// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/v8.h" #include "src/interpreter/bytecode-register.h" #include "src/interpreter/bytecodes.h" #include "test/unittests/test-utils.h" namespace v8 { namespace internal { namespace interpreter { TEST(OperandConversion, Registers) { int register_count = 128; int step = register_count / 7; for (int i = 0; i < register_count; i += step) { if (i <= kMaxInt8) { uint32_t operand0 = Register(i).ToOperand(); Register reg0 = Register::FromOperand(operand0); CHECK_EQ(i, reg0.index()); } uint32_t operand1 = Register(i).ToOperand(); Register reg1 = Register::FromOperand(operand1); CHECK_EQ(i, reg1.index()); uint32_t operand2 = Register(i).ToOperand(); Register reg2 = Register::FromOperand(operand2); CHECK_EQ(i, reg2.index()); } } TEST(OperandConversion, Parameters) { int parameter_counts[] = {7, 13, 99}; size_t count = sizeof(parameter_counts) / sizeof(parameter_counts[0]); for (size_t p = 0; p < count; p++) { int parameter_count = parameter_counts[p]; for (int i = 0; i < parameter_count; i++) { Register r = Register::FromParameterIndex(i, parameter_count); uint32_t operand_value = r.ToOperand(); Register s = Register::FromOperand(operand_value); CHECK_EQ(i, s.ToParameterIndex(parameter_count)); } } } TEST(OperandConversion, RegistersParametersNoOverlap) { int register_count = 128; int parameter_count = 100; int32_t register_space_size = base::bits::RoundUpToPowerOfTwo32( static_cast(register_count + parameter_count)); uint32_t range = static_cast(register_space_size); std::vector operand_count(range); for (int i = 0; i < register_count; i += 1) { Register r = Register(i); int32_t operand = r.ToOperand(); uint8_t index = static_cast(operand); CHECK_LT(index, operand_count.size()); operand_count[index] += 1; CHECK_EQ(operand_count[index], 1); } for (int i = 0; i < parameter_count; i += 1) { Register r = Register::FromParameterIndex(i, parameter_count); uint32_t operand = r.ToOperand(); uint8_t index = static_cast(operand); CHECK_LT(index, operand_count.size()); operand_count[index] += 1; CHECK_EQ(operand_count[index], 1); } } TEST(OperandScaling, ScalableAndNonScalable) { const OperandScale kOperandScales[] = { #define VALUE(Name, _) OperandScale::k##Name, OPERAND_SCALE_LIST(VALUE) #undef VALUE }; for (OperandScale operand_scale : kOperandScales) { int scale = static_cast(operand_scale); CHECK_EQ(Bytecodes::Size(Bytecode::kCallRuntime, operand_scale), 1 + 2 + 2 * scale); CHECK_EQ(Bytecodes::Size(Bytecode::kCreateObjectLiteral, operand_scale), 1 + 2 * scale + 1 + 1 * scale); CHECK_EQ(Bytecodes::Size(Bytecode::kTestIn, operand_scale), 1 + scale); } } TEST(Bytecodes, RegisterOperands) { CHECK(Bytecodes::IsRegisterOperandType(OperandType::kReg)); CHECK(Bytecodes::IsRegisterInputOperandType(OperandType::kReg)); CHECK(!Bytecodes::IsRegisterOutputOperandType(OperandType::kReg)); CHECK(!Bytecodes::IsRegisterInputOperandType(OperandType::kRegOut)); CHECK(Bytecodes::IsRegisterOutputOperandType(OperandType::kRegOut)); #define IS_REGISTER_OPERAND_TYPE(Name, _) \ CHECK(Bytecodes::IsRegisterOperandType(OperandType::k##Name)); REGISTER_OPERAND_TYPE_LIST(IS_REGISTER_OPERAND_TYPE) #undef IS_REGISTER_OPERAND_TYPE #define IS_NOT_REGISTER_OPERAND_TYPE(Name, _) \ CHECK(!Bytecodes::IsRegisterOperandType(OperandType::k##Name)); NON_REGISTER_OPERAND_TYPE_LIST(IS_NOT_REGISTER_OPERAND_TYPE) #undef IS_NOT_REGISTER_OPERAND_TYPE #define IS_REGISTER_INPUT_OPERAND_TYPE(Name, _) \ CHECK(Bytecodes::IsRegisterInputOperandType(OperandType::k##Name)); REGISTER_INPUT_OPERAND_TYPE_LIST(IS_REGISTER_INPUT_OPERAND_TYPE) #undef IS_REGISTER_INPUT_OPERAND_TYPE #define IS_NOT_REGISTER_INPUT_OPERAND_TYPE(Name, _) \ CHECK(!Bytecodes::IsRegisterInputOperandType(OperandType::k##Name)); NON_REGISTER_OPERAND_TYPE_LIST(IS_NOT_REGISTER_INPUT_OPERAND_TYPE); REGISTER_OUTPUT_OPERAND_TYPE_LIST(IS_NOT_REGISTER_INPUT_OPERAND_TYPE) #undef IS_NOT_REGISTER_INPUT_OPERAND_TYPE #define IS_REGISTER_OUTPUT_OPERAND_TYPE(Name, _) \ CHECK(Bytecodes::IsRegisterOutputOperandType(OperandType::k##Name)); REGISTER_OUTPUT_OPERAND_TYPE_LIST(IS_REGISTER_OUTPUT_OPERAND_TYPE) #undef IS_REGISTER_OUTPUT_OPERAND_TYPE #define IS_NOT_REGISTER_OUTPUT_OPERAND_TYPE(Name, _) \ CHECK(!Bytecodes::IsRegisterOutputOperandType(OperandType::k##Name)); NON_REGISTER_OPERAND_TYPE_LIST(IS_NOT_REGISTER_OUTPUT_OPERAND_TYPE) REGISTER_INPUT_OPERAND_TYPE_LIST(IS_NOT_REGISTER_OUTPUT_OPERAND_TYPE) #undef IS_NOT_REGISTER_INPUT_OPERAND_TYPE } TEST(Bytecodes, DebugBreakExistForEachBytecode) { static const OperandScale kOperandScale = OperandScale::kSingle; #define CHECK_DEBUG_BREAK_SIZE(Name, ...) \ if (!Bytecodes::IsDebugBreak(Bytecode::k##Name) && \ !Bytecodes::IsPrefixScalingBytecode(Bytecode::k##Name)) { \ Bytecode debug_bytecode = Bytecodes::GetDebugBreak(Bytecode::k##Name); \ CHECK_EQ(Bytecodes::Size(Bytecode::k##Name, kOperandScale), \ Bytecodes::Size(debug_bytecode, kOperandScale)); \ } BYTECODE_LIST(CHECK_DEBUG_BREAK_SIZE) #undef CHECK_DEBUG_BREAK_SIZE } TEST(Bytecodes, DebugBreakForPrefixBytecodes) { CHECK_EQ(Bytecode::kDebugBreakWide, Bytecodes::GetDebugBreak(Bytecode::kWide)); CHECK_EQ(Bytecode::kDebugBreakExtraWide, Bytecodes::GetDebugBreak(Bytecode::kExtraWide)); } TEST(Bytecodes, PrefixMappings) { Bytecode prefixes[] = {Bytecode::kWide, Bytecode::kExtraWide}; TRACED_FOREACH(Bytecode, prefix, prefixes) { CHECK_EQ(prefix, Bytecodes::OperandScaleToPrefixBytecode( Bytecodes::PrefixBytecodeToOperandScale(prefix))); } } TEST(Bytecodes, SizesForSignedOperands) { CHECK(Bytecodes::SizeForSignedOperand(0) == OperandSize::kByte); CHECK(Bytecodes::SizeForSignedOperand(kMaxInt8) == OperandSize::kByte); CHECK(Bytecodes::SizeForSignedOperand(kMinInt8) == OperandSize::kByte); CHECK(Bytecodes::SizeForSignedOperand(kMaxInt8 + 1) == OperandSize::kShort); CHECK(Bytecodes::SizeForSignedOperand(kMinInt8 - 1) == OperandSize::kShort); CHECK(Bytecodes::SizeForSignedOperand(kMaxInt16) == OperandSize::kShort); CHECK(Bytecodes::SizeForSignedOperand(kMinInt16) == OperandSize::kShort); CHECK(Bytecodes::SizeForSignedOperand(kMaxInt16 + 1) == OperandSize::kQuad); CHECK(Bytecodes::SizeForSignedOperand(kMinInt16 - 