// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_ #define V8_COMPILER_CONTROL_EQUIVALENCE_H_ #include "src/v8.h" #include "src/compiler/graph.h" #include "src/compiler/node.h" #include "src/compiler/node-properties.h" #include "src/zone-containers.h" namespace v8 { namespace internal { namespace compiler { // Determines control dependence equivalence classes for control nodes. Any two // nodes having the same set of control dependences land in one class. These // classes can in turn be used to: // - Build a program structure tree (PST) for controls in the graph. // - Determine single-entry single-exit (SESE) regions within the graph. // // Note that this implementation actually uses cycle equivalence to establish // class numbers. Any two nodes are cycle equivalent if they occur in the same // set of cycles. It can be shown that control dependence equivalence reduces // to undirected cycle equivalence for strongly connected control flow graphs. // // The algorithm is based on the paper, "The program structure tree: computing // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which // also contains proofs for the aforementioned equivalence. References to line // numbers in the algorithm from figure 4 have been added [line:x]. class ControlEquivalence : public ZoneObject { public: ControlEquivalence(Zone* zone, Graph* graph) : zone_(zone), graph_(graph), dfs_number_(0), class_number_(1), node_data_(graph->NodeCount(), EmptyData(), zone) {} // Run the main algorithm starting from the {exit} control node. This causes // the following iterations over control edges of the graph: // 1) A breadth-first backwards traversal to determine the set of nodes that // participate in the next step. Takes O(E) time and O(N) space. // 2) An undirected depth-first backwards traversal that determines class // numbers for all participating nodes. Takes O(E) time and O(N) space. void Run(Node* exit) { if (GetClass(exit) != kInvalidClass) return; DetermineParticipation(exit); RunUndirectedDFS(exit); } // Retrieves a previously computed class number. size_t ClassOf(Node* node) { DCHECK(GetClass(node) != kInvalidClass); return GetClass(node); } private: static const size_t kInvalidClass = static_cast(-1); typedef enum { kInputDirection, kUseDirection } DFSDirection; struct Bracket { DFSDirection direction; // Direction in which this bracket was added. size_t recent_class; // Cached class when bracket was topmost. size_t recent_size; // Cached set-size when bracket was topmost. Node* from; // Node that this bracket originates from. Node* to; // Node that this bracket points to. }; // The set of brackets for each node during the DFS walk. typedef ZoneLinkedList BracketList; struct DFSStackEntry { DFSDirection direction; // Direction currently used in DFS walk. Node::InputEdges::iterator input; // Iterator used for "input" direction. Node::UseEdges::iterator use; // Iterator used for "use" direction. Node* parent_node; // Parent node of entry during DFS walk. Node* node; // Node that this stack entry belongs to. }; // The stack is used during the undirected DFS walk. typedef ZoneStack DFSStack; struct NodeData { size_t class_number; // Equivalence class number assigned to node. size_t dfs_number; // Pre-order DFS number assigned to node. bool visited; // Indicates node has already been visited. bool on_stack; // Indicates node is on DFS stack during walk. bool participates; // Indicates node participates in DFS walk. BracketList blist; // List of brackets per node. }; // The per-node data computed during the DFS walk. typedef ZoneVector Data; // Called at pre-visit during DFS walk. void VisitPre(Node* node) { Trace("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); // Dispense a new pre-order number. SetNumber(node, NewDFSNumber()); Trace(" Assigned DFS number is %d\n", GetNumber(node)); } // Called at mid-visit during DFS walk. void VisitMid(Node* node, DFSDirection direction) { Trace("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); BracketList& blist = GetBracketList(node); // Remove brackets pointing to this node [line:19]. BracketListDelete(blist, node, direction); // Potentially introduce artificial dependency from start to end. if (blist.empty()) { DCHECK_EQ(kInputDirection, direction); VisitBackedge(node, graph_->end(), kInputDirection); } // Potentially start a new equivalence class [line:37]. BracketListTrace(blist); Bracket* recent = &blist.back(); if (recent->recent_size != blist.size()) { recent->recent_size = blist.size(); recent->recent_class = NewClassNumber(); } // Assign equivalence class to node. SetClass(node, recent->recent_class); Trace(" Assigned class number is %d\n", GetClass(node)); } // Called at post-visit during DFS walk. void VisitPost(Node* node, Node* parent_node, DFSDirection direction) { Trace("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); BracketList& blist = GetBracketList(node); // Remove brackets pointing to this node [line:19]. BracketListDelete(blist, node, direction); // Propagate bracket list up the DFS tree [line:13]. if (parent_node != NULL) { BracketList& parent_blist = GetBracketList(parent_node); parent_blist.splice(parent_blist.end(), blist); } } // Called when hitting a back edge in the DFS walk. void VisitBackedge(Node* from, Node* to, DFSDirection direction) { Trace("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(), from->op()->mnemonic(), to->id(), to->op()->mnemonic()); // Push backedge onto the bracket list [line:25]. Bracket bracket = {direction, kInvalidClass, 0, from, to}; GetBracketList(from).push_back(bracket); } // Performs and undirected DFS walk of the graph. Conceptually all nodes are // expanded, splitting "input" and "use" out into separate nodes. During the // traversal, edges towards