// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. #include #include #include #include #include #include #include #include #if OPENSSL_VERSION_NUMBER >= 0x10000000L # define OPENSSL_CONST const #else # define OPENSSL_CONST #endif #define ASSERT_IS_STRING_OR_BUFFER(val) \ if (!val->IsString() && !Buffer::HasInstance(val)) { \ return ThrowException(Exception::TypeError(String::New("Not a string or buffer"))); \ } namespace node { namespace crypto { using namespace v8; static Persistent errno_symbol; static Persistent syscall_symbol; static Persistent subject_symbol; static Persistent issuer_symbol; static Persistent valid_from_symbol; static Persistent valid_to_symbol; static Persistent fingerprint_symbol; static Persistent name_symbol; static Persistent version_symbol; static Persistent ext_key_usage_symbol; void SecureContext::Initialize(Handle target) { HandleScope scope; Local t = FunctionTemplate::New(SecureContext::New); t->InstanceTemplate()->SetInternalFieldCount(1); t->SetClassName(String::NewSymbol("SecureContext")); NODE_SET_PROTOTYPE_METHOD(t, "init", SecureContext::Init); NODE_SET_PROTOTYPE_METHOD(t, "setKey", SecureContext::SetKey); NODE_SET_PROTOTYPE_METHOD(t, "setCert", SecureContext::SetCert); NODE_SET_PROTOTYPE_METHOD(t, "addCACert", SecureContext::AddCACert); NODE_SET_PROTOTYPE_METHOD(t, "addCRL", SecureContext::AddCRL); NODE_SET_PROTOTYPE_METHOD(t, "addRootCerts", SecureContext::AddRootCerts); NODE_SET_PROTOTYPE_METHOD(t, "setCiphers", SecureContext::SetCiphers); NODE_SET_PROTOTYPE_METHOD(t, "close", SecureContext::Close); target->Set(String::NewSymbol("SecureContext"), t->GetFunction()); } Handle SecureContext::New(const Arguments& args) { HandleScope scope; SecureContext *p = new SecureContext(); p->Wrap(args.Holder()); return args.This(); } Handle SecureContext::Init(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); OPENSSL_CONST SSL_METHOD *method = SSLv23_method(); if (args.Length() == 1 && args[0]->IsString()) { String::Utf8Value sslmethod(args[0]->ToString()); if (strcmp(*sslmethod, "SSLv2_method") == 0) { method = SSLv2_method(); } else if (strcmp(*sslmethod, "SSLv2_server_method") == 0) { method = SSLv2_server_method(); } else if (strcmp(*sslmethod, "SSLv2_client_method") == 0) { method = SSLv2_client_method(); } else if (strcmp(*sslmethod, "SSLv3_method") == 0) { method = SSLv3_method(); } else if (strcmp(*sslmethod, "SSLv3_server_method") == 0) { method = SSLv3_server_method(); } else if (strcmp(*sslmethod, "SSLv3_client_method") == 0) { method = SSLv3_client_method(); } else if (strcmp(*sslmethod, "SSLv23_method") == 0) { method = SSLv23_method(); } else if (strcmp(*sslmethod, "SSLv23_server_method") == 0) { method = SSLv23_server_method(); } else if (strcmp(*sslmethod, "SSLv23_client_method") == 0) { method = SSLv23_client_method(); } else if (strcmp(*sslmethod, "TLSv1_method") == 0) { method = TLSv1_method(); } else if (strcmp(*sslmethod, "TLSv1_server_method") == 0) { method = TLSv1_server_method(); } else if (strcmp(*sslmethod, "TLSv1_client_method") == 0) { method = TLSv1_client_method(); } else { return ThrowException(Exception::Error(String::New("Unknown method"))); } } sc->ctx_ = SSL_CTX_new(method); // Enable session caching? SSL_CTX_set_session_cache_mode(sc->ctx_, SSL_SESS_CACHE_SERVER); // SSL_CTX_set_session_cache_mode(sc->ctx_,SSL_SESS_CACHE_OFF); sc->ca_store_ = NULL; return True(); } // Takes a string or buffer and loads it into a BIO. // Caller responsible for BIO_free-ing the returned object. static BIO* LoadBIO (Handle v) { BIO *bio = BIO_new(BIO_s_mem()); if (!bio) return NULL; HandleScope scope; int r; if (v->IsString()) { String::Utf8Value s(v->ToString()); r = BIO_write(bio, *s, s.length()); } else if (Buffer::HasInstance(v)) { Local buffer_obj = v->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); r = BIO_write(bio, buffer_data, buffer_length); } if (r <= 0) { BIO_free(bio); return NULL; } return bio; } // Takes a string or buffer and loads it into an X509 // Caller responsible for X509_free-ing the returned object. static X509* LoadX509 (Handle v) { HandleScope scope; // necessary? BIO *bio = LoadBIO(v); if (!bio) return NULL; X509 * x509 = PEM_read_bio_X509(bio, NULL, NULL, NULL); if (!x509) { BIO_free(bio); return NULL; } BIO_free(bio); return x509; } Handle SecureContext::SetKey(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); if (args.Length() != 1) { return ThrowException(Exception::TypeError(String::New("Bad parameter"))); } BIO *bio = LoadBIO(args[0]); if (!bio) return False(); EVP_PKEY* key = PEM_read_bio_PrivateKey(bio, NULL, NULL, NULL); if (!key) { BIO_free(bio); return False(); } SSL_CTX_use_PrivateKey(sc->ctx_, key); EVP_PKEY_free(key); BIO_free(bio); return True(); } // Read a file that contains our certificate in "PEM" format, // possibly followed by a sequence of CA certificates that should be // sent to the peer in the Certificate message. // // Taken from OpenSSL - editted for style. int SSL_CTX_use_certificate_chain(SSL_CTX *ctx, BIO *in) { int ret = 0; X509 *x = NULL; x = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL); if (x == NULL) { SSLerr(SSL_F_SSL_CTX_USE_CERTIFICATE_CHAIN_FILE, ERR_R_PEM_LIB); goto end; } ret = SSL_CTX_use_certificate(ctx, x); if (ERR_peek_error() != 0) { // Key/certificate mismatch doesn't imply ret==0 ... ret = 0; } if (ret) { // If we could set up our certificate, now proceed to // the CA certificates. X509 *ca; int r; unsigned long err; if (ctx->extra_certs != NULL) { sk_X509_pop_free(ctx->extra_certs, X509_free); ctx->extra_certs = NULL; } while ((ca = PEM_read_bio_X509(in, NULL, NULL, NULL))) { r = SSL_CTX_add_extra_chain_cert(ctx, ca); if (!r) { X509_free(ca); ret = 0; goto end; } // Note that we must not free r if it was successfully // added to the chain (while we must free the main // certificate, since its reference count is increased // by SSL_CTX_use_certificate). } // When the while loop ends, it's usually just EOF. err = ERR_peek_last_error(); if (ERR_GET_LIB(err) == ERR_LIB_PEM && ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { ERR_clear_error(); } else { // some real error ret = 0; } } end: if (x != NULL) X509_free(x); return ret; } Handle SecureContext::SetCert(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); if (args.Length() != 1) { return ThrowException(Exception::TypeError( String::New("Bad parameter"))); } BIO* bio = LoadBIO(args[0]); if (!bio) return False(); int rv = SSL_CTX_use_certificate_chain(sc->ctx_, bio); BIO_free(bio); if (!rv) { unsigned long err = ERR_get_error(); if (!err) { return ThrowException(Exception::Error( String::New("SSL_CTX_use_certificate_chain"))); } char string[120]; ERR_error_string(err, string); return ThrowException(Exception::Error(String::New(string))); } return True(); } Handle SecureContext::AddCACert(const Arguments& args) { bool newCAStore = false; HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); if (args.Length() != 1) { return ThrowException(Exception::TypeError(String::New("Bad parameter"))); } if (!sc->ca_store_) { sc->ca_store_ = X509_STORE_new(); newCAStore = true; } X509* x509 = LoadX509(args[0]); if (!x509) return False(); X509_STORE_add_cert(sc->ca_store_, x509); SSL_CTX_add_client_CA(sc->ctx_, x509); X509_free(x509); if (newCAStore) { SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_); } return True(); } Handle SecureContext::AddCRL(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); if (args.Length() != 1) { return ThrowException(Exception::TypeError(String::New("Bad parameter"))); } BIO *bio = LoadBIO(args[0]); if (!bio) return False(); X509_CRL *x509 = PEM_read_bio_X509_CRL(bio, NULL, NULL, NULL); if (x509 == NULL) { BIO_free(bio); return False(); } X509_STORE_add_crl(sc->ca_store_, x509); X509_STORE_set_flags(sc->ca_store_, X509_V_FLAG_CRL_CHECK | X509_V_FLAG_CRL_CHECK_ALL); BIO_free(bio); X509_CRL_free(x509); return True(); } Handle SecureContext::AddRootCerts(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); assert(sc->ca_store_ == NULL); if (!root_cert_store) { root_cert_store = X509_STORE_new(); for (int i = 0; root_certs[i]; i++) { BIO *bp = BIO_new(BIO_s_mem()); if (!BIO_write(bp, root_certs[i], strlen(root_certs[i]))) { BIO_free(bp); return False(); } X509 *x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL); if (x509 == NULL) { BIO_free(bp); return False(); } X509_STORE_add_cert(root_cert_store, x509); BIO_free(bp); X509_free(x509); } } sc->ca_store_ = root_cert_store; SSL_CTX_set_cert_store(sc->ctx_, sc->ca_store_); return True(); } Handle SecureContext::SetCiphers(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); if (args.Length() != 1 || !args[0]->IsString()) { return ThrowException(Exception::TypeError(String::New("Bad parameter"))); } String::Utf8Value ciphers(args[0]->ToString()); SSL_CTX_set_cipher_list(sc->ctx_, *ciphers); return True(); } Handle SecureContext::Close(const Arguments& args) { HandleScope scope; SecureContext *sc = ObjectWrap::Unwrap(args.Holder()); sc->FreeCTXMem(); return False(); } #ifdef SSL_PRINT_DEBUG # define DEBUG_PRINT(...) fprintf (stderr, __VA_ARGS__) #else # define DEBUG_PRINT(...) #endif int Connection::HandleBIOError(BIO *bio, const char* func, int rv) { if (rv >= 0) return rv; int retry = BIO_should_retry(bio); if (BIO_should_write(bio)) { DEBUG_PRINT("[%p] BIO: %s want write. should retry %d\n", ssl_, func, retry); return 0; } else if (BIO_should_read(bio)) { DEBUG_PRINT("[%p] BIO: %s want read. should retry %d\n", ssl_, func, retry); return 0; } else { static char ssl_error_buf[512]; ERR_error_string_n(rv, ssl_error_buf, sizeof(ssl_error_buf)); HandleScope scope; Local e = Exception::Error(String::New(ssl_error_buf)); handle_->Set(String::New("error"), e); DEBUG_PRINT("[%p] BIO: %s failed: (%d) %s\n", ssl_, func, rv, ssl_error_buf); return rv; } return 0; } int Connection::HandleSSLError(const char* func, int rv) { if (rv >= 0) return rv; int err = SSL_get_error(ssl_, rv); if (err == SSL_ERROR_WANT_WRITE) { DEBUG_PRINT("[%p] SSL: %s want write\n", ssl_, func); return 0; } else if (err == SSL_ERROR_WANT_READ) { DEBUG_PRINT("[%p] SSL: %s want read\n", ssl_, func); return 0; } else { static char ssl_error_buf[512]; ERR_error_string_n(err, ssl_error_buf, sizeof(ssl_error_buf)); HandleScope scope; Local e = Exception::Error(String::New(ssl_error_buf)); handle_->Set(String::New("error"), e); DEBUG_PRINT("[%p] SSL: %s failed: (%d:%d) %s\n", ssl_, func, err, rv, ssl_error_buf); return rv; } return 0; } void Connection::ClearError() { #ifndef NDEBUG HandleScope scope; // We should clear the error in JS-land assert(handle_->Get(String::New("error"))->BooleanValue() == false); #endif // NDEBUG } void Connection::SetShutdownFlags() { HandleScope scope; int flags = SSL_get_shutdown(ssl_); if (flags & SSL_SENT_SHUTDOWN) { handle_->Set(String::New("sentShutdown"), True()); } if (flags & SSL_RECEIVED_SHUTDOWN) { handle_->Set(String::New("receivedShutdown"), True()); } } void Connection::Initialize(Handle target) { HandleScope scope; Local t = FunctionTemplate::New(Connection::New); t->InstanceTemplate()->SetInternalFieldCount(1); t->SetClassName(String::NewSymbol("Connection")); NODE_SET_PROTOTYPE_METHOD(t, "encIn", Connection::EncIn); NODE_SET_PROTOTYPE_METHOD(t, "clearOut", Connection::ClearOut); NODE_SET_PROTOTYPE_METHOD(t, "clearIn", Connection::ClearIn); NODE_SET_PROTOTYPE_METHOD(t, "encOut", Connection::EncOut); NODE_SET_PROTOTYPE_METHOD(t, "clearPending", Connection::ClearPending); NODE_SET_PROTOTYPE_METHOD(t, "encPending", Connection::EncPending); NODE_SET_PROTOTYPE_METHOD(t, "getPeerCertificate", Connection::GetPeerCertificate); NODE_SET_PROTOTYPE_METHOD(t, "isInitFinished", Connection::IsInitFinished); NODE_SET_PROTOTYPE_METHOD(t, "verifyError", Connection::VerifyError); NODE_SET_PROTOTYPE_METHOD(t, "getCurrentCipher", Connection::GetCurrentCipher); NODE_SET_PROTOTYPE_METHOD(t, "start", Connection::Start); NODE_SET_PROTOTYPE_METHOD(t, "shutdown", Connection::Shutdown); NODE_SET_PROTOTYPE_METHOD(t, "receivedShutdown", Connection::ReceivedShutdown); NODE_SET_PROTOTYPE_METHOD(t, "close", Connection::Close); target->Set(String::NewSymbol("Connection"), t->GetFunction()); } static int VerifyCallback(int preverify_ok, X509_STORE_CTX *ctx) { // Quoting SSL_set_verify(3ssl): // // The VerifyCallback function is used to control the behaviour when // the SSL_VERIFY_PEER flag is set. It must be supplied by the // application and receives two arguments: preverify_ok indicates, // whether the verification of the certificate in question was passed // (preverify_ok=1) or not (preverify_ok=0). x509_ctx is a pointer to // the complete context used for the certificate chain verification. // // The certificate chain is checked starting with the deepest nesting // level (the root CA certificate) and worked upward to the peer's // certificate. At each level signatures and issuer attributes are // checked. Whenever a verification error is found, the error number is // stored in x509_ctx and VerifyCallback is called with preverify_ok=0. // By applying X509_CTX_store_* functions VerifyCallback can locate the // certificate in question and perform additional steps (see EXAMPLES). // If no error is found for a certificate, VerifyCallback is called // with preverify_ok=1 before advancing to the next level. // // The return value of VerifyCallback controls the strategy of the // further verification process. If VerifyCallback returns 0, the // verification process is immediately stopped with "verification // failed" state. If SSL_VERIFY_PEER is set, a verification failure // alert is sent to the peer and the TLS/SSL handshake is terminated. If // VerifyCallback returns 1, the verification process is continued. If // VerifyCallback always returns 1, the TLS/SSL handshake will not be // terminated with respect to verification failures and the connection // will be established. The calling process can however retrieve the // error code of the last verification error using // SSL_get_verify_result(3) or by maintaining its own error storage // managed by VerifyCallback. // // If no VerifyCallback is specified, the default callback will be // used. Its return value is identical to preverify_ok, so that any // verification failure will lead to a termination of the TLS/SSL // handshake with an alert message, if SSL_VERIFY_PEER is set. // // Since we cannot perform I/O quickly enough in this callback, we ignore // all preverify_ok errors and let the handshake continue. It is // imparative that the user use Connection::VerifyError after the // 'secure' callback has been made. return 1; } Handle Connection::New(const Arguments& args) { HandleScope scope; Connection *p = new Connection(); p->Wrap(args.Holder()); if (args.Length() < 1 || !args[0]->IsObject()) { return ThrowException(Exception::Error(String::New( "First argument must be a crypto module Credentials"))); } SecureContext *sc = ObjectWrap::Unwrap(args[0]->ToObject()); bool is_server = args[1]->BooleanValue(); p->ssl_ = SSL_new(sc->ctx_); p->bio_read_ = BIO_new(BIO_s_mem()); p->bio_write_ = BIO_new(BIO_s_mem()); SSL_set_bio(p->ssl_, p->bio_read_, p->bio_write_); #ifdef SSL_MODE_RELEASE_BUFFERS long mode = SSL_get_mode(p->ssl_); SSL_set_mode(p->ssl_, mode | SSL_MODE_RELEASE_BUFFERS); #endif int verify_mode; if (is_server) { bool request_cert = args[2]->BooleanValue(); if (!request_cert) { // Note reject_unauthorized ignored. verify_mode = SSL_VERIFY_NONE; } else { bool reject_unauthorized = args[3]->BooleanValue(); verify_mode = SSL_VERIFY_PEER; if (reject_unauthorized) verify_mode |= SSL_VERIFY_FAIL_IF_NO_PEER_CERT; } } else { // Note request_cert and reject_unauthorized are ignored for clients. verify_mode = SSL_VERIFY_NONE; } // Always allow a connection. We'll reject in javascript. SSL_set_verify(p->ssl_, verify_mode, VerifyCallback); if ((p->is_server_ = is_server)) { SSL_set_accept_state(p->ssl_); } else { SSL_set_connect_state(p->ssl_); } return args.This(); } Handle Connection::EncIn(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (args.Length() < 3) { return ThrowException(Exception::TypeError( String::New("Takes 3 parameters"))); } if (!Buffer::HasInstance(args[0])) { return ThrowException(Exception::TypeError( String::New("Second argument should be a buffer"))); } Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); size_t off = args[1]->Int32Value(); if (off >= buffer_length) { return ThrowException(Exception::Error( String::New("Offset is out of bounds"))); } size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowException(Exception::Error( String::New("Length is extends beyond buffer"))); } int bytes_written = BIO_write(ss->bio_read_, buffer_data + off, len); ss->HandleBIOError(ss->bio_read_, "BIO_write", bytes_written); ss->SetShutdownFlags(); return scope.Close(Integer::New(bytes_written)); } Handle Connection::ClearOut(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (args.Length() < 