# Buffer Stability: 2 - Stable Prior to the introduction of `TypedArray` in ECMAScript 2015 (ES6), the JavaScript language had no mechanism for reading or manipulating streams of binary data. The `Buffer` class was introduced as part of the Node.js API to make it possible to interact with octet streams in the context of things like TCP streams and file system operations. Now that `TypedArray` has been added in ES6, the `Buffer` class implements the `Uint8Array` API in a manner that is more optimized and suitable for Node.js' use cases. Instances of the `Buffer` class are similar to arrays of integers but correspond to fixed-sized, raw memory allocations outside the V8 heap. The size of the `Buffer` is established when it is created and cannot be resized. The `Buffer` class is a global within Node.js, making it unlikely that one would need to ever use `require('buffer')`. ```js const buf1 = new Buffer(10); // creates a buffer of length 10 const buf2 = new Buffer([1,2,3]); // creates a buffer containing [01, 02, 03] const buf3 = new Buffer('test'); // creates a buffer containing ASCII bytes [74, 65, 73, 74] const buf4 = new Buffer('tést', 'utf8'); // creates a buffer containing UTF8 bytes [74, c3, a9, 73, 74] ``` ## Buffers and Character Encodings Buffers are commonly used to represent sequences of encoded characters such as UTF8, UCS2, Base64 or even Hex-encoded data. It is possible to convert back and forth between Buffers and ordinary JavaScript string objects by using an explicit encoding method. ```js const buf = new Buffer('hello world', 'ascii'); console.log(buf.toString('hex')); // prints: 68656c6c6f20776f726c64 console.log(buf.toString('base64')); // prints: aGVsbG8gd29ybGQ= ``` The character encodings currently supported by Node.js include: * `'ascii'` - for 7-bit ASCII data only. This encoding method is very fast and will strip the high bit if set. * `'utf8'` - Multibyte encoded Unicode characters. Many web pages and other document formats use UTF-8. * `'utf16le'` - 2 or 4 bytes, little-endian encoded Unicode characters. Surrogate pairs (U+10000 to U+10FFFF) are supported. * `'ucs2'` - Alias of `'utf16le'`. * `'base64'` - Base64 string encoding. * `'binary'` - A way of encoding the buffer into a one-byte (`latin-1`) encoded string. The string `'latin-1'` is not supported. Instead, pass `'binary'` to use `'latin-1'` encoding. * `'hex'` - Encode each byte as two hexadecimal characters. ## Buffers and TypedArray Buffers are also `Uint8Array` TypedArray instances. However, there are subtle incompatibilities with the TypedArray specification in ECMAScript 2015. For instance, while `ArrayBuffer#slice()` creates a copy of the slice, the implementation of [`Buffer#slice()`][] creates a view over the existing Buffer without copying, making `Buffer#slice()` far more efficient. It is also possible to create new TypedArray instances from a `Buffer` with the following caveats: 1. The Buffer instances's memory is copied to the TypedArray, not shared. 2. The Buffer's memory is interpreted as an array of distinct elements, and not as a byte array of the target type. That is, `new Uint32Array(new Buffer([1,2,3,4]))` creates a 4-element `Uint32Array` with elements `[1,2,3,4]`, not a `Uint32Array` with a single element `[0x1020304]` or `[0x4030201]`. It is possible to create a new Buffer that shares the same allocated memory as a TypedArray instance by using the TypeArray objects `.buffer` property: ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf1 = new Buffer(arr); // copies the buffer const buf2 = new Buffer(arr.buffer); // shares the memory with arr; console.log(buf1); // Prints: , copied buffer has only two elements console.log(buf2); // Prints: arr[1] = 6000; console.log(buf1); // Prints: console.log(buf2); // Prints: ``` Note that when creating a Buffer using the TypeArray's `.buffer`, it is not currently possible to use only a portion of the underlying `ArrayBuffer`. To create a Buffer that uses only a part of the `ArrayBuffer`, use the `buf.slice()` function after the Buffer is created: ```js const arr = new