// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "data-flow.h" #include "scopes.h" namespace v8 { namespace internal { #ifdef DEBUG void BitVector::Print() { bool first = true; PrintF("{"); for (int i = 0; i < length(); i++) { if (Contains(i)) { if (!first) PrintF(","); first = false; PrintF("%d"); } } PrintF("}"); } #endif void FlowGraph::AppendInstruction(AstNode* instruction) { // Add a (non-null) AstNode to the end of the graph fragment. ASSERT(instruction != NULL); if (exit()->IsExitNode()) return; if (!exit()->IsBlockNode()) AppendNode(new BlockNode()); BlockNode::cast(exit())->AddInstruction(instruction); } void FlowGraph::AppendNode(Node* node) { // Add a node to the end of the graph. An empty block is added to // maintain edge-split form (that no join nodes or exit nodes as // successors to branch nodes). ASSERT(node != NULL); if (exit()->IsExitNode()) return; if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) { AppendNode(new BlockNode()); } exit()->AddSuccessor(node); node->AddPredecessor(exit()); exit_ = node; } void FlowGraph::AppendGraph(FlowGraph* graph) { // Add a flow graph fragment to the end of this one. An empty block is // added to maintain edge-split form (that no join nodes or exit nodes as // successors to branch nodes). ASSERT(graph != NULL); if (exit()->IsExitNode()) return; Node* node = graph->entry(); if (exit()->IsBranchNode() && (node->IsJoinNode() || node->IsExitNode())) { AppendNode(new BlockNode()); } exit()->AddSuccessor(node); node->AddPredecessor(exit()); exit_ = graph->exit(); } void FlowGraph::Split(BranchNode* branch, FlowGraph* left, FlowGraph* right, JoinNode* join) { // Add the branch node, left flowgraph, join node. AppendNode(branch); AppendGraph(left); AppendNode(join); // Splice in the right flowgraph. right->AppendNode(join); branch->AddSuccessor(right->entry()); right->entry()->AddPredecessor(branch); } void FlowGraph::Loop(JoinNode* join, FlowGraph* condition, BranchNode* branch, FlowGraph* body) { // Add the join, condition and branch. Add join's predecessors in // left-to-right order. AppendNode(join); body->AppendNode(join); AppendGraph(condition); AppendNode(branch); // Splice in the body flowgraph. branch->AddSuccessor(body->entry()); body->entry()->AddPredecessor(branch); } void ExitNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { preorder->Add(this); postorder->Add(this); } void BlockNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor_ != NULL); preorder->Add(this); if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); successor_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void BranchNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor0_ != NULL && successor1_ != NULL); preorder->Add(this); if (!successor1_->IsMarkedWith(mark)) { successor1_->MarkWith(mark); successor1_->Traverse(mark, preorder, postorder); } if (!successor0_->IsMarkedWith(mark)) { successor0_->MarkWith(mark); successor0_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void JoinNode::Traverse(bool mark, ZoneList* preorder, ZoneList* postorder) { ASSERT(successor_ != NULL); preorder->Add(this); if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); successor_->Traverse(mark, preorder, postorder); } postorder->Add(this); } void FlowGraphBuilder::Build(FunctionLiteral* lit) { global_exit_ = new ExitNode(); VisitStatements(lit->body()); if (HasStackOverflow()) return; // The graph can end with a branch node (if the function ended with a // loop). Maintain edge-split form (no join nodes or exit nodes as // successors to branch nodes). if (graph_.exit()->IsBranchNode()) graph_.AppendNode(new BlockNode()); graph_.AppendNode(global_exit_); // Build preorder and postorder traversal orders. All the nodes in // the graph have the same mark flag. For the traversal, use that // flag's negation. Traversal will flip all the flags. bool mark = graph_.entry()->IsMarkedWith(false); graph_.entry()->MarkWith(mark); graph_.entry()->Traverse(mark, &preorder_, &postorder_); } // This function peels off one iteration of a for-loop. The return value // is either a block statement containing the peeled loop or NULL in case // there is a stack overflow. static Statement* PeelForLoop(ForStatement* stmt) { // Mark this for-statement as processed. stmt->set_peel_this_loop(false); // Create