eio__sync_file_range (req->int1, req->offs, req->size, req->int2); break; case EIO_READDIR: eio__scandir (req, self); break; case EIO_BUSY: #ifdef _WIN32 Sleep (req->nv1 * 1e3); #else { struct timeval tv; tv.tv_sec = req->nv1; tv.tv_usec = (req->nv1 - tv.tv_sec) * 1e6; req->result = select (0, 0, 0, 0, &tv); } #endif break; case EIO_UTIME: case EIO_FUTIME: { struct timeval tv[2]; struct timeval *times; if (req->nv1 != -1. || req->nv2 != -1.) { tv[0].tv_sec = req->nv1; tv[0].tv_usec = (req->nv1 - tv[0].tv_sec) * 1000000.; tv[1].tv_sec = req->nv2; tv[1].tv_usec = (req->nv2 - tv[1].tv_sec) * 1000000.; times = tv; } else times = 0; req->result = req->type == EIO_FUTIME ? futimes (req->int1, times) : utimes (req->ptr1, times); } break; case EIO_GROUP: abort (); /* handled in eio_request */ case EIO_NOP: req->result = 0; break; case EIO_CUSTOM: ((void (*)(eio_req *))req->feed) (req); break; default: errno = ENOSYS; req->result = -1; break; } req->errorno = errno; } #ifndef EIO_NO_WRAPPERS eio_req *eio_nop (int pri, eio_cb cb, void *data) { REQ (EIO_NOP); SEND; } eio_req *eio_busy (double delay, int pri, eio_cb cb, void *data) { REQ (EIO_BUSY); req->nv1 = delay; SEND; } eio_req *eio_sync (int pri, eio_cb cb, void *data) { REQ (EIO_SYNC); SEND; } eio_req *eio_fsync (int fd, int pri, eio_cb cb, void *data) { REQ (EIO_FSYNC); req->int1 = fd; SEND; } eio_req *eio_msync (void *addr, size_t length, int flags, int pri, eio_cb cb, void *data) { REQ (EIO_MSYNC); req->ptr2 = addr; req->size = length; req->int1 = flags; SEND; } eio_req *eio_mtouch (void *addr, size_t length, int flags, int pri, eio_cb cb, void *data) { REQ (EIO_MTOUCH); req->ptr2 = addr; req->size = length; req->int1 = flags; SEND; } eio_req *eio_mlock (void *addr, size_t length, int pri, eio_cb cb, void *data) { REQ (EIO_MLOCK); req->ptr2 = addr; req->size = length; SEND; } eio_req *eio_mlockall (int flags, int pri, eio_cb cb, void *data) { REQ (EIO_MLOCKALL); req->int1 = flags; SEND; } eio_req *eio_sync_file_range (int fd, off_t offset, size_t nbytes, unsigned int flags, int pri, eio_cb cb, void *data) { REQ (EIO_SYNC_FILE_RANGE); req->int1 = fd; req->offs = offset; req->size = nbytes; req->int2 = flags; SEND; } eio_req *eio_fdatasync (int fd, int pri, eio_cb cb, void *data) { REQ (EIO_FDATASYNC); req->int1 = fd; SEND; } eio_req *eio_close (int fd, int pri, eio_cb cb, void *data) { REQ (EIO_CLOSE); req->int1 = fd; SEND; } eio_req *eio_readahead (int fd, off_t offset, size_t length, int pri, eio_cb cb, void *data) { REQ (EIO_READAHEAD); req->int1 = fd; req->offs = offset; req->size = length; SEND; } eio_req *eio_read (int fd, void *buf, size_t length, off_t offset, int pri, eio_cb cb, void *data) { REQ (EIO_READ); req->int1 = fd; req->offs = offset; req->size = length; req->ptr2 = buf; SEND; } eio_req *eio_write (int fd, void *buf, size_t length, off_t offset, int pri, eio_cb cb, void *data) { REQ (EIO_WRITE); req->int1 = fd; req->offs = offset; req->size = length; req->ptr2 = buf; SEND; } eio_req *eio_fstat (int fd, int pri, eio_cb cb, void *data) { REQ (EIO_FSTAT); req->int1 = fd; SEND; } eio_req *eio_fstatvfs (int fd, int pri, eio_cb cb, void *data) { REQ (EIO_FSTATVFS); req->int1 = fd; SEND; } eio_req *eio_futime (int fd, double atime, double mtime, int pri, eio_cb cb, void *data) { REQ (EIO_FUTIME); req->int1 = fd; req->nv1 = atime; req->nv2 = mtime; SEND; } eio_req *eio_ftruncate (int fd, off_t offset, int pri, eio_cb cb, void *data) { REQ (EIO_FTRUNCATE); req->int1 = fd; req->offs = offset; SEND; } eio_req *eio_fchmod (int fd, mode_t mode, int pri, eio_cb cb, void *data) { REQ (EIO_FCHMOD); req->int1 = fd; req->int2 = (long)mode; SEND; } eio_req *eio_fchown (int fd, uid_t uid, gid_t gid, int pri, eio_cb cb, void *data) { REQ (EIO_FCHOWN); req->int1 = fd; req->int2 = (long)uid; req->int3 = (long)gid; SEND; } eio_req *eio_dup2 (int fd, int fd2, int pri, eio_cb cb, void *data) { REQ (EIO_DUP2); req->int1 = fd; req->int2 = fd2; SEND; } eio_req *eio_sendfile (int out_fd, int in_fd, off_t in_offset, size_t length, int pri, eio_cb cb, void *data) { REQ (EIO_SENDFILE); req->int1 = out_fd; req->int2 = in_fd; req->offs = in_offset; req->size = length; SEND; } eio_req *eio_open (const char *path, int flags, mode_t mode, int pri, eio_cb cb, void *data) { REQ (EIO_OPEN); PATH; req->int1 = flags; req->int2 = (long)mode; SEND; } eio_req *eio_utime (const char *path, double atime, double mtime, int pri, eio_cb cb, void *data) { REQ (EIO_UTIME); PATH; req->nv1 = atime; req->nv2 = mtime; SEND; } eio_req *eio_truncate (const char *path, off_t offset, int pri, eio_cb cb, void *data) { REQ (EIO_TRUNCATE); PATH; req->offs = offset; SEND; } eio_req *eio_chown (const char *path, uid_t uid, gid_t gid, int pri, eio_cb cb, void *data) { REQ (EIO_CHOWN); PATH; req->int2 = (long)uid; req->int3 = (long)gid; SEND; } eio_req *eio_chmod (const char *path, mode_t mode, int pri, eio_cb cb, void *data) { REQ (EIO_CHMOD); PATH; req->int2 = (long)mode; SEND; } eio_req *eio_mkdir (const char *path, mode_t mode, int pri, eio_cb cb, void *data) { REQ (EIO_MKDIR); PATH; req->int2 = (long)mode; SEND; } static eio_req * eio__1path (int type, const char *path, int pri, eio_cb cb, void *data) { REQ (type); PATH; SEND; } eio_req *eio_readlink (const char *path, int pri, eio_cb cb, void *data) { return eio__1path (EIO_READLINK, path, pri, cb, data); } eio_req *eio_stat (const char *path, int pri, eio_cb cb, void *data) { return eio__1path (EIO_STAT, path, pri, cb, data); } eio_req *eio_lstat (const char *path, int pri, eio_cb cb, void *data) { return eio__1path (EIO_LSTAT, path, pri, cb, data); } eio_req *eio_statvfs (const char *path, int pri, eio_cb cb, void *data) { return eio__1path (EIO_STATVFS, path, pri, cb, data); } eio_req *eio_unlink (const char *path, int pri, eio_cb cb, void *data) { return eio__1path (EIO_UNLINK, path, pri, cb, data); } eio_req *eio_rmdir (const char *path, int pri, eio_cb cb, void *data) { return eio__1path (EIO_RMDIR, path, pri, cb, data); } eio_req *eio_readdir (const char *path, int flags, int pri, eio_cb cb, void *data) { REQ (EIO_READDIR); PATH; req->int1 = flags; SEND; } eio_req *eio_mknod (const char *path, mode_t mode, dev_t dev, int pri, eio_cb cb, void *data) { REQ (EIO_MKNOD); PATH; req->int2 = (long)mode; req->int3 = (long)dev; SEND; } static eio_req * eio__2path (int type, const char *path, const char *new_path, int pri, eio_cb cb, void *data) { REQ (type); PATH; req->flags |= EIO_FLAG_PTR2_FREE; req->ptr2 = strdup (new_path); if (!req->ptr2) { eio_api_destroy (req); return 0; } SEND; } eio_req *eio_link (const char *path, const char *new_path, int pri, eio_cb cb, void *data) { return eio__2path (EIO_LINK, path, new_path, pri, cb, data); } eio_req *eio_symlink (const char *path, const char *new_path, int pri, eio_cb cb, void *data) { return eio__2path (EIO_SYMLINK, path, new_path, pri, cb, data); } eio_req *eio_rename (const char *path, const char *new_path, int pri, eio_cb cb, void *data) { return eio__2path (EIO_RENAME, path, new_path, pri, cb, data); } eio_req *eio_custom (eio_cb execute, int pri, eio_cb cb, void *data) { REQ (EIO_CUSTOM); req->feed = (void (*)(eio_req *))execute; SEND; } #endif eio_req *eio_grp (eio_cb cb, void *data) { const int pri = EIO_PRI_MAX; REQ (EIO_GROUP); SEND; } #undef REQ #undef PATH #undef SEND /*****************************************************************************/ /* grp functions */ void eio_grp_feed (eio_req *grp, void (*feed)(eio_req *req), int limit) { grp->int2 = limit; grp->feed = feed; grp_try_feed (grp); } void eio_grp_limit (eio_req *grp, int limit) { grp->int2 = limit; grp_try_feed (grp); } void eio_grp_add (eio_req *grp, eio_req *req) { assert (("cannot add requests to IO::AIO::GRP after the group finished", grp->int1 != 2)); grp->flags |= EIO_FLAG_GROUPADD; ++grp->size; req->grp = grp; req->grp_prev = 0; req->grp_next = grp->grp_first; if (grp->grp_first) grp->grp_first->grp_prev = req; grp->grp_first = req; } /*****************************************************************************/ /* misc garbage */ ssize_t eio_sendfile_sync (int ofd, int ifd, off_t offset, size_t count) { etp_worker wrk; ssize_t ret; wrk.dbuf = 0; ret = eio__sendfile (ofd, ifd, offset, count, &wrk); if (wrk.dbuf) free (wrk.dbuf); return ret; }