Uint16Array(20); const buf = new Buffer(arr.buffer).slice(0, 16); console.log(buf.length); // Prints: 16 ``` ## Buffers and ES6 iteration Buffers can be iterated over using the ECMAScript 2015 (ES6) `for..of` syntax: ```js const buf = new Buffer([1, 2, 3]); for (var b of buf) console.log(b) // Prints: // 1 // 2 // 3 ``` Additionally, the `buffer.values()`, `buffer.keys()`, and `buffer.entries()` methods can be used to create iterators. ## Class: Buffer The Buffer class is a global type for dealing with binary data directly. It can be constructed in a variety of ways. ### new Buffer(array) * `array` Array Allocates a new Buffer using an `array` of octets. ```js const buf = new Buffer([0x62,0x75,0x66,0x66,0x65,0x72]); // creates a new Buffer containing ASCII bytes // ['b','u','f','f','e','r'] ``` ### new Buffer(buffer) * `buffer` {Buffer} Copies the passed `buffer` data onto a new `Buffer` instance. ```js const buf1 = new Buffer('buffer'); const buf2 = new Buffer(buf1); buf1[0] = 0x61; console.log(buf1.toString()); // 'auffer' console.log(buf2.toString()); // 'buffer' (copy is not changed) ``` ### new Buffer(arrayBuffer) * `arrayBuffer` - The `.buffer` property of a `TypedArray` or a `new ArrayBuffer()` When passed a reference to the `.buffer` property of a `TypedArray` instance, the newly created Buffer will share the same allocated memory as the TypedArray. ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; const buf = new Buffer(arr.buffer); // shares the memory with arr; console.log(buf); // Prints: // changing the TypdArray changes the Buffer also arr[1] = 6000; console.log(buf); // Prints: ``` ### new Buffer(size) * `size` Number Allocates a new Buffer of `size` bytes. The `size` must be less than or equal to the value of `require('buffer').kMaxLength` (on 64-bit architectures, `kMaxLength` is `(2^31)-1`). Otherwise, a [`RangeError`][] is thrown. If a `size` less than 0 is specified, a zero-length Buffer will be created. Unlike `ArrayBuffers`, the underlying memory for Buffer instances created in this way is not initialized. The contents of a newly created `Buffer` are unknown and could contain sensitive data. Use [`buf.fill(0)`][] to initialize a Buffer to zeroes. ```js const buf = new Buffer(5); console.log(buf); // // (octets will be different, every time) buf.fill(0); console.log(buf); // ``` ### new Buffer(str[, encoding]) * `str` String - string to encode. * `encoding` String - encoding to use, Optional. Creates a new Buffer containing the given JavaScript string `str`. If provided, the `encoding` parameter identifies the strings character encoding. If not provided, `encoding` defaults to `'utf8'`. ```js const buf1 = new Buffer('this is a tést'); console.log(buf1.toString()); // prints: this is a tést console.log(buf1.toString('ascii')); // prints: this is a tC)st const buf2 = new Buffer('7468697320697320612074c3a97374', 'hex'); console.log(buf2.toString()); // prints: this is a tést ``` ### Class Method: Buffer.byteLength(string[, encoding]) * `string` String * `encoding` String, Optional, Default: 'utf8' * Return: Number Returns the actual byte length of a string. If not specified, `encoding` defaults to `'utf8'`. This is not the same as [`String.prototype.length`][] since that returns the number of *characters* in a string. Example: ```js const str = '\u00bd + \u00bc = \u00be'; console.log(`${str}: ${str.length} characters, ` + `${Buffer.byteLength(str, 'utf8')} bytes`); // ½ + ¼ = ¾: 9 characters, 12 bytes ``` ### Class Method: Buffer.compare(buf1, buf2) * `buf1` {Buffer} * `buf2` {Buffer} Compares `buf1` to `buf2` typically for the purpose of sorting arrays of Buffers. This is equivalent is calling `buf1.compare(buf2)`. ```js const arr = [Buffer('1234'), Buffer('0123')]; arr.sort(Buffer.compare); ``` ### Class Method: Buffer.concat(list[, totalLength]) * `list` {Array} List of Buffer objects to concat * `totalLength` {Number} Total length of the Buffers in the list when concatenated Returns a new Buffer which is the result of concatenating all the Buffers in the `list` together. If the list has no items, or