new block containing the init statement of the for-loop and // an if-statement containing the peeled iteration and the original // loop without the init-statement. Block* block = new Block(NULL, 2, false); if (stmt->init() != NULL) { Statement* init = stmt->init(); // The init statement gets the statement position of the for-loop // to make debugging of peeled loops possible. init->set_statement_pos(stmt->statement_pos()); block->AddStatement(init); } // Copy the condition. CopyAstVisitor copy_visitor; Expression* cond_copy = stmt->cond() != NULL ? copy_visitor.DeepCopyExpr(stmt->cond()) : new Literal(Factory::true_value()); if (copy_visitor.HasStackOverflow()) return NULL; // Construct a block with the peeled body and the rest of the for-loop. Statement* body_copy = copy_visitor.DeepCopyStmt(stmt->body()); if (copy_visitor.HasStackOverflow()) return NULL; Statement* next_copy = stmt->next() != NULL ? copy_visitor.DeepCopyStmt(stmt->next()) : new EmptyStatement(); if (copy_visitor.HasStackOverflow()) return NULL; Block* peeled_body = new Block(NULL, 3, false); peeled_body->AddStatement(body_copy); peeled_body->AddStatement(next_copy); peeled_body->AddStatement(stmt); // Remove the duplicated init statement from the for-statement. stmt->set_init(NULL); // Create new test at the top and add it to the newly created block. IfStatement* test = new IfStatement(cond_copy, peeled_body, new EmptyStatement()); block->AddStatement(test); return block; } void FlowGraphBuilder::VisitStatements(ZoneList* stmts) { for (int i = 0, len = stmts->length(); i < len; i++) { stmts->at(i) = ProcessStatement(stmts->at(i)); } } Statement* FlowGraphBuilder::ProcessStatement(Statement* stmt) { if (FLAG_loop_peeling && stmt->AsForStatement() != NULL && stmt->AsForStatement()->peel_this_loop()) { Statement* tmp_stmt = PeelForLoop(stmt->AsForStatement()); if (tmp_stmt == NULL) { SetStackOverflow(); } else { stmt = tmp_stmt; } } Visit(stmt); return stmt; } void FlowGraphBuilder::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } void FlowGraphBuilder::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) { Visit(stmt->expression()); } void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) { // Nothing to do. } void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) { Visit(stmt->condition()); BranchNode* branch = new BranchNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); stmt->set_then_statement(ProcessStatement(stmt->then_statement())); FlowGraph left = graph_; graph_ = FlowGraph::Empty(); stmt->set_else_statement(ProcessStatement(stmt->else_statement())); if (HasStackOverflow()) return; JoinNode* join = new JoinNode(); original.Split(branch, &left, &graph_, join); graph_ = original; } void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) { if (stmt->init() != NULL) stmt->set_init(ProcessStatement(stmt->init())); JoinNode* join = new JoinNode(); FlowGraph original = graph_; graph_ = FlowGraph::Empty(); if (stmt->cond() != NULL) Visit(stmt->cond()); BranchNode* branch = new BranchNode(); FlowGraph condition = graph_; graph_ = FlowGraph::Empty(); stmt->set_body(ProcessStatement(stmt->body())); if (stmt->next() != NULL) stmt->set_next(ProcessStatement(stmt->next())); if (HasStackOverflow()) return; original.Loop(join, &condition, branch, &graph_); graph_ = original; } void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) { SetStackOverflow(); } void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitConditional(Conditional* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitSlot(Slot* expr) { UNREACHABLE(); } void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitLiteral(Literal* expr) { graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitAssignment(Assignment* expr) { Variable* var = expr->target()->AsVariableProxy()->AsVariable(); Property* prop = expr->target()->AsProperty(); // Left-hand side can be a variable or property (or reference error) but // not both. ASSERT(var == NULL || prop == NULL); if (var != NULL) { if (expr->is_compound()) Visit(expr->target()); Visit(expr->value()); if (var->IsStackAllocated()) { // The first definition in the body is numbered n, where n is the // number of parameters and stack-allocated