1) == OperandSize::kQuad); CHECK(Bytecodes::SizeForSignedOperand(kMaxInt) == OperandSize::kQuad); CHECK(Bytecodes::SizeForSignedOperand(kMinInt) == OperandSize::kQuad); } TEST(Bytecodes, SizesForUnsignedOperands) { // int overloads CHECK(Bytecodes::SizeForUnsignedOperand(0) == OperandSize::kByte); CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt8) == OperandSize::kByte); CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt8 + 1) == OperandSize::kShort); CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt16) == OperandSize::kShort); CHECK(Bytecodes::SizeForUnsignedOperand(kMaxUInt16 + 1) == OperandSize::kQuad); // size_t overloads CHECK(Bytecodes::SizeForUnsignedOperand(static_cast(0)) == OperandSize::kByte); CHECK(Bytecodes::SizeForUnsignedOperand(static_cast(kMaxUInt8)) == OperandSize::kByte); CHECK(Bytecodes::SizeForUnsignedOperand(static_cast(kMaxUInt8 + 1)) == OperandSize::kShort); CHECK(Bytecodes::SizeForUnsignedOperand(static_cast(kMaxUInt16)) == OperandSize::kShort); CHECK(Bytecodes::SizeForUnsignedOperand( static_cast(kMaxUInt16 + 1)) == OperandSize::kQuad); CHECK(Bytecodes::SizeForUnsignedOperand(static_cast(kMaxUInt32)) == OperandSize::kQuad); } TEST(OperandScale, PrefixesRequired) { CHECK(!Bytecodes::OperandScaleRequiresPrefixBytecode(OperandScale::kSingle)); CHECK(Bytecodes::OperandScaleRequiresPrefixBytecode(OperandScale::kDouble)); CHECK( Bytecodes::OperandScaleRequiresPrefixBytecode(OperandScale::kQuadruple)); CHECK(Bytecodes::OperandScaleToPrefixBytecode(OperandScale::kDouble) == Bytecode::kWide); CHECK(Bytecodes::OperandScaleToPrefixBytecode(OperandScale::kQuadruple) == Bytecode::kExtraWide); } TEST(AccumulatorUse, LogicalOperators) { CHECK_EQ(AccumulatorUse::kNone | AccumulatorUse::kRead, AccumulatorUse::kRead); CHECK_EQ(AccumulatorUse::kRead | AccumulatorUse::kWrite, AccumulatorUse::kReadWrite); CHECK_EQ(AccumulatorUse::kRead & AccumulatorUse::kReadWrite, AccumulatorUse::kRead); CHECK_EQ(AccumulatorUse::kRead & AccumulatorUse::kWrite, AccumulatorUse::kNone); } TEST(AccumulatorUse, SampleBytecodes) { CHECK(Bytecodes::ReadsAccumulator(Bytecode::kStar)); CHECK(!Bytecodes::WritesAccumulator(Bytecode::kStar)); CHECK_EQ(Bytecodes::GetAccumulatorUse(Bytecode::kStar), AccumulatorUse::kRead); CHECK(!Bytecodes::ReadsAccumulator(Bytecode::kLdar)); CHECK(Bytecodes::WritesAccumulator(Bytecode::kLdar)); CHECK_EQ(Bytecodes::GetAccumulatorUse(Bytecode::kLdar), AccumulatorUse::kWrite); CHECK(Bytecodes::ReadsAccumulator(Bytecode::kAdd)); CHECK(Bytecodes::WritesAccumulator(Bytecode::kAdd)); CHECK_EQ(Bytecodes::GetAccumulatorUse(Bytecode::kAdd), AccumulatorUse::kReadWrite); } TEST(AccumulatorUse, AccumulatorUseToString) { std::set names; names.insert(Bytecodes::AccumulatorUseToString(AccumulatorUse::kNone)); names.insert(Bytecodes::AccumulatorUseToString(AccumulatorUse::kRead)); names.insert(Bytecodes::AccumulatorUseToString(AccumulatorUse::kWrite)); names.insert(Bytecodes::AccumulatorUseToString(AccumulatorUse::kReadWrite)); CHECK_EQ(names.size(), 4); } } // namespace interpreter } // namespace internal } // namespace v8