if the `totalLength` is 0, then a new zero-length Buffer is returned. If `totalLength` is not provided, it is calculated from the Buffers in the `list`. This, however, adds an additional loop to the function, so it is faster to provide the length explicitly. Example: build a single Buffer from a list of three Buffers: ```js const buf1 = new Buffer(10).fill(0); const buf2 = new Buffer(14).fill(0); const buf3 = new Buffer(18).fill(0); const totalLength = buf1.length + buf2.length + buf3.length; console.log(totalLength); const bufA = Buffer.concat([buf1, buf2, buf3], totalLength); console.log(bufA); console.log(bufA.length); // 42 // // 42 ``` ### Class Method: Buffer.isBuffer(obj) * `obj` Object * Return: Boolean Returns 'true' if `obj` is a Buffer. ### Class Method: Buffer.isEncoding(encoding) * `encoding` {String} The encoding string to test Returns true if the `encoding` is a valid encoding argument, or false otherwise. ### buffer.entries() Creates and returns an [iterator][] of `[index, byte]` pairs from the Buffer contents. ```js const buf = new Buffer('buffer'); for (var pair of buf.entries()) { console.log(pair); } // prints: // [0, 98] // [1, 117] // [2, 102] // [3, 102] // [4, 101] // [5, 114] ``` ### buffer.keys() Creates and returns an [iterator][] of Buffer keys (indices). ```js const buf = new Buffer('buffer'); for (var key of buf.keys()) { console.log(key); } // prints: // 0 // 1 // 2 // 3 // 4 // 5 ``` ### buffer.values() Creates and returns an [iterator][] for Buffer values (bytes). This function is called automatically when the Buffer is used in a `for..of` statement. ```js const buf = new Buffer('buffer'); for (var value of buf.values()) { console.log(value); } // prints: // 98 // 117 // 102 // 102 // 101 // 114 for (var value of buf) { console.log(value); } // prints: // 98 // 117 // 102 // 102 // 101 // 114 ``` ### buf[index] The index operator `[index]` can be used to get and set the octet at position `index` in the Buffer. The values refer to individual bytes, so the legal value range is between `0x00` and `0xFF` (hex) or `0` and `255` (decimal). Example: copy an ASCII string into a Buffer, one byte at a time: ```js const str = "Node.js"; const buf = new Buffer(str.length); for (var i = 0; i < str.length ; i++) { buf[i] = str.charCodeAt(i); } console.log(buf); // Prints: Node.js ``` ### buf.compare(otherBuffer) * `otherBuffer` {Buffer} Compares two Buffer instances and returns a number indicating whether `buf` comes before, after, or is the same as the `otherBuffer` in sort order. Comparison is based on the actual sequence of bytes in each Buffer. * `0` is returned if `otherBuffer` is the same as `buf` * `1` is returned if `otherBuffer` should come *before* `buf` when sorted. * `-1` is returned if `otherBuffer` should come *after* `buf` when sorted. ```js const buf1 = new Buffer('ABC'); const buf2 = new Buffer('BCD'); const buf3 = new Buffer('ABCD'); console.log(buf1.compare(buf1)); // Prints: 0 console.log(buf1.compare(buf2)); // Prints: -1 console.log(buf1.compare(buf3)); // Prints: 1 console.log(buf2.compare(buf1)); // Prints: 1 console.log(buf2.compare(buf3)); // Prints: 1 [buf1, buf2, buf3].sort(Buffer.compare); // produces sort order [buf1, buf3, buf2] ``` ### buf.copy(targetBuffer[, targetStart][, sourceStart][, sourceEnd]) * `targetBuffer` Buffer object - Buffer to copy into * `targetStart` Number, Optional, Default: 0 * `sourceStart` Number, Optional, Default: 0 * `sourceEnd` Number, Optional, Default: `buffer.length` Copies data from a region of this Buffer to a region in the target Buffer even if the target memory region overlaps with the source. If `undefined`, the `targetStart` and `sourceStart` parameters default to `0` while `sourceEnd` defaults to `buffer.length`. Returns the number of bytes copied. Example: build two Buffers, then copy `buf1` from byte 16 through byte 19 into `buf2`, starting at the 8th byte in `buf2`. ```js const buf1 = new Buffer(26); const buf2 = new Buffer(26).fill('!'); for (var i = 0 ; i < 26 ; i++) { buf1[i] = i + 97; // 97 is ASCII a } buf1.copy(buf2, 8, 16, 