the representative nodes are preferred. // // \ / - Pre-visit: When N1 is visited in direction D the preferred // x N1 edge towards N is taken next, calling VisitPre(N). // | - Mid-visit: After all edges out of N2 in direction D have // | N been visited, we switch the direction and start considering // | edges out of N1 now, and we call VisitMid(N). // x N2 - Post-visit: After all edges out of N1 in direction opposite // / \ to D have been visited, we pop N and call VisitPost(N). // // This will yield a true spanning tree (without cross or forward edges) and // also discover proper back edges in both directions. void RunUndirectedDFS(Node* exit) { ZoneStack stack(zone_); DFSPush(stack, exit, NULL, kInputDirection); VisitPre(exit); while (!stack.empty()) { // Undirected depth-first backwards traversal. DFSStackEntry& entry = stack.top(); Node* node = entry.node; if (entry.direction == kInputDirection) { if (entry.input != node->input_edges().end()) { Edge edge = *entry.input; Node* input = edge.to(); ++(entry.input); if (NodeProperties::IsControlEdge(edge) && NodeProperties::IsControl(input)) { // Visit next control input. if (!GetData(input)->participates) continue; if (GetData(input)->visited) continue; if (GetData(input)->on_stack) { // Found backedge if input is on stack. if (input != entry.parent_node) { VisitBackedge(node, input, kInputDirection); } } else { // Push input onto stack. DFSPush(stack, input, node, kInputDirection); VisitPre(input); } } continue; } if (entry.use != node->use_edges().end()) { // Switch direction to uses. entry.direction = kUseDirection; VisitMid(node, kInputDirection); continue; } } if (entry.direction == kUseDirection) { if (entry.use != node->use_edges().end()) { Edge edge = *entry.use; Node* use = edge.from(); ++(entry.use); if (NodeProperties::IsControlEdge(edge) && NodeProperties::IsControl(use)) { // Visit next control use. if (!GetData(use)->participates) continue; if (GetData(use)->visited) continue; if (GetData(use)->on_stack) { // Found backedge if use is on stack. if (use != entry.parent_node) { VisitBackedge(node, use, kUseDirection); } } else { // Push use onto stack. DFSPush(stack, use, node, kUseDirection); VisitPre(use); } } continue; } if (entry.input != node->input_edges().end()) { // Switch direction to inputs. entry.direction = kInputDirection; VisitMid(node, kUseDirection); continue; } } // Pop node from stack when done with all inputs and uses. DCHECK(entry.input == node->input_edges().end()); DCHECK(entry.use == node->use_edges().end()); DFSPop(stack, node); VisitPost(node, entry.parent_node, entry.direction); } } void DetermineParticipationEnqueue(ZoneQueue& queue, Node* node) { if (!GetData(node)->participates) { GetData(node)->participates = true; queue.push(node); } } void DetermineParticipation(Node* exit) { ZoneQueue queue(zone_); DetermineParticipationEnqueue(queue, exit); while (!queue.empty()) { // Breadth-first backwards traversal. Node* node = queue.front(); queue.pop(); int max = NodeProperties::PastControlIndex(node); for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { DetermineParticipationEnqueue(queue, node->InputAt(i)); } } } private: NodeData* GetData(Node* node) { return &node_data_[node->id()]; } int NewClassNumber() { return class_number_++; } int NewDFSNumber() { return dfs_number_++; } // Template used to initialize per-node data. NodeData EmptyData() { return {kInvalidClass, 0, false, false, false, BracketList(zone_)}; } // Accessors for the DFS number stored within the per-node data. size_t GetNumber(Node* node) { return GetData(node)->dfs_number; } void SetNumber(Node* node, size_t number) { GetData(node)->dfs_number = number; } // Accessors for the equivalence class stored within the per-node data. size_t GetClass(Node* node) { return GetData(node)->class_number; } void SetClass(Node* node, size_t number) { GetData(node)->class_number = number; } // Accessors for the bracket list stored within the per-node data. BracketList& GetBracketList(Node* node) { return GetData(node)->blist; } void SetBracketList(Node* node, BracketList& list) { GetData(node)->blist = list; } // Mutates the DFS stack by pushing an entry. void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) { DCHECK(GetData(node)->participates); DCHECK(!GetData(node)->visited); GetData(node)->on_stack = true; Node::InputEdges::iterator input = node->input_edges().begin(); Node::UseEdges::iterator use = node->use_edges().begin(); stack.push({dir, input, use, from, node}); } // Mutates the DFS stack by popping an entry. void DFSPop(DFSStack& stack, Node* node) { DCHECK_EQ(stack.top().node, node); GetData(node)->on_stack = false; GetData(node)->visited = true; stack.pop(); } // TODO(mstarzinger): Optimize this to avoid linear search. void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) { for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) { if (i->to == to && i->direction != direction) { Trace(" BList erased: {%d->%d}\n", i->from->id(), i->to->id()); i = blist.erase(i); } else { ++i; } } } void BracketListTrace(BracketList& blist) { if (FLAG_trace_turbo_scheduler) { Trace(" BList: "); for (Bracket bracket : blist) { Trace("{%d->%d} ", bracket.from->id(), bracket.to->id()); } Trace("\n"); } } void Trace(const char* msg, ...) { if (FLAG_trace_turbo_scheduler) { va_list arguments; va_start(arguments, msg); base::OS::VPrint(msg, arguments); va_end(arguments); } } Zone* zone_; Graph* graph_; int dfs_number_; // Generates new DFS pre-order numbers on demand. int class_number_; // Generates new equivalence class numbers on demand. Data node_data_; // Per-node data stored as a side-table. }; } // namespace compiler } // namespace internal } // namespace v8 #endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_