locals. expr->set_num(body_definitions_.length() + variable_count_); body_definitions_.Add(expr); } } else if (prop != NULL) { Visit(prop->obj()); if (!prop->key()->IsPropertyName()) Visit(prop->key()); Visit(expr->value()); } if (HasStackOverflow()) return; graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitThrow(Throw* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitProperty(Property* expr) { Visit(expr->obj()); if (!expr->key()->IsPropertyName()) Visit(expr->key()); if (HasStackOverflow()) return; graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCall(Call* expr) { Visit(expr->expression()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { Visit(arguments->at(i)); } if (HasStackOverflow()) return; graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitCallNew(CallNew* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) { SetStackOverflow(); } void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::NOT: case Token::BIT_NOT: case Token::DELETE: case Token::TYPEOF: case Token::VOID: SetStackOverflow(); break; case Token::ADD: case Token::SUB: Visit(expr->expression()); if (HasStackOverflow()) return; graph_.AppendInstruction(expr); break; default: UNREACHABLE(); } } void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) { Visit(expr->expression()); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (var != NULL && var->IsStackAllocated()) { // The first definition in the body is numbered n, where n is the number // of parameters and stack-allocated locals. expr->set_num(body_definitions_.length() + variable_count_); body_definitions_.Add(expr); } if (HasStackOverflow()) return; graph_.AppendInstruction(expr); } void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) { switch (expr->op()) { case Token::COMMA: case Token::OR: case Token::AND: SetStackOverflow(); break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: case Token::SHL: case Token::SHR: case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: case Token::SAR: Visit(expr->left()); Visit(expr->right()); if (HasStackOverflow()) return; graph_.AppendInstruction(expr); break; default: UNREACHABLE(); } } void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) { switch (expr->op()) { case Token::EQ: case Token::NE: case Token::EQ_STRICT: case Token::NE_STRICT: case Token::INSTANCEOF: case Token::IN: SetStackOverflow(); break; case Token::LT: case Token::GT: case Token::LTE: case Token::GTE: Visit(expr->left()); Visit(expr->right()); if (HasStackOverflow()) return; graph_.AppendInstruction(expr); break; default: UNREACHABLE(); } } void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) { SetStackOverflow(); } void AstLabeler::Label(CompilationInfo* info) { info_ = info; VisitStatements(info_->function()->body()); } void AstLabeler::VisitStatements(ZoneList* stmts) { for (int i = 0, len = stmts->length(); i < len; i++) { Visit(stmts->at(i)); } } void AstLabeler::VisitDeclarations(ZoneList* decls) { UNREACHABLE(); } void AstLabeler::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void AstLabeler::VisitExpressionStatement( ExpressionStatement* stmt) { Visit(stmt->expression()); } void AstLabeler::VisitEmptyStatement(EmptyStatement* stmt) { // Do nothing. } void AstLabeler::VisitIfStatement(IfStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitContinueStatement(ContinueStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitBreakStatement(BreakStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitReturnStatement(ReturnStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitWithEnterStatement( WithEnterStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitWithExitStatement(WithExitStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitSwitchStatement(SwitchStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitDoWhileStatement(DoWhileStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitWhileStatement(WhileStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitForStatement(ForStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitForInStatement(ForInStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitTryCatchStatement(TryCatchStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitTryFinallyStatement( TryFinallyStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitDebuggerStatement( DebuggerStatement* stmt) { UNREACHABLE(); } void