20); console.log(buf2.toString('ascii', 0, 25)); // Prints: !!!!!!!!qrst!!!!!!!!!!!!! ``` Example: Build a single Buffer, then copy data from one region to an overlapping region in the same Buffer ```js const buf = new Buffer(26); for (var i = 0 ; i < 26 ; i++) { buf[i] = i + 97; // 97 is ASCII a } buf.copy(buf, 0, 4, 10); console.log(buf.toString()); // efghijghijklmnopqrstuvwxyz ``` ### buf.equals(otherBuffer) * `otherBuffer` {Buffer} Returns a boolean indicating whether `this` and `otherBuffer` have exactly the same bytes. ```js const buf1 = new Buffer('ABC'); const buf2 = new Buffer('414243', 'hex'); const buf3 = new Buffer('ABCD'); console.log(buf1.equals(buf2)); // Prints: true console.log(buf1.equals(buf3)); // Prints: false ``` ### buf.fill(value[, offset][, end]) * `value` * `offset` Number, Optional * `end` Number, Optional Fills the Buffer with the specified value. If the `offset` (defaults to `0`) and `end` (defaults to `buffer.length`) are not given it will fill the entire Buffer. The method returns a reference to the Buffer so calls can be chained. ```js const b = new Buffer(50).fill('h'); console.log(b.toString()); // Prints: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ``` ### buf.indexOf(value[, byteOffset][, encoding]) * `value` String, Buffer or Number * `byteOffset` Number, Optional, Default: 0 * `encoding` String, Optional, Default: `utf8` * Return: Number Operates similar to [`Array#indexOf()`][] in that it returns either the starting index position of `value` in Buffer or `-1` if the Buffer does not contain `value`. The `value` can be a String, Buffer or Number. Strings are by default interpreted as UTF8. Buffers will use the entire Buffer (to compare a partial Buffer use [`Buffer#slice()`][]). Numbers can range from 0 to 255. ```js const buf = new Buffer('this is a buffer'); buf.indexOf('this'); // returns 0 buf.indexOf('is'); // returns 2 buf.indexOf(new Buffer('a buffer')); // returns 8 buf.indexOf(97); // ascii for 'a' // returns 8 buf.indexOf(new Buffer('a buffer example')); // returns -1 buf.indexOf(new Buffer('a buffer example').slice(0,8)); // returns 8 const utf16Buffer = new Buffer('\u039a\u0391\u03a3\u03a3\u0395', 'ucs2'); utf16Buffer.indexOf('\u03a3', 0, 'ucs2'); // returns 4 utf16Buffer.indexOf('\u03a3', -4, 'ucs2'); // returns 6 ``` ### buf.includes(value[, byteOffset][, encoding]) * `value` String, Buffer or Number * `byteOffset` Number, Optional, Default: 0 * `encoding` String, Optional, Default: 'utf8' Operates similar to [Array#includes()][]. The `value` can be a String, Buffer or Number. Strings are interpreted as UTF8 unless overridden with the `encoding` argument. Buffers will use the entire Buffer (to compare a partial Buffer use `Buffer#slice()`). Numbers can range from 0 to 255. The `byteOffset` indicates the index in `buf` where searching begins. ```js const buf = new Buffer('this is a buffer'); buf.includes('this'); // returns true buf.includes('is'); // returns true buf.includes(new Buffer('a buffer')); // returns true buf.includes(97); // ascii for 'a' // returns true buf.includes(new Buffer('a buffer example')); // returns false buf.includes(new Buffer('a buffer example').slice(0,8)); // returns true buf.includes('this', 4); // returns false ``` ### buf.length * Number Returns the amount of memory allocated for the Buffer in number of bytes. Note that this does not necessarily reflect the amount of usable data within the Buffer. For instance, in the example below, a Buffer with 1234 bytes is allocated, but only 11 ASCII bytes are written. ```js const buf = new Buffer(1234); console.log(buf.length); // Prints: 1234 buf.write('some string', 0, 'ascii'); console.log(buf.length); // Prints: 1234 ``` While the `length` property is not immutable, changing the value of `length` can result in undefined and inconsistent behavior. Applications that wish to modify the length of a Buffer should therefore treat `length` as read-only and use [`buf.slice`][] to create a new Buffer. ```js const buf = new Buffer(10); buf.write('abcdefghj', 0, 'ascii'); console.log(buf.length); // Prints: 