3) { return ThrowException(Exception::TypeError( String::New("Takes 3 parameters"))); } if (!Buffer::HasInstance(args[0])) { return ThrowException(Exception::TypeError( String::New("Second argument should be a buffer"))); } Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); size_t off = args[1]->Int32Value(); if (off >= buffer_length) { return ThrowException(Exception::Error( String::New("Offset is out of bounds"))); } size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowException(Exception::Error( String::New("Length is extends beyond buffer"))); } if (!SSL_is_init_finished(ss->ssl_)) { int rv; if (ss->is_server_) { rv = SSL_accept(ss->ssl_); ss->HandleSSLError("SSL_accept:ClearOut", rv); } else { rv = SSL_connect(ss->ssl_); ss->HandleSSLError("SSL_connect:ClearOut", rv); } if (rv < 0) return scope.Close(Integer::New(rv)); } int bytes_read = SSL_read(ss->ssl_, buffer_data + off, len); ss->HandleSSLError("SSL_read:ClearOut", bytes_read); ss->SetShutdownFlags(); return scope.Close(Integer::New(bytes_read)); } Handle Connection::ClearPending(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); int bytes_pending = BIO_pending(ss->bio_read_); return scope.Close(Integer::New(bytes_pending)); } Handle Connection::EncPending(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); int bytes_pending = BIO_pending(ss->bio_write_); return scope.Close(Integer::New(bytes_pending)); } Handle Connection::EncOut(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (args.Length() < 3) { return ThrowException(Exception::TypeError( String::New("Takes 3 parameters"))); } if (!Buffer::HasInstance(args[0])) { return ThrowException(Exception::TypeError( String::New("Second argument should be a buffer"))); } Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); size_t off = args[1]->Int32Value(); if (off >= buffer_length) { return ThrowException(Exception::Error( String::New("Offset is out of bounds"))); } size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowException(Exception::Error( String::New("Length is extends beyond buffer"))); } int bytes_read = BIO_read(ss->bio_write_, buffer_data + off, len); ss->HandleBIOError(ss->bio_write_, "BIO_read:EncOut", bytes_read); ss->SetShutdownFlags(); return scope.Close(Integer::New(bytes_read)); } Handle Connection::ClearIn(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (args.Length() < 3) { return ThrowException(Exception::TypeError( String::New("Takes 3 parameters"))); } if (!Buffer::HasInstance(args[0])) { return ThrowException(Exception::TypeError( String::New("Second argument should be a buffer"))); } Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); size_t off = args[1]->Int32Value(); if (off > buffer_length) { return ThrowException(Exception::Error( String::New("Offset is out of bounds"))); } size_t len = args[2]->Int32Value(); if (off + len > buffer_length) { return ThrowException(Exception::Error( String::New("Length is extends beyond buffer"))); } if (!SSL_is_init_finished(ss->ssl_)) { int rv; if (ss->is_server_) { rv = SSL_accept(ss->ssl_); ss->HandleSSLError("SSL_accept:ClearIn", rv); } else { rv = SSL_connect(ss->ssl_); ss->HandleSSLError("SSL_connect:ClearIn", rv); } if (rv < 0) return scope.Close(Integer::New(rv)); } int bytes_written = SSL_write(ss->ssl_, buffer_data + off, len); ss->HandleSSLError("SSL_write:ClearIn", bytes_written); ss->SetShutdownFlags(); return scope.Close(Integer::New(bytes_written)); } Handle Connection::GetPeerCertificate(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (ss->ssl_ == NULL) return Undefined(); Local info = Object::New(); X509* peer_cert = SSL_get_peer_certificate(ss->ssl_); if (peer_cert != NULL) { char* subject = X509_NAME_oneline(X509_get_subject_name(peer_cert), 0, 0); if (subject != NULL) { info->Set(subject_symbol, String::New(subject)); OPENSSL_free(subject); } char* issuer = X509_NAME_oneline(X509_get_issuer_name(peer_cert), 0, 0); if (subject != NULL) { info->Set(issuer_symbol, String::New(issuer)); OPENSSL_free(issuer); } char buf[256]; BIO* bio = BIO_new(BIO_s_mem()); ASN1_TIME_print(bio, X509_get_notBefore(peer_cert)); memset(buf, 0, sizeof(buf)); BIO_read(bio, buf, sizeof(buf) - 1); info->Set(valid_from_symbol, String::New(buf)); ASN1_TIME_print(bio, X509_get_notAfter(peer_cert)); memset(buf, 0, sizeof(buf)); BIO_read(bio, buf, sizeof(buf) - 1); BIO_free(bio); info->Set(valid_to_symbol, String::New(buf)); unsigned int md_size, i; unsigned char md[EVP_MAX_MD_SIZE]; if (X509_digest(peer_cert, EVP_sha1(), md, &md_size)) { const char hex[] = "0123456789ABCDEF"; char fingerprint[EVP_MAX_MD_SIZE * 3]; for (i=0; i> 4]; fingerprint[(3*i)+1] = hex[(md[i] & 0x0f)]; fingerprint[(3*i)+2] = ':'; } if (md_size > 0) { fingerprint[(3*(md_size-1))+2] = '\0'; } else { fingerprint[0] = '\0'; } info->Set(fingerprint_symbol, String::New(fingerprint)); } STACK_OF(ASN1_OBJECT) *eku = (STACK_OF(ASN1_OBJECT) *)X509_get_ext_d2i( peer_cert, NID_ext_key_usage, NULL, NULL); if (eku != NULL) { Local ext_key_usage = Array::New(); for (int i = 0; i < sk_ASN1_OBJECT_num(eku); i++) { memset(buf, 0, sizeof(buf)); OBJ_obj2txt(buf, sizeof(buf) - 1, sk_ASN1_OBJECT_value(eku, i), 1); ext_key_usage->Set(Integer::New(i), String::New(buf)); } sk_ASN1_OBJECT_pop_free(eku, ASN1_OBJECT_free); info->Set(ext_key_usage_symbol, ext_key_usage); } X509_free(peer_cert); } return scope.Close(info); } Handle Connection::Start(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (!SSL_is_init_finished(ss->ssl_)) { int rv; if (ss->is_server_) { rv = SSL_accept(ss->ssl_); ss->HandleSSLError("SSL_accept:Start", rv); } else { rv = SSL_connect(ss->ssl_); ss->HandleSSLError("SSL_connect:Start", rv); } return scope.Close(Integer::New(rv)); } return scope.Close(Integer::New(0)); } Handle Connection::Shutdown(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (ss->ssl_ == NULL) return False(); int rv = SSL_shutdown(ss->ssl_); ss->HandleSSLError("SSL_shutdown", rv); ss->SetShutdownFlags(); return scope.Close(Integer::New(rv)); } Handle Connection::ReceivedShutdown(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (ss->ssl_ == NULL) return False(); int r = SSL_get_shutdown(ss->ssl_); if (r | SSL_RECEIVED_SHUTDOWN) return True(); return False(); } Handle Connection::IsInitFinished(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (ss->ssl_ == NULL) return False(); return SSL_is_init_finished(ss->ssl_) ? True() : False(); } Handle Connection::VerifyError(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (ss->ssl_ == NULL) return Null(); // XXX Do this check in JS land? X509* peer_cert = SSL_get_peer_certificate(ss->ssl_); if (peer_cert == NULL) { // We requested a certificate and they did not send us one. // Definitely an error. // XXX is this the right error message? return scope.Close(String::New("UNABLE_TO_GET_ISSUER_CERT")); } X509_free(peer_cert); long x509_verify_error = SSL_get_verify_result(ss->ssl_); Local s; switch (x509_verify_error) { case X509_V_OK: return Null(); case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT: s = String::New("UNABLE_TO_GET_ISSUER_CERT"); break; case X509_V_ERR_UNABLE_TO_GET_CRL: s = String::New("UNABLE_TO_GET_CRL"); break; case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE: s = String::New("UNABLE_TO_DECRYPT_CERT_SIGNATURE"); break; case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE: s = String::New("UNABLE_TO_DECRYPT_CRL_SIGNATURE"); break; case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY: s = String::New("UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY"); break; case X509_V_ERR_CERT_SIGNATURE_FAILURE: s = String::New("CERT_SIGNATURE_FAILURE"); break; case X509_V_ERR_CRL_SIGNATURE_FAILURE: s = String::New("CRL_SIGNATURE_FAILURE"); break; case X509_V_ERR_CERT_NOT_YET_VALID: s = String::New("CERT_NOT_YET_VALID"); break; case X509_V_ERR_CERT_HAS_EXPIRED: s = String::New("CERT_HAS_EXPIRED"); break; case X509_V_ERR_CRL_NOT_YET_VALID: s = String::New("CRL_NOT_YET_VALID"); break; case X509_V_ERR_CRL_HAS_EXPIRED: s = String::New("CRL_HAS_EXPIRED"); break; case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD: s = String::New("ERROR_IN_CERT_NOT_BEFORE_FIELD"); break; case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD: s = String::New("ERROR_IN_CERT_NOT_AFTER_FIELD"); break; case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD: s = String::New("ERROR_IN_CRL_LAST_UPDATE_FIELD"); break; case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD: s = String::New("ERROR_IN_CRL_NEXT_UPDATE_FIELD"); break; case X509_V_ERR_OUT_OF_MEM: s = String::New("OUT_OF_MEM"); break; case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT: s = String::New("DEPTH_ZERO_SELF_SIGNED_CERT"); break; case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN: s = String::New("SELF_SIGNED_CERT_IN_CHAIN"); break; case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY: s = String::New("UNABLE_TO_GET_ISSUER_CERT_LOCALLY"); break; case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE: s = String::New("UNABLE_TO_VERIFY_LEAF_SIGNATURE"); break; case X509_V_ERR_CERT_CHAIN_TOO_LONG: s = String::New("CERT_CHAIN_TOO_LONG"); break; case X509_V_ERR_CERT_REVOKED: s = String::New("CERT_REVOKED"); break; case X509_V_ERR_INVALID_CA: s = String::New("INVALID_CA"); break; case X509_V_ERR_PATH_LENGTH_EXCEEDED: s = String::New("PATH_LENGTH_EXCEEDED"); break; case X509_V_ERR_INVALID_PURPOSE: s = String::New("INVALID_PURPOSE"); break; case X509_V_ERR_CERT_UNTRUSTED: s = String::New("CERT_UNTRUSTED"); break; case X509_V_ERR_CERT_REJECTED: s = String::New("CERT_REJECTED"); break; default: s = String::New(X509_verify_cert_error_string(x509_verify_error)); break; } return scope.Close(s); } Handle Connection::GetCurrentCipher(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); OPENSSL_CONST SSL_CIPHER *c; if ( ss->ssl_ == NULL ) return Undefined(); c = SSL_get_current_cipher(ss->ssl_); if ( c == NULL ) return Undefined(); Local info = Object::New(); const char *cipher_name = SSL_CIPHER_get_name(c); info->Set(name_symbol, String::New(cipher_name)); const char *cipher_version = SSL_CIPHER_get_version(c); info->Set(version_symbol, String::New(cipher_version)); return scope.Close(info); } Handle Connection::Close(const Arguments& args) { HandleScope scope; Connection *ss = Connection::Unwrap(args); if (ss->ssl_ != NULL) { SSL_free(ss->ssl_); ss->ssl_ = NULL; } return True(); } static void HexEncode(unsigned char *md_value, int md_len, char** md_hexdigest, int* md_hex_len) { *md_hex_len = (2*(md_len)); *md_hexdigest = new char[*md_hex_len + 1]; for (int i = 0; i < md_len; i++) { snprintf((char *)(*md_hexdigest + (i*2)), 3, "%02x", md_value[i]); } } #define hex2i(c) ((c) <= '9' ? ((c) - '0') : (c) <= 'Z' ? ((c) - 'A' + 10) \ : ((c) - 'a' + 10)) static void HexDecode(unsigned char *input, int length, char** buf64, int* buf64_len) { *buf64_len = (length/2); *buf64 = new char[length/2 + 1]; char *b = *buf64; for(int i = 0; i < length-1; i+=2) { b[i/2] = (hex2i(input[i])<<4) | (hex2i(input[i+1])); } } void base64(unsigned char *input, int length, char** buf64, int* buf64_len) { BIO *b64 = BIO_new(BIO_f_base64()); BIO *bmem = BIO_new(BIO_s_mem()); b64 = BIO_push(b64, bmem); BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL); int len = BIO_write(b64, input, length); assert(len == length); int r = BIO_flush(b64); assert(r == 1); BUF_MEM *bptr; BIO_get_mem_ptr(b64, &bptr); *buf64_len = bptr->length; *buf64 = new char[*buf64_len+1]; memcpy(*buf64, bptr->data, *buf64_len); char* b = *buf64; b[*buf64_len] = 0; BIO_free_all(b64); } void unbase64(unsigned char *input, int length, char** buffer, int* buffer_len) { BIO *b64, *bmem; *buffer = new char[length]; memset(*buffer, 0, length); b64 = BIO_new(BIO_f_base64()); BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL); bmem = BIO_new_mem_buf(input, length); bmem = BIO_push(b64, bmem); *buffer_len = BIO_read(bmem, *buffer, length); BIO_free_all(bmem); } // LengthWithoutIncompleteUtf8 from V8 d8-posix.cc // see http://v8.googlecode.com/svn/trunk/src/d8-posix.cc static int LengthWithoutIncompleteUtf8(char* buffer, int len) { int answer = len; // 1-byte encoding. static const int kUtf8SingleByteMask = 0x80; static const int kUtf8SingleByteValue = 0x00; // 2-byte encoding. static const int kUtf8TwoByteMask = 0xe0; static const int kUtf8TwoByteValue = 0xc0; // 3-byte encoding. static const int kUtf8ThreeByteMask = 0xf0; static const int kUtf8ThreeByteValue = 0xe0; // 4-byte encoding. static const int kUtf8FourByteMask = 0xf8; static const int kUtf8FourByteValue = 0xf0; // Subsequent bytes of a multi-byte encoding. static const int kMultiByteMask = 0xc0; static const int kMultiByteValue = 0x80; int multi_byte_bytes_seen = 0; while (answer > 0) { int c = buffer[answer - 1]; // Ends in valid single-byte sequence? if ((c & kUtf8SingleByteMask) == kUtf8SingleByteValue) return answer; // Ends in one or more subsequent bytes of a multi-byte value? if ((c & kMultiByteMask) == kMultiByteValue) { multi_byte_bytes_seen++; answer--; } else { if ((c & kUtf8TwoByteMask) == kUtf8TwoByteValue) { if (multi_byte_bytes_seen >= 1) { return answer + 2; } return answer - 1; } else if ((c & kUtf8ThreeByteMask) == kUtf8ThreeByteValue) { if (multi_byte_bytes_seen >= 2) { return answer + 3; } return answer - 1; } else if ((c & kUtf8FourByteMask) == kUtf8FourByteValue) { if (multi_byte_bytes_seen >= 3) { return answer + 4; } return answer - 1; } else { return answer; // Malformed UTF-8. } } } return 0; } // local decrypt final without strict padding check // to work with php mcrypt // see http://www.mail-archive.com/openssl-dev@openssl.org/msg19927.html int local_EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int i,b; int n; *outl=0; b=ctx->cipher->block_size; if (ctx->flags & EVP_CIPH_NO_PADDING) { if(ctx->buf_len) { EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *outl = 0; return 1; } if (b > 1) { if (ctx->buf_len || !ctx->final_used) { EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_WRONG_FINAL_BLOCK_LENGTH); return(0); } if (b > (int)(sizeof(ctx->final) / sizeof(ctx->final[0]))) { EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_BAD_DECRYPT); return(0); } n=ctx->final[b-1]; if (n > b) { EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_BAD_DECRYPT); return(0); } for (i=0; ifinal[--b] != n) { EVPerr(EVP_F_EVP_DECRYPTFINAL,EVP_R_BAD_DECRYPT); return(0); } } n=ctx->cipher->block_size-n; for (i=0; ifinal[i]; } *outl=n; } else { *outl=0; } return(1); } class Cipher : public ObjectWrap { public: static void Initialize (v8::Handle target) { HandleScope scope; Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", CipherInit); NODE_SET_PROTOTYPE_METHOD(t, "initiv", CipherInitIv); NODE_SET_PROTOTYPE_METHOD(t, "update", CipherUpdate); NODE_SET_PROTOTYPE_METHOD(t, "final", CipherFinal); target->Set(String::NewSymbol("Cipher"), t->GetFunction()); } bool CipherInit(char* cipherType, char* key_buf, int key_buf_len) { cipher = EVP_get_cipherbyname(cipherType); if(!cipher) { fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType); return false; } unsigned char key[EVP_MAX_KEY_LENGTH],iv[EVP_MAX_IV_LENGTH]; int key_len = EVP_BytesToKey(cipher, EVP_md5(), NULL, (unsigned char*) key_buf, key_buf_len, 1, key, iv); EVP_CIPHER_CTX_init(&ctx); EVP_CipherInit(&ctx,cipher,(unsigned char *)key,(unsigned char *)iv, true); if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) { fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len); EVP_CIPHER_CTX_cleanup(&ctx); return false; } initialised_ = true; return true; } bool CipherInitIv(char* cipherType, char* key, int key_len, char *iv, int iv_len) { cipher = EVP_get_cipherbyname(cipherType); if(!cipher) { fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType); return false; } if (EVP_CIPHER_iv_length(cipher)!