AstLabeler::VisitFunctionLiteral(FunctionLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitConditional(Conditional* expr) { UNREACHABLE(); } void AstLabeler::VisitSlot(Slot* expr) { UNREACHABLE(); } void AstLabeler::VisitVariableProxy(VariableProxy* expr) { expr->set_num(next_number_++); Variable* var = expr->var(); if (var->is_global() && !var->is_this()) { info_->set_has_globals(true); } } void AstLabeler::VisitLiteral(Literal* expr) { UNREACHABLE(); } void AstLabeler::VisitRegExpLiteral(RegExpLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitObjectLiteral(ObjectLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitArrayLiteral(ArrayLiteral* expr) { UNREACHABLE(); } void AstLabeler::VisitCatchExtensionObject( CatchExtensionObject* expr) { UNREACHABLE(); } void AstLabeler::VisitAssignment(Assignment* expr) { Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->IsPropertyName()); VariableProxy* proxy = prop->obj()->AsVariableProxy(); USE(proxy); ASSERT(proxy != NULL && proxy->var()->is_this()); info()->set_has_this_properties(true); prop->obj()->set_num(AstNode::kNoNumber); prop->key()->set_num(AstNode::kNoNumber); Visit(expr->value()); expr->set_num(next_number_++); } void AstLabeler::VisitThrow(Throw* expr) { UNREACHABLE(); } void AstLabeler::VisitProperty(Property* expr) { ASSERT(expr->key()->IsPropertyName()); VariableProxy* proxy = expr->obj()->AsVariableProxy(); USE(proxy); ASSERT(proxy != NULL && proxy->var()->is_this()); info()->set_has_this_properties(true); expr->obj()->set_num(AstNode::kNoNumber); expr->key()->set_num(AstNode::kNoNumber); expr->set_num(next_number_++); } void AstLabeler::VisitCall(Call* expr) { UNREACHABLE(); } void AstLabeler::VisitCallNew(CallNew* expr) { UNREACHABLE(); } void AstLabeler::VisitCallRuntime(CallRuntime* expr) { UNREACHABLE(); } void AstLabeler::VisitUnaryOperation(UnaryOperation* expr) { UNREACHABLE(); } void AstLabeler::VisitCountOperation(CountOperation* expr) { UNREACHABLE(); } void AstLabeler::VisitBinaryOperation(BinaryOperation* expr) { Visit(expr->left()); Visit(expr->right()); expr->set_num(next_number_++); } void AstLabeler::VisitCompareOperation(CompareOperation* expr) { UNREACHABLE(); } void AstLabeler::VisitThisFunction(ThisFunction* expr) { UNREACHABLE(); } void AstLabeler::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } AssignedVariablesAnalyzer::AssignedVariablesAnalyzer(FunctionLiteral* fun) : fun_(fun), av_(fun->scope()->num_parameters() + fun->scope()->num_stack_slots()) {} void AssignedVariablesAnalyzer::Analyze() { ASSERT(av_.length() > 0); VisitStatements(fun_->body()); } Variable* AssignedVariablesAnalyzer::FindSmiLoopVariable(ForStatement* stmt) { // The loop must have all necessary parts. if (stmt->init() == NULL || stmt->cond() == NULL || stmt->next() == NULL) { return NULL; } // The initialization statement has to be a simple assignment. Assignment* init = stmt->init()->StatementAsSimpleAssignment(); if (init == NULL) return NULL; // We only deal with local variables. Variable* loop_var = init->target()->AsVariableProxy()->AsVariable(); if (loop_var == NULL || !loop_var->IsStackAllocated()) return NULL; // The initial value has to be a smi. Literal* init_lit = init->value()->AsLiteral(); if (init_lit == NULL || !init_lit->handle()->IsSmi()) return NULL; int init_value = Smi::cast(*init_lit->handle())->value(); // The condition must be a compare of variable with <, <=, >, or >=. CompareOperation* cond = stmt->cond()->AsCompareOperation(); if (cond == NULL) return NULL; if (cond->op() != Token::LT && cond->op() != Token::LTE && cond->op() != Token::GT && cond->op() != Token::GTE) return NULL; // The lhs must be the same variable as in the init expression. if (cond->left()->AsVariableProxy()->AsVariable() != loop_var) return NULL; // The rhs must be a smi. Literal* term_lit = cond->right()->AsLiteral(); if (term_lit == NULL || !term_lit->handle()->IsSmi()) return NULL; int term_value = Smi::cast(*term_lit->handle())->value(); // The count operation updates the same variable as in the init expression. CountOperation* update = stmt->next()->StatementAsCountOperation(); if (update == NULL) return NULL; if (update->expression()->AsVariableProxy()->AsVariable() != loop_var) { return NULL; } // The direction of