10 buf = buf.slice(0,5); console.log(buf.length); // Prints: 5 ``` ### buf.readDoubleBE(offset[, noAssert]) ### buf.readDoubleLE(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads a 64-bit double from the Buffer at the specified `offset` with specified endian format (`readDoubleBE()` returns big endian, `readDoubleLE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. ```js const buf = new Buffer([1,2,3,4,5,6,7,8]); buf.readDoubleBE(); // Returns: 8.20788039913184e-304 buf.readDoubleLE(); // Returns: 5.447603722011605e-270 buf.readDoubleLE(1); // throws RangeError: Index out of range buf.readDoubleLE(1, true); // Warning: reads passed end of buffer! // Segmentation fault! don't do this! ``` ### buf.readFloatBE(offset[, noAssert]) ### buf.readFloatLE(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads a 32-bit float from the Buffer at the specified `offset` with specified endian format (`readFloatBE()` returns big endian, `readFloatLE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. ```js const buf = new Buffer([1,2,3,4]); buf.readFloatBE(); // Returns: 2.387939260590663e-38 buf.readFloatLE(); // Returns: 1.539989614439558e-36 buf.readFloatLE(1); // throws RangeError: Index out of range buf.readFloatLE(1, true); // Warning: reads passed end of buffer! // Segmentation fault! don't do this! ``` ### buf.readInt8(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads a signed 8-bit integer from the Buffer at the specified `offset`. Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. Integers read from the Buffer are interpreted as two's complement signed values. ```js const buf = new Buffer([1,-2,3,4]); buf.readInt8(0); // returns 1 buf.readInt8(1); // returns -2 ``` ### buf.readInt16BE(offset[, noAssert]) ### buf.readInt16LE(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads a signed 16-bit integer from the Buffer at the specified `offset` with the specified endian format (`readInt16BE()` returns big endian, `readInt16LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. Integers read from the Buffer are interpreted as two's complement signed values. ```js const buf = new Buffer([1,-2,3,4]); buf.readInt16BE(); // returns 510 buf.readInt16LE(1); // returns -511 ``` ### buf.readInt32BE(offset[, noAssert]) ### buf.readInt32LE(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads a signed 32-bit integer from the Buffer at the specified `offset` with the specified endian format (`readInt32BE()` returns big endian, `readInt32LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. Integers read from the Buffer are interpreted as two's complement signed values. ```js const buf = new Buffer([1,-2,3,4]); buf.readInt32BE(); // returns 33424132 buf.readInt32LE(1); // returns 67370497 ``` ### buf.readIntBE(offset, byteLength[, noAssert]) ### buf.readIntLE(offset, byteLength[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} Reads `byteLength` number of bytes from the Buffer at the specified `offset` and interprets the result as a two's complement signed value. Supports up to 48 bits of accuracy. For example: ```js const buf = new Buffer(6); buf.writeUInt16LE(0x90ab, 0); buf.writeUInt32LE(0x12345678, 2); buf.readIntLE(0, 6).toString(16); // Specify 6 bytes (48 bits) // Returns: '1234567890ab' buf.readIntBE(0, 6).toString(16); // Returns: -546f87a9cbee ``` Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. ### buf.readUInt8(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads an unsigned 8-bit integer from the Buffer at the specified `offset`. Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. ```js const buf = new Buffer([1,-2,3,4]); buf.readUInt8(0); // returns 1 buf.readUInt8(1); // returns 254 ``` ### buf.readUInt16BE(offset[, noAssert]) ### buf.readUInt16LE(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads an unsigned 16-bit integer from the Buffer at the specified `offset` with specified endian format (`readInt32BE()` returns big endian, `readInt32LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. Example: ```js const buf = new Buffer([0x3, 0x4, 0x23, 0x42]); buf.readUInt16BE(0); // Returns: 0x0304 buf.readUInt16LE(0); // Returns: 0x0403 buf.readUInt16BE(1); // Returns: 0x0423 buf.readUInt16LE(1); // Returns: 0x2304 buf.readUInt16BE(2); // Returns: 0x2342 buf.readUInt16LE(2); // Returns: 0x4223 ``` ### buf.readUInt32BE(offset[, noAssert]) ### buf.readUInt32LE(offset[, noAssert]) * `offset` Number * `noAssert` Boolean, Optional, Default: false * Return: Number Reads an unsigned 32-bit integer from the Buffer at the specified `offset` with specified endian format (`readInt32BE()` returns big endian, `readInt32LE()` returns little endian). Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. Example: ```js const buf = new Buffer([0x3, 0x4, 0x23, 0x42]); buf.readUInt32BE(0); // Returns: 0x03042342 console.log(buf.readUInt32LE(0)); // Returns: 0x42230403 ``` ### buf.readUIntBE(offset, byteLength[, noAssert]) ### buf.readUIntLE(offset, byteLength[, noAssert]) * `offset` {Number} `0 <= offset <= buf.length` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} Reads `byteLength` number of bytes from the Buffer at the specified `offset` and interprets the result as an unsigned integer. Supports up to 48 bits of accuracy. For example: ```js const buf = new Buffer(6); buf.writeUInt16LE(0x90ab, 0); buf.writeUInt32LE(0x12345678, 2); buf.readUIntLE(0, 6).toString(16); // Specify 6 bytes (48 bits) // Returns: '1234567890ab' buf.readUIntBE(0, 6).toString(16); // Returns: ab9078563412 ``` Setting `noAssert` to `true` skips validation of the `offset`. This allows the `offset` to be beyond the end of the Buffer. When not specified, `noAssert` defaults to `false`. ### buf.slice([start[, end]]) * `start` Number, Optional, Default: 0 * `end` Number, Optional, Default: `buffer.length` Returns a new Buffer that references the same memory as the original, but offset and cropped by the `start` (defaults to `0`) and `end` (defaults to `buffer.length`) indexes. **Note that modifying the new Buffer slice will modify the memory in the original Buffer because the allocated memory of the two objects overlap.** Example: build a Buffer with the ASCII alphabet, take a slice, then modify one byte from the original Buffer. ```js const buf1 = new Buffer(26); for (var i = 0 ; i < 26 ; i++) { buf1[i] = i + 97; // 97 is ASCII a } const buf2 = buf1.slice(0, 3); buf2.toString('ascii', 0, buf2.length); // Returns: 'abc' buf1[0] = 33; buf2.toString('ascii', 0, buf2.length); // Returns : '!bc' ``` Specifying negative indexes causes the slice to be generated relative to the end of the Buffer rather than the beginning. ```js const buf = new Buffer('buffer'); buf.slice(-6, -1).toString(); // Returns 'buffe', equivalent to buf.slice(0, 5) buf.slice(-6, -2).toString(); // Returns 'buff', equivalent to buf.slice(0, 4) buf.slice(-5, -2).toString(); // Returns 'uff', equivalent to buf.slice(1, 4) ``` ### buf.toString([encoding][, start][, end]) * `encoding` String, Optional, Default: 'utf8' * `start` Number, Optional, Default: 0 * `end` Number, Optional, Default: `buffer.length` Decodes and returns a string from the Buffer data using the specified character set `encoding`. If `encoding` is `undefined` or `null`, then `encoding` defaults to `'utf8'`. The `start` and `end` parameters default to `0` and `buffer.length` when `undefined`. ```js const buf = new Buffer(26); for (var i = 0 ; i < 26 ; i++) { buf[i] = i + 97; // 97 is ASCII a } buf.toString('ascii'); // Returns: 'abcdefghijklmnopqrstuvwxyz' buf.toString('ascii',0,5); // Returns: 'abcde' buf.toString('utf8',0,5); // Returns: 'abcde' buf.toString(undefined,0,5); // Returns: 'abcde', encoding defaults to 'utf8' ``` ### buf.toJSON() Returns a JSON representation of the Buffer instance. `JSON.stringify` implicitly calls this function when stringifying a Buffer instance. Example: ```js const buf = new Buffer('test'); const json = JSON.stringify(buf); console.log(json); // Prints: '{"type":"Buffer","data":[116,101,115,116]}' const copy = JSON.parse(json, (key, value) => { return value && value.type === 'Buffer' ? new Buffer(value.data) : value; }); console.log(copy.toString()); // Prints: 