=iv_len) { fprintf(stderr, "node-crypto : Invalid IV length %d\n", iv_len); return false; } EVP_CIPHER_CTX_init(&ctx); EVP_CipherInit(&ctx,cipher,(unsigned char *)key,(unsigned char *)iv, true); if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) { fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len); EVP_CIPHER_CTX_cleanup(&ctx); return false; } initialised_ = true; return true; } int CipherUpdate(char* data, int len, unsigned char** out, int* out_len) { if (!initialised_) return 0; *out_len=len+EVP_CIPHER_CTX_block_size(&ctx); *out= new unsigned char[*out_len]; EVP_CipherUpdate(&ctx, *out, out_len, (unsigned char*)data, len); return 1; } int CipherFinal(unsigned char** out, int *out_len) { if (!initialised_) return 0; *out = new unsigned char[EVP_CIPHER_CTX_block_size(&ctx)]; EVP_CipherFinal(&ctx,*out,out_len); EVP_CIPHER_CTX_cleanup(&ctx); initialised_ = false; return 1; } protected: static Handle New (const Arguments& args) { HandleScope scope; Cipher *cipher = new Cipher(); cipher->Wrap(args.This()); return args.This(); } static Handle CipherInit(const Arguments& args) { HandleScope scope; Cipher *cipher = ObjectWrap::Unwrap(args.This()); cipher->incomplete_base64=NULL; if (args.Length() <= 1 || !args[0]->IsString() || !args[1]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give cipher-type, key"))); } ASSERT_IS_STRING_OR_BUFFER(args[1]); ssize_t key_buf_len = DecodeBytes(args[1], BINARY); if (key_buf_len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* key_buf = new char[key_buf_len]; ssize_t key_written = DecodeWrite(key_buf, key_buf_len, args[1], BINARY); assert(key_written == key_buf_len); String::Utf8Value cipherType(args[0]->ToString()); bool r = cipher->CipherInit(*cipherType, key_buf, key_buf_len); delete [] key_buf; if (!r) { return ThrowException(Exception::Error(String::New("CipherInit error"))); } return args.This(); } static Handle CipherInitIv(const Arguments& args) { Cipher *cipher = ObjectWrap::Unwrap(args.This()); HandleScope scope; cipher->incomplete_base64=NULL; if (args.Length() <= 2 || !args[0]->IsString() || !args[1]->IsString() || !args[2]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give cipher-type, key, and iv as argument"))); } ASSERT_IS_STRING_OR_BUFFER(args[1]); ssize_t key_len = DecodeBytes(args[1], BINARY); if (key_len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } ASSERT_IS_STRING_OR_BUFFER(args[2]); ssize_t iv_len = DecodeBytes(args[2], BINARY); if (iv_len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* key_buf = new char[key_len]; ssize_t key_written = DecodeWrite(key_buf, key_len, args[1], BINARY); assert(key_written == key_len); char* iv_buf = new char[iv_len]; ssize_t iv_written = DecodeWrite(iv_buf, iv_len, args[2], BINARY); assert(iv_written == iv_len); String::Utf8Value cipherType(args[0]->ToString()); bool r = cipher->CipherInitIv(*cipherType, key_buf,key_len,iv_buf,iv_len); delete [] key_buf; delete [] iv_buf; if (!r) { return ThrowException(Exception::Error(String::New("CipherInitIv error"))); } return args.This(); } static Handle CipherUpdate(const Arguments& args) { Cipher *cipher = ObjectWrap::Unwrap(args.This()); HandleScope scope; ASSERT_IS_STRING_OR_BUFFER(args[0]); enum encoding enc = ParseEncoding(args[1]); ssize_t len = DecodeBytes(args[0], enc); if (len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } unsigned char *out=0; int out_len=0, r; if (Buffer::HasInstance(args[0])) { Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); r = cipher->CipherUpdate(buffer_data, buffer_length, &out, &out_len); } else { char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], enc); assert(written == len); r = cipher->CipherUpdate(buf, len,&out,&out_len); delete [] buf; } if (!r) { delete [] out; Local exception = Exception::TypeError(String::New("DecipherUpdate fail")); return ThrowException(exception); } Local outString; if (out_len==0) { outString=String::New(""); } else { if (args.Length() <= 2 || !args[2]->IsString()) { // Binary outString = Encode(out, out_len, BINARY); } else { char* out_hexdigest; int out_hex_len; String::Utf8Value encoding(args[2]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding HexEncode(out, out_len, &out_hexdigest, &out_hex_len); outString = Encode(out_hexdigest, out_hex_len, BINARY); delete [] out_hexdigest; } else if (strcasecmp(*encoding, "base64") == 0) { // Base64 encoding // Check to see if we need to add in previous base64 overhang if (cipher->incomplete_base64!=NULL){ unsigned char* complete_base64 = new unsigned char[out_len+cipher->incomplete_base64_len+1]; memcpy(complete_base64, cipher->incomplete_base64, cipher->incomplete_base64_len); memcpy(&complete_base64[cipher->incomplete_base64_len], out, out_len); delete [] out; delete [] cipher->incomplete_base64; cipher->incomplete_base64=NULL; out=complete_base64; out_len += cipher->incomplete_base64_len; } // Check to see if we need to trim base64 stream if (out_len%3!=0){ cipher->incomplete_base64_len = out_len%3; cipher->incomplete_base64 = new char[cipher->incomplete_base64_len+1]; memcpy(cipher->incomplete_base64, &out[out_len-cipher->incomplete_base64_len], cipher->incomplete_base64_len); out_len -= cipher->incomplete_base64_len; out[out_len]=0; } base64(out, out_len, &out_hexdigest, &out_hex_len); outString = Encode(out_hexdigest, out_hex_len, BINARY); delete [] out_hexdigest; } else if (strcasecmp(*encoding, "binary") == 0) { outString = Encode(out, out_len, BINARY); } else { fprintf(stderr, "node-crypto : Cipher .update encoding " "can be binary, hex or base64\n"); } } } if (out) delete [] out; return scope.Close(outString); } static Handle CipherFinal(const Arguments& args) { Cipher *cipher = ObjectWrap::Unwrap(args.This()); HandleScope scope; unsigned char* out_value; int out_len; char* out_hexdigest; int out_hex_len; Local outString ; int r = cipher->CipherFinal(&out_value, &out_len); if (out_len == 0 || r == 0) { return scope.Close(String::New("")); } if (args.Length() == 0 || !args[0]->IsString()) { // Binary outString = Encode(out_value, out_len, BINARY); } else { String::Utf8Value encoding(args[0]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding HexEncode(out_value, out_len, &out_hexdigest, &out_hex_len); outString = Encode(out_hexdigest, out_hex_len, BINARY); delete [] out_hexdigest; } else if (strcasecmp(*encoding, "base64") == 0) { base64(out_value, out_len, &out_hexdigest, &out_hex_len); outString = Encode(out_hexdigest, out_hex_len, BINARY); delete [] out_hexdigest; } else if (strcasecmp(*encoding, "binary") == 0) { outString = Encode(out_value, out_len, BINARY); } else { fprintf(stderr, "node-crypto : Cipher .final encoding " "can be binary, hex or base64\n"); } } delete [] out_value; return scope.Close(outString); } Cipher () : ObjectWrap () { initialised_ = false; } ~Cipher () { if (initialised_) { EVP_CIPHER_CTX_cleanup(&ctx); } } private: EVP_CIPHER_CTX ctx; /* coverity[member_decl] */ const EVP_CIPHER *cipher; /* coverity[member_decl] */ bool initialised_; char* incomplete_base64; /* coverity[member_decl] */ int incomplete_base64_len; /* coverity[member_decl] */ }; class Decipher : public ObjectWrap { public: static void Initialize (v8::Handle target) { HandleScope scope; Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", DecipherInit); NODE_SET_PROTOTYPE_METHOD(t, "initiv", DecipherInitIv); NODE_SET_PROTOTYPE_METHOD(t, "update", DecipherUpdate); NODE_SET_PROTOTYPE_METHOD(t, "final", DecipherFinal); NODE_SET_PROTOTYPE_METHOD(t, "finaltol", DecipherFinalTolerate); target->Set(String::NewSymbol("Decipher"), t->GetFunction()); } bool DecipherInit(char* cipherType, char* key_buf, int key_buf_len) { cipher_ = EVP_get_cipherbyname(cipherType); if(!cipher_) { fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType); return false; } unsigned char key[EVP_MAX_KEY_LENGTH],iv[EVP_MAX_IV_LENGTH]; int key_len = EVP_BytesToKey(cipher_, EVP_md5(), NULL, (unsigned char*)(key_buf), key_buf_len, 1, key, iv); EVP_CIPHER_CTX_init(&ctx); EVP_CipherInit(&ctx, cipher_, (unsigned char*)(key), (unsigned char *)(iv), false); if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) { fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len); EVP_CIPHER_CTX_cleanup(&ctx); return false; } initialised_ = true; return true; } bool DecipherInitIv(char* cipherType, char* key, int key_len, char *iv, int iv_len) { cipher_ = EVP_get_cipherbyname(cipherType); if(!cipher_) { fprintf(stderr, "node-crypto : Unknown cipher %s\n", cipherType); return false; } if (EVP_CIPHER_iv_length(cipher_) != iv_len) { fprintf(stderr, "node-crypto : Invalid IV length %d\n", iv_len); return false; } EVP_CIPHER_CTX_init(&ctx); EVP_CipherInit(&ctx, cipher_, (unsigned char*)(key), (unsigned char *)(iv), false); if (!EVP_CIPHER_CTX_set_key_length(&ctx,key_len)) { fprintf(stderr, "node-crypto : Invalid key length %d\n", key_len); EVP_CIPHER_CTX_cleanup(&ctx); return false; } initialised_ = true; return true; } int DecipherUpdate(char* data, int len, unsigned char** out, int* out_len) { if (!initialised_) return 0; *out_len=len+EVP_CIPHER_CTX_block_size(&ctx); *out= new unsigned char[*out_len]; EVP_CipherUpdate(&ctx, *out, out_len, (unsigned char*)data, len); return 1; } // coverity[alloc_arg] int DecipherFinal(unsigned char** out, int *out_len, bool tolerate_padding) { if (!initialised_) return 0; *out = new unsigned char[EVP_CIPHER_CTX_block_size(&ctx)]; if (tolerate_padding) { local_EVP_DecryptFinal_ex(&ctx,*out,out_len); } else { EVP_CipherFinal(&ctx,*out,out_len); } EVP_CIPHER_CTX_cleanup(&ctx); initialised_ = false; return 1; } protected: static Handle New (const Arguments& args) { HandleScope scope; Decipher *cipher = new Decipher(); cipher->Wrap(args.This()); return args.This(); } static Handle DecipherInit(const Arguments& args) { Decipher *cipher = ObjectWrap::Unwrap(args.This()); HandleScope scope; cipher->incomplete_utf8=NULL; cipher->incomplete_hex_flag=false; if (args.Length() <= 1 || !args[0]->IsString() || !args[1]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give cipher-type, key as argument"))); } ASSERT_IS_STRING_OR_BUFFER(args[1]); ssize_t key_len = DecodeBytes(args[1], BINARY); if (key_len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* key_buf = new char[key_len]; ssize_t key_written = DecodeWrite(key_buf, key_len, args[1], BINARY); assert(key_written == key_len); String::Utf8Value cipherType(args[0]->ToString()); bool r = cipher->DecipherInit(*cipherType, key_buf,key_len); delete [] key_buf; if (!r) { return ThrowException(Exception::Error(String::New("DecipherInit error"))); } return args.This(); } static Handle DecipherInitIv(const Arguments& args) { Decipher *cipher = ObjectWrap::Unwrap(args.This()); HandleScope scope; cipher->incomplete_utf8=NULL; cipher->incomplete_hex_flag=false; if (args.Length() <= 2 || !args[0]->IsString() || !args[1]->IsString() || !args[2]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give cipher-type, key, and iv as argument"))); } ASSERT_IS_STRING_OR_BUFFER(args[1]); ssize_t key_len = DecodeBytes(args[1], BINARY); if (key_len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } ASSERT_IS_STRING_OR_BUFFER(args[2]); ssize_t iv_len = DecodeBytes(args[2], BINARY); if (iv_len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* key_buf = new char[key_len]; ssize_t key_written = DecodeWrite(key_buf, key_len, args[1], BINARY); assert(key_written == key_len); char* iv_buf = new char[iv_len]; ssize_t iv_written = DecodeWrite(iv_buf, iv_len, args[2], BINARY); assert(iv_written == iv_len); String::Utf8Value cipherType(args[0]->ToString()); bool r = cipher->DecipherInitIv(*cipherType, key_buf,key_len,iv_buf,iv_len); delete [] key_buf; delete [] iv_buf; if (!r) { return ThrowException(Exception::Error(String::New("DecipherInitIv error"))); } return args.This(); } static Handle DecipherUpdate(const Arguments& args) { HandleScope scope; Decipher *cipher = ObjectWrap::Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); ssize_t len = DecodeBytes(args[0], BINARY); if (len < 0) { return ThrowException(Exception::Error(String::New( "node`DecodeBytes() failed"))); } char* buf; // if alloc_buf then buf must be deleted later bool alloc_buf = false; if (Buffer::HasInstance(args[0])) { Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); buf = buffer_data; len = buffer_length; } else { alloc_buf = true; buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], BINARY); assert(written == len); } char* ciphertext; int ciphertext_len; if (args.Length() <= 1 || !args[1]->IsString()) { // Binary - do nothing } else { String::Utf8Value encoding(args[1]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding // Do we have a previous hex carry over? if (cipher->incomplete_hex_flag) { char* complete_hex = new char[len+2]; memcpy(complete_hex, &cipher->incomplete_hex, 1); memcpy(complete_hex+1, buf, len); if (alloc_buf) { delete [] buf; alloc_buf = false; } buf = complete_hex; len += 1; } // Do we have an incomplete hex stream? if ((len>0) && (len % 2 !=0)) { len--; cipher->incomplete_hex=buf[len]; cipher->incomplete_hex_flag=true; buf[len]=0; } HexDecode((unsigned char*)buf, len, (char **)&ciphertext, &ciphertext_len); if (alloc_buf) { delete [] buf; } buf = ciphertext; len = ciphertext_len; alloc_buf = true; } else if (strcasecmp(*encoding, "base64") == 0) { unbase64((unsigned char*)buf, len, (char **)&ciphertext, &ciphertext_len); if (alloc_buf) { delete [] buf; } buf = ciphertext; len = ciphertext_len; alloc_buf = true; } else if (strcasecmp(*encoding, "binary") == 0) { // Binary - do nothing } else { fprintf(stderr, "node-crypto : Decipher .update encoding " "can be binary, hex or base64\n"); } } unsigned char *out=0; int out_len=0; int r = cipher->DecipherUpdate(buf, len, &out, &out_len); if (!r) { delete [] out; Local exception = Exception::TypeError(String::New("DecipherUpdate fail")); return ThrowException(exception); } Local outString; if (out_len==0) { outString=String::New(""); } else if (args.Length() <= 2 || !args[2]->IsString()) { outString = Encode(out, out_len, BINARY); } else { enum encoding enc = ParseEncoding(args[2]); if (enc == UTF8) { // See if we have any overhang from last utf8 partial ending if (cipher->incomplete_utf8!=NULL) { char* complete_out = new char[cipher->incomplete_utf8_len + out_len]; memcpy(complete_out, cipher->incomplete_utf8, cipher->incomplete_utf8_len); memcpy((char *)complete_out+cipher->incomplete_utf8_len, out, out_len); delete [] out; delete [] cipher->incomplete_utf8; cipher->incomplete_utf8 = NULL; out = (unsigned char*)complete_out; out_len += cipher->incomplete_utf8_len; } // Check to see if we have a complete utf8 stream int utf8_len = LengthWithoutIncompleteUtf8((char *)out, out_len); if (utf8_lenincomplete_utf8_len = out_len-utf8_len; cipher->incomplete_utf8 = new unsigned char[cipher->incomplete_utf8_len+1]; memcpy(cipher->incomplete_utf8, &out[utf8_len], cipher->incomplete_utf8_len); } outString = Encode(out, utf8_len, enc); } else { outString = Encode(out, out_len, enc); } } if (out) delete [] out; if (alloc_buf) delete [] buf; return scope.Close(outString); } static Handle DecipherFinal(const Arguments& args) { HandleScope scope; Decipher *cipher = ObjectWrap::Unwrap(args.This()); unsigned char* out_value; int out_len; Local outString; int r = cipher->DecipherFinal(&out_value, &out_len, false); if (out_len == 0 || r == 0) { return scope.Close(String::New("")); } if (args.Length() == 0 || !args[0]->IsString()) { outString = Encode(out_value, out_len, BINARY); } else { enum encoding enc = ParseEncoding(args[0]); if (enc == UTF8) { // See if we have any overhang from last utf8 partial ending if (cipher->incomplete_utf8!=NULL) { char* complete_out = new char[cipher->incomplete_utf8_len + out_len]; memcpy(complete_out, cipher->incomplete_utf8, cipher->incomplete_utf8_len); memcpy((char *)complete_out+cipher->incomplete_utf8_len, out_value, out_len); delete [] cipher->incomplete_utf8; cipher->incomplete_utf8=NULL; outString = Encode(complete_out, cipher->incomplete_utf8_len+out_len, enc); delete [] complete_out; } else { outString = Encode(out_value, out_len, enc); } } else { outString = Encode(out_value, out_len, enc); } } delete [] out_value; return scope.Close(outString); } static Handle DecipherFinalTolerate(const Arguments& args) { Decipher *cipher = ObjectWrap::Unwrap(args.This()); HandleScope scope; unsigned char* out_value; int out_len; Local outString ; int r = cipher->DecipherFinal(&out_value, &out_len, true); if (out_len == 0 || r == 0) { delete [] out_value; return scope.Close(String::New("")); } if (args.Length() == 0 || !args[0]->IsString()) { outString = Encode(out_value, out_len, BINARY); } else { enum encoding enc = ParseEncoding(args[0]); if (enc == UTF8) { // See if we have any overhang from last utf8 partial ending if (cipher->incomplete_utf8!