the count operation must agree with the start and the end // value. We currently do not allow the initial value to be the same as the // terminal value. This _would_ be ok as long as the loop body never executes // or executes exactly one time. if (init_value == term_value) return NULL; if (init_value < term_value && update->op() != Token::INC) return NULL; if (init_value > term_value && update->op() != Token::DEC) return NULL; // Check that the update operation cannot overflow the smi range. This can // occur in the two cases where the loop bound is equal to the largest or // smallest smi. if (update->op() == Token::INC && term_value == Smi::kMaxValue) return NULL; if (update->op() == Token::DEC && term_value == Smi::kMinValue) return NULL; // Found a smi loop variable. return loop_var; } int AssignedVariablesAnalyzer::BitIndex(Variable* var) { ASSERT(var != NULL); ASSERT(var->IsStackAllocated()); Slot* slot = var->slot(); if (slot->type() == Slot::PARAMETER) { return slot->index(); } else { return fun_->scope()->num_parameters() + slot->index(); } } void AssignedVariablesAnalyzer::RecordAssignedVar(Variable* var) { ASSERT(var != NULL); if (var->IsStackAllocated()) { av_.Add(BitIndex(var)); } } void AssignedVariablesAnalyzer::MarkIfTrivial(Expression* expr) { Variable* var = expr->AsVariableProxy()->AsVariable(); if (var != NULL && var->IsStackAllocated() && !var->is_arguments() && var->mode() != Variable::CONST && (var->is_this() || !av_.Contains(BitIndex(var)))) { expr->AsVariableProxy()->set_is_trivial(true); } } void AssignedVariablesAnalyzer::ProcessExpression(Expression* expr) { BitVector saved_av(av_); av_.Clear(); Visit(expr); av_.Union(saved_av); } void AssignedVariablesAnalyzer::VisitBlock(Block* stmt) { VisitStatements(stmt->statements()); } void AssignedVariablesAnalyzer::VisitExpressionStatement( ExpressionStatement* stmt) { ProcessExpression(stmt->expression()); } void AssignedVariablesAnalyzer::VisitEmptyStatement(EmptyStatement* stmt) { // Do nothing. } void AssignedVariablesAnalyzer::VisitIfStatement(IfStatement* stmt) { ProcessExpression(stmt->condition()); Visit(stmt->then_statement()); Visit(stmt->else_statement()); } void AssignedVariablesAnalyzer::VisitContinueStatement( ContinueStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitBreakStatement(BreakStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitReturnStatement(ReturnStatement* stmt) { ProcessExpression(stmt->expression()); } void AssignedVariablesAnalyzer::VisitWithEnterStatement( WithEnterStatement* stmt) { ProcessExpression(stmt->expression()); } void AssignedVariablesAnalyzer::VisitWithExitStatement( WithExitStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitSwitchStatement(SwitchStatement* stmt) { BitVector result(av_); av_.Clear(); Visit(stmt->tag()); result.Union(av_); for (int i = 0; i < stmt->cases()->length(); i++) { CaseClause* clause = stmt->cases()->at(i); if (!clause->is_default()) { av_.Clear(); Visit(clause->label()); result.Union(av_); } VisitStatements(clause->statements()); } av_.Union(result); } void AssignedVariablesAnalyzer::VisitDoWhileStatement(DoWhileStatement* stmt) { ProcessExpression(stmt->cond()); Visit(stmt->body()); } void AssignedVariablesAnalyzer::VisitWhileStatement(WhileStatement* stmt) { ProcessExpression(stmt->cond()); Visit(stmt->body()); } void AssignedVariablesAnalyzer::VisitForStatement(ForStatement* stmt) { if (stmt->init() != NULL) Visit(stmt->init()); if (stmt->cond() != NULL) ProcessExpression(stmt->cond()); if (stmt->next() != NULL) Visit(stmt->next()); // Process loop body. After visiting the loop body av_ contains // the assigned variables of the loop body. BitVector saved_av(av_); av_.Clear(); Visit(stmt->body()); Variable* var = FindSmiLoopVariable(stmt); if (var != NULL && !av_.Contains(BitIndex(var))) { stmt->set_loop_variable(var); } av_.Union(saved_av); } void AssignedVariablesAnalyzer::VisitForInStatement(ForInStatement* stmt) { ProcessExpression(stmt->each()); ProcessExpression(stmt->enumerable()); Visit(stmt->body()); } void AssignedVariablesAnalyzer::VisitTryCatchStatement( TryCatchStatement* stmt) { Visit(stmt->try_block()); Visit(stmt->catch_block()); } void AssignedVariablesAnalyzer::VisitTryFinallyStatement( TryFinallyStatement* stmt) { Visit(stmt->try