'test' ``` ### buf.write(string[, offset][, length][, encoding]) * `string` String - data to be written to buffer * `offset` Number, Optional, Default: 0 * `length` Number, Optional, Default: `buffer.length - offset` * `encoding` String, Optional, Default: 'utf8' Writes `string` to the Buffer at `offset` using the given `encoding`. When undefined, `offset` defaults to `0`, and `encoding` defaults to `'utf8'`. The `length` parameter is the number of bytes to write, when undefined `length` defaults to `buffer.length - offset`. If the Buffer did not contain enough space to fit the entire string, only a partial amount of the string will be written however, it will not write only partially encoded characters. The return value indicates the number of octets written. ```js const buf = new Buffer(256); const len = buf.write('\u00bd + \u00bc = \u00be', 0); console.log(`${len} bytes: ${buf.toString('utf8', 0, len)}`); // Prints: 12 bytes: ½ + ¼ = ¾ ``` ### buf.writeDoubleBE(value, offset[, noAssert]) ### buf.writeDoubleLE(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeDoubleBE()` writes big endian, `writeDoubleLE()` writes little endian). The `value` argument must be a valid 64-bit double. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. Example: ```js const buf = new Buffer(8); buf.writeDoubleBE(0xdeadbeefcafebabe, 0); console.log(buf); // Prints: buf.writeDoubleLE(0xdeadbeefcafebabe, 0); console.log(buf); // Prints: ``` ### buf.writeFloatBE(value, offset[, noAssert]) ### buf.writeFloatLE(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeFloatBE()` writes big endian, `writeFloatLE()` writes little endian). Behavior is unspecified if `value` is anything other than a 32-bit float. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. Example: ```js const buf = new Buffer(4); buf.writeFloatBE(0xcafebabe, 0); console.log(buf); // Prints: buf.writeFloatLE(0xcafebabe, 0); console.log(buf); // Prints: ``` ### buf.writeInt8(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset`. The `value` must be a valid signed 8-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. The `value` is interpreted and written as a two's complement signed integer. ```js const buf = new Buffer(2); buf.writeInt8(2, 0); buf.writeInt8(-2, 1); console.log(buf); // Prints: ``` ### buf.writeInt16BE(value, offset[, noAssert]) ### buf.writeInt16LE(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeInt16BE()` writes big endian, `writeInt16LE()` writes little endian). The `value` must be a valid signed 16-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. The `value` is interpreted and written as a two's complement signed integer. ```js const buf = new Buffer(4); buf.writeInt16BE(0x0102,0); buf.writeInt16LE(0x0304,2); console.log(buf); // Prints: ``` ### buf.writeInt32BE(value, offset[, noAssert]) ### buf.writeInt32LE(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeInt32BE()` writes big endian, `writeInt32LE()` writes little endian). The `value` must be a valid signed 32-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. The `value` is interpreted and written as a two's complement signed integer. ```js const buf = new Buffer(8); buf.writeInt32BE(0x01020304,0); buf.writeInt32LE(0x05060708,4); console.log(buf); // Prints: ``` ### buf.writeIntBE(value, offset, byteLength[, noAssert]) ### buf.writeIntLE(value, offset, byteLength[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} Writes `value` to the Buffer at the specified `offset` and `byteLength`. Supports up to 48 bits of accuracy. For example: ```js const buf1 = new Buffer(6); buf1.