=NULL) { char* complete_out = new char[cipher->incomplete_utf8_len + out_len]; memcpy(complete_out, cipher->incomplete_utf8, cipher->incomplete_utf8_len); memcpy((char *)complete_out+cipher->incomplete_utf8_len, out_value, out_len); delete [] cipher->incomplete_utf8; cipher->incomplete_utf8 = NULL; outString = Encode(complete_out, cipher->incomplete_utf8_len+out_len, enc); delete [] complete_out; } else { outString = Encode(out_value, out_len, enc); } } else { outString = Encode(out_value, out_len, enc); } } delete [] out_value; return scope.Close(outString); } Decipher () : ObjectWrap () { initialised_ = false; } ~Decipher () { if (initialised_) { EVP_CIPHER_CTX_cleanup(&ctx); } } private: EVP_CIPHER_CTX ctx; const EVP_CIPHER *cipher_; bool initialised_; unsigned char* incomplete_utf8; int incomplete_utf8_len; char incomplete_hex; bool incomplete_hex_flag; }; class Hmac : public ObjectWrap { public: static void Initialize (v8::Handle target) { HandleScope scope; Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", HmacInit); NODE_SET_PROTOTYPE_METHOD(t, "update", HmacUpdate); NODE_SET_PROTOTYPE_METHOD(t, "digest", HmacDigest); target->Set(String::NewSymbol("Hmac"), t->GetFunction()); } bool HmacInit(char* hashType, char* key, int key_len) { md = EVP_get_digestbyname(hashType); if(!md) { fprintf(stderr, "node-crypto : Unknown message digest %s\n", hashType); return false; } HMAC_CTX_init(&ctx); HMAC_Init(&ctx, key, key_len, md); initialised_ = true; return true; } int HmacUpdate(char* data, int len) { if (!initialised_) return 0; HMAC_Update(&ctx, (unsigned char*)data, len); return 1; } int HmacDigest(unsigned char** md_value, unsigned int *md_len) { if (!initialised_) return 0; *md_value = new unsigned char[EVP_MAX_MD_SIZE]; HMAC_Final(&ctx, *md_value, md_len); HMAC_CTX_cleanup(&ctx); initialised_ = false; return 1; } protected: static Handle New (const Arguments& args) { HandleScope scope; Hmac *hmac = new Hmac(); hmac->Wrap(args.This()); return args.This(); } static Handle HmacInit(const Arguments& args) { Hmac *hmac = ObjectWrap::Unwrap(args.This()); HandleScope scope; if (args.Length() == 0 || !args[0]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give hashtype string as argument"))); } ASSERT_IS_STRING_OR_BUFFER(args[1]); ssize_t len = DecodeBytes(args[1], BINARY); if (len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[1], BINARY); assert(written == len); String::Utf8Value hashType(args[0]->ToString()); bool r = hmac->HmacInit(*hashType, buf, len); delete [] buf; if (!r) { return ThrowException(Exception::Error(String::New("hmac error"))); } return args.This(); } static Handle HmacUpdate(const Arguments& args) { Hmac *hmac = ObjectWrap::Unwrap(args.This()); HandleScope scope; ASSERT_IS_STRING_OR_BUFFER(args[0]); enum encoding enc = ParseEncoding(args[1]); ssize_t len = DecodeBytes(args[0], enc); if (len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } int r; if( Buffer::HasInstance(args[0])) { Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); r = hmac->HmacUpdate(buffer_data, buffer_length); } else { char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], enc); assert(written == len); r = hmac->HmacUpdate(buf, len); delete [] buf; } if (!r) { Local exception = Exception::TypeError(String::New("HmacUpdate fail")); return ThrowException(exception); } return args.This(); } static Handle HmacDigest(const Arguments& args) { Hmac *hmac = ObjectWrap::Unwrap(args.This()); HandleScope scope; unsigned char* md_value; unsigned int md_len; char* md_hexdigest; int md_hex_len; Local outString ; int r = hmac->HmacDigest(&md_value, &md_len); if (md_len == 0 || r == 0) { return scope.Close(String::New("")); } if (args.Length() == 0 || !args[0]->IsString()) { // Binary outString = Encode(md_value, md_len, BINARY); } else { String::Utf8Value encoding(args[0]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding HexEncode(md_value, md_len, &md_hexdigest, &md_hex_len); outString = Encode(md_hexdigest, md_hex_len, BINARY); delete [] md_hexdigest; } else if (strcasecmp(*encoding, "base64") == 0) { base64(md_value, md_len, &md_hexdigest, &md_hex_len); outString = Encode(md_hexdigest, md_hex_len, BINARY); delete [] md_hexdigest; } else if (strcasecmp(*encoding, "binary") == 0) { outString = Encode(md_value, md_len, BINARY); } else { fprintf(stderr, "node-crypto : Hmac .digest encoding " "can be binary, hex or base64\n"); } } delete [] md_value; return scope.Close(outString); } Hmac () : ObjectWrap () { initialised_ = false; } ~Hmac () { if (initialised_) { HMAC_CTX_cleanup(&ctx); } } private: HMAC_CTX ctx; /* coverity[member_decl] */ const EVP_MD *md; /* coverity[member_decl] */ bool initialised_; }; class Hash : public ObjectWrap { public: static void Initialize (v8::Handle target) { HandleScope scope; Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "update", HashUpdate); NODE_SET_PROTOTYPE_METHOD(t, "digest", HashDigest); target->Set(String::NewSymbol("Hash"), t->GetFunction()); } bool HashInit (const char* hashType) { md = EVP_get_digestbyname(hashType); if(!md) { fprintf(stderr, "node-crypto : Unknown message digest %s\n", hashType); return false; } EVP_MD_CTX_init(&mdctx); EVP_DigestInit_ex(&mdctx, md, NULL); initialised_ = true; return true; } int HashUpdate(char* data, int len) { if (!initialised_) return 0; EVP_DigestUpdate(&mdctx, data, len); return 1; } protected: static Handle New (const Arguments& args) { HandleScope scope; if (args.Length() == 0 || !args[0]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give hashtype string as argument"))); } Hash *hash = new Hash(); hash->Wrap(args.This()); String::Utf8Value hashType(args[0]->ToString()); hash->HashInit(*hashType); return args.This(); } static Handle HashUpdate(const Arguments& args) { HandleScope scope; Hash *hash = ObjectWrap::Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); enum encoding enc = ParseEncoding(args[1]); ssize_t len = DecodeBytes(args[0], enc); if (len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } int r; if (Buffer::HasInstance(args[0])) { Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); r = hash->HashUpdate(buffer_data, buffer_length); } else { char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], enc); assert(written == len); r = hash->HashUpdate(buf, len); delete[] buf; } if (!r) { Local exception = Exception::TypeError(String::New("HashUpdate fail")); return ThrowException(exception); } return args.This(); } static Handle HashDigest(const Arguments& args) { HandleScope scope; Hash *hash = ObjectWrap::Unwrap(args.This()); if (!hash->initialised_) { return ThrowException(Exception::Error(String::New("Not initialized"))); } unsigned char md_value[EVP_MAX_MD_SIZE]; unsigned int md_len; EVP_DigestFinal_ex(&hash->mdctx, md_value, &md_len); EVP_MD_CTX_cleanup(&hash->mdctx); hash->initialised_ = false; if (md_len == 0) { return scope.Close(String::New("")); } Local outString; if (args.Length() == 0 || !args[0]->IsString()) { // Binary outString = Encode(md_value, md_len, BINARY); } else { String::Utf8Value encoding(args[0]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding char* md_hexdigest; int md_hex_len; HexEncode(md_value, md_len, &md_hexdigest, &md_hex_len); outString = Encode(md_hexdigest, md_hex_len, BINARY); delete [] md_hexdigest; } else if (strcasecmp(*encoding, "base64") == 0) { char* md_hexdigest; int md_hex_len; base64(md_value, md_len, &md_hexdigest, &md_hex_len); outString = Encode(md_hexdigest, md_hex_len, BINARY); delete [] md_hexdigest; } else if (strcasecmp(*encoding, "binary") == 0) { outString = Encode(md_value, md_len, BINARY); } else { fprintf(stderr, "node-crypto : Hash .digest encoding " "can be binary, hex or base64\n"); } } return scope.Close(outString); } Hash () : ObjectWrap () { initialised_ = false; } ~Hash () { if (initialised_) { EVP_MD_CTX_cleanup(&mdctx); } } private: EVP_MD_CTX mdctx; /* coverity[member_decl] */ const EVP_MD *md; /* coverity[member_decl] */ bool initialised_; }; class Sign : public ObjectWrap { public: static void Initialize (v8::Handle target) { HandleScope scope; Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", SignInit); NODE_SET_PROTOTYPE_METHOD(t, "update", SignUpdate); NODE_SET_PROTOTYPE_METHOD(t, "sign", SignFinal); target->Set(String::NewSymbol("Sign"), t->GetFunction()); } bool SignInit (const char* signType) { md = EVP_get_digestbyname(signType); if(!md) { printf("Unknown message digest %s\n", signType); return false; } EVP_MD_CTX_init(&mdctx); EVP_SignInit_ex(&mdctx, md, NULL); initialised_ = true; return true; } int SignUpdate(char* data, int len) { if (!initialised_) return 0; EVP_SignUpdate(&mdctx, data, len); return 1; } int SignFinal(unsigned char** md_value, unsigned int *md_len, char* key_pem, int key_pemLen) { if (!initialised_) return 0; BIO *bp = NULL; EVP_PKEY* pkey; bp = BIO_new(BIO_s_mem()); if(!BIO_write(bp, key_pem, key_pemLen)) return 0; pkey = PEM_read_bio_PrivateKey( bp, NULL, NULL, NULL ); if (pkey == NULL) return 0; EVP_SignFinal(&mdctx, *md_value, md_len, pkey); EVP_MD_CTX_cleanup(&mdctx); initialised_ = false; EVP_PKEY_free(pkey); BIO_free(bp); return 1; } protected: static Handle New (const Arguments& args) { HandleScope scope; Sign *sign = new Sign(); sign->Wrap(args.This()); return args.This(); } static Handle SignInit(const Arguments& args) { HandleScope scope; Sign *sign = ObjectWrap::Unwrap(args.This()); if (args.Length() == 0 || !args[0]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give signtype string as argument"))); } String::Utf8Value signType(args[0]->ToString()); bool r = sign->SignInit(*signType); if (!r) { return ThrowException(Exception::Error(String::New("SignInit error"))); } return args.This(); } static Handle SignUpdate(const Arguments& args) { Sign *sign = ObjectWrap::Unwrap(args.This()); HandleScope scope; ASSERT_IS_STRING_OR_BUFFER(args[0]); enum encoding enc = ParseEncoding(args[1]); ssize_t len = DecodeBytes(args[0], enc); if (len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } int r; if (Buffer::HasInstance(args[0])) { Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); r = sign->SignUpdate(buffer_data, buffer_length); } else { char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], enc); assert(written == len); r = sign->SignUpdate(buf, len); delete [] buf; } if (!r) { Local exception = Exception::TypeError(String::New("SignUpdate fail")); return ThrowException(exception); } return args.This(); } static Handle SignFinal(const Arguments& args) { Sign *sign = ObjectWrap::Unwrap(args.This()); HandleScope scope; unsigned char* md_value; unsigned int md_len; char* md_hexdigest; int md_hex_len; Local outString; md_len = 8192; // Maximum key size is 8192 bits md_value = new unsigned char[md_len]; ASSERT_IS_STRING_OR_BUFFER(args[0]); ssize_t len = DecodeBytes(args[0], BINARY); if (len < 0) { delete [] md_value; Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], BINARY); assert(written == len); int r = sign->SignFinal(&md_value, &md_len, buf, len); delete [] buf; if (md_len == 0 || r == 0) { delete [] md_value; return scope.Close(String::New("")); } if (args.Length() == 1 || !args[1]->IsString()) { // Binary outString = Encode(md_value, md_len, BINARY); } else { String::Utf8Value encoding(args[1]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding HexEncode(md_value, md_len, &md_hexdigest, &md_hex_len); outString = Encode(md_hexdigest, md_hex_len, BINARY); delete [] md_hexdigest; } else if (strcasecmp(*encoding, "base64") == 0) { base64(md_value, md_len, &md_hexdigest, &md_hex_len); outString = Encode(md_hexdigest, md_hex_len, BINARY); delete [] md_hexdigest; } else if (strcasecmp(*encoding, "binary") == 0) { outString = Encode(md_value, md_len, BINARY); } else { outString = String::New(""); fprintf(stderr, "node-crypto : Sign .sign encoding " "can be binary, hex or base64\n"); } } delete [] md_value; return scope.Close(outString); } Sign () : ObjectWrap () { initialised_ = false; } ~Sign () { if (initialised_) { EVP_MD_CTX_cleanup(&mdctx); } } private: EVP_MD_CTX mdctx; /* coverity[member_decl] */ const EVP_MD *md; /* coverity[member_decl] */ bool initialised_; }; class Verify : public ObjectWrap { public: static void Initialize (v8::Handle target) { HandleScope scope; Local t = FunctionTemplate::New(New); t->InstanceTemplate()->SetInternalFieldCount(1); NODE_SET_PROTOTYPE_METHOD(t, "init", VerifyInit); NODE_SET_PROTOTYPE_METHOD(t, "update", VerifyUpdate); NODE_SET_PROTOTYPE_METHOD(t, "verify", VerifyFinal); target->Set(String::NewSymbol("Verify"), t->GetFunction()); } bool VerifyInit (const char* verifyType) { md = EVP_get_digestbyname(verifyType); if(!md) { fprintf(stderr, "node-crypto : Unknown message digest %s\n", verifyType); return false; } EVP_MD_CTX_init(&mdctx); EVP_VerifyInit_ex(&mdctx, md, NULL); initialised_ = true; return true; } int VerifyUpdate(char* data, int len) { if (!initialised_) return 0; EVP_VerifyUpdate(&mdctx, data, len); return 1; } int VerifyFinal(char* key_pem, int key_pemLen, unsigned char* sig, int siglen) { if (!initialised_) return 0; BIO *bp = NULL; EVP_PKEY* pkey; X509 *x509; bp = BIO_new(BIO_s_mem()); if(!BIO_write(bp, key_pem, key_pemLen)) return 0; x509 = PEM_read_bio_X509(bp, NULL, NULL, NULL ); if (x509==NULL) return 0; pkey=X509_get_pubkey(x509); if (pkey==NULL) return 0; int r = EVP_VerifyFinal(&mdctx, sig, siglen, pkey); EVP_PKEY_free (pkey); if (r != 1) { ERR_print_errors_fp (stderr); } X509_free(x509); BIO_free(bp); EVP_MD_CTX_cleanup(&mdctx); initialised_ = false; return r; } protected: static Handle New (const Arguments& args) { HandleScope scope; Verify *verify = new Verify(); verify->Wrap(args.This()); return args.This(); } static Handle VerifyInit(const Arguments& args) { Verify *verify = ObjectWrap::Unwrap(args.This()); HandleScope scope; if (args.Length() == 0 || !args[0]->IsString()) { return ThrowException(Exception::Error(String::New( "Must give verifytype string as argument"))); } String::Utf8Value verifyType(args[0]->ToString()); bool r = verify->VerifyInit(*verifyType); if (!r) { return ThrowException(Exception::Error(String::New("VerifyInit error"))); } return args.This(); } static Handle VerifyUpdate(const Arguments& args) { HandleScope scope; Verify *verify = ObjectWrap::Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); enum encoding enc = ParseEncoding(args[1]); ssize_t len = DecodeBytes(args[0], enc); if (len < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } int r; if(Buffer::HasInstance(args[0])) { Local buffer_obj = args[0]->ToObject(); char *buffer_data = Buffer::Data(buffer_obj); size_t buffer_length = Buffer::Length(buffer_obj); r = verify->VerifyUpdate(buffer_data, buffer_length); } else { char* buf = new char[len]; ssize_t written = DecodeWrite(buf, len, args[0], enc); assert(written == len); r = verify->VerifyUpdate(buf, len); delete [] buf; } if (!r) { Local exception = Exception::TypeError(String::New("VerifyUpdate fail")); return ThrowException(exception); } return args.This(); } static Handle VerifyFinal(const Arguments& args) { HandleScope scope; Verify *verify = ObjectWrap::Unwrap(args.This()); ASSERT_IS_STRING_OR_BUFFER(args[0]); ssize_t klen = DecodeBytes(args[0], BINARY); if (klen < 0) { Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } char* kbuf = new char[klen]; ssize_t kwritten = DecodeWrite(kbuf, klen, args[0], BINARY); assert(kwritten == klen); ASSERT_IS_STRING_OR_BUFFER(args[1]); ssize_t hlen = DecodeBytes(args[1], BINARY); if (hlen < 0) { delete [] kbuf; Local exception = Exception::TypeError(String::New("Bad argument")); return ThrowException(exception); } unsigned char* hbuf = new unsigned char[hlen]; ssize_t hwritten = DecodeWrite((char *)hbuf, hlen, args[1], BINARY); assert(hwritten == hlen); unsigned char* dbuf; int dlen; int r=-1; if (args.Length() == 2 || !args[2]->IsString()) { // Binary r = verify->VerifyFinal(kbuf, klen, hbuf, hlen); } else { String::Utf8Value encoding(args[2]->ToString()); if (strcasecmp(*encoding, "hex") == 0) { // Hex encoding HexDecode(hbuf, hlen, (char **)&dbuf, &dlen); r = verify->VerifyFinal(kbuf, klen, dbuf, dlen); delete [] dbuf; } else if (strcasecmp(*encoding, "base64") == 0) { // Base64 encoding unbase64(hbuf, hlen, (char **)&dbuf, &dlen); r = verify->VerifyFinal(kbuf, klen, dbuf, dlen); delete [] dbuf; } else if (strcasecmp(*encoding, "binary") == 0) { r = verify->VerifyFinal(kbuf, klen, hbuf, hlen); } else { fprintf(stderr, "node-crypto : Verify .verify encoding " "can be binary, hex or base64\n"); } } delete [] kbuf; delete [] hbuf; return scope.Close(Integer::New(r)); } Verify () : ObjectWrap () { initialised_ = false; } ~Verify () { if (initialised_) { EVP_MD_CTX_cleanup(&mdctx); } } private: EVP_MD_CTX mdctx; /* coverity[member_decl] */ const EVP_MD *md; /* coverity[member_decl] */ bool initialised_; }; void InitCrypto(Handle target) { HandleScope scope; SSL_library_init(); OpenSSL_add_all_algorithms(); OpenSSL_add_all_digests(); SSL_load_error_strings(); ERR_load_crypto_strings(); // Turn off compression. Saves memory - do it in userland. STACK_OF(SSL_COMP)* comp_methods = SSL_COMP_get_compression_methods(); #if 0 if (comp_methods && sk_SSL_COMP_num(comp_methods) > 0) { default_compression_method = sk_SSL_COMP_pop(comp_methods); fprintf(stderr, "SSL_COMP_get_name %s\n", SSL_COMP_get_name(default_compression_method->method)); } #endif sk_SSL_COMP_zero(comp_methods); assert(sk_SSL_COMP_num(comp_methods) == 0); SecureContext::Initialize(target); Connection::Initialize(target); Cipher::Initialize(target); Decipher::Initialize(target); Hmac::Initialize(target); Hash::Initialize(target); Sign::Initialize(target); Verify::Initialize(target); subject_symbol = NODE_PSYMBOL("subject"); issuer_symbol = NODE_PSYMBOL("issuer"); valid_from_symbol = NODE_PSYMBOL("valid_from"); valid_to_symbol = NODE_PSYMBOL("valid_to"); fingerprint_symbol = NODE_PSYMBOL("fingerprint"); name_symbol = NODE_PSYMBOL("name"); version_symbol = NODE_PSYMBOL("version"); ext_key_usage_symbol = NODE_PSYMBOL("ext_key_usage"); } } // namespace crypto } // namespace node NODE_MODULE(node_crypto, node::crypto::InitCrypto);