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf1); // Prints: const buf2 = new Buffer(6); buf2.writeUIntLE(0x1234567890ab, 0, 6); console.log(buf2); // Prints: ``` Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. ### buf.writeUInt8(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset`. The `value` must be a valid unsigned 8-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. Example: ```js const buf = new Buffer(4); buf.writeUInt8(0x3, 0); buf.writeUInt8(0x4, 1); buf.writeUInt8(0x23, 2); buf.writeUInt8(0x42, 3); console.log(buf); // Prints: ``` ### buf.writeUInt16BE(value, offset[, noAssert]) ### buf.writeUInt16LE(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeUInt16BE()` writes big endian, `writeUInt16LE()` writes little endian). The `value` must be a valid unsigned 16-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. Example: ```js const buf = new Buffer(4); buf.writeUInt16BE(0xdead, 0); buf.writeUInt16BE(0xbeef, 2); console.log(buf); // Prints: buf.writeUInt16LE(0xdead, 0); buf.writeUInt16LE(0xbeef, 2); console.log(buf); // Prints: ``` ### buf.writeUInt32BE(value, offset[, noAssert]) ### buf.writeUInt32LE(value, offset[, noAssert]) * `value` Number * `offset` Number * `noAssert` Boolean, Optional, Default: false Writes `value` to the Buffer at the specified `offset` with specified endian format (`writeUInt32BE()` writes big endian, `writeUInt32LE()` writes little endian). The `value` must be a valid unsigned 32-bit integer. Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. Example: ```js const buf = new Buffer(4); buf.writeUInt32BE(0xfeedface, 0); console.log(buf); // Prints: buf.writeUInt32LE(0xfeedface, 0); console.log(buf); // Prints: ``` ### buf.writeUIntBE(value, offset, byteLength[, noAssert]) ### buf.writeUIntLE(value, offset, byteLength[, noAssert]) * `value` {Number} Bytes to be written to Buffer * `offset` {Number} `0 <= offset <= buf.length` * `byteLength` {Number} `0 < byteLength <= 6` * `noAssert` {Boolean} Default: false * Return: {Number} Writes `value` to the Buffer at the specified `offset` and `byteLength`. Supports up to 48 bits of accuracy. For example: ```js const buf = new Buffer(6); buf.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf); // Prints: ``` Set `noAssert` to true to skip validation of `value` and `offset`. This means that `value` may be too large for the specific function and `offset` may be beyond the end of the Buffer leading to the values being silently dropped. This should not be used unless you are certain of correctness. Defaults to `false`. ## buffer.INSPECT_MAX_BYTES * Number, Default: 50 Returns the maximum number of bytes that will be returned when `buffer.inspect()` is called. This can be overridden by user modules. See [`util.inspect()`][] for more details on `buffer.inspect()` behavior. Note that this is a property on the `buffer` module as returned by `require('buffer')`, not on the Buffer global or a Buffer instance. ## Class: SlowBuffer Returns an un-pooled `Buffer`. In order to avoid the garbage collection overhead of creating many individually allocated Buffers, by default allocations under 4KB are sliced from a single larger allocated object. This approach improves both performance and memory usage since v8 does not need to track and cleanup as many `Persistent` objects. In the case where a developer may need to retain a small chunk of memory from a pool for an indeterminate amount of time, it may be appropriate to create an un-pooled Buffer instance using `SlowBuffer` then copy out the relevant bits. ```js // need to keep around a few small chunks of memory const store = []; socket.on('readable', () => { var data = socket.read(); // allocate for retained data var sb = new SlowBuffer(10); // copy the data into the new allocation data.copy(sb, 0, 0, 10); store.push(sb); }); ``` Use of `SlowBuffer` should be used only as a last resort *after* a developer has observed undue memory retention in their applications. [iterator]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols [`Array#indexOf()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf [Array#includes()]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/includes [`buf.fill(0)`]: #buffer_buf_fill_value_offset_end [`buf.slice`]: #buffer_buf_slice_start_end [`buf1.compare(buf2)`]: #buffer_buf_compare_otherbuffer [`Buffer#slice()`]: #buffer_buf_slice_start_end [`RangeError`]: errors.html#errors_class_rangeerror [`String.prototype.length`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length [`util.inspect()`]: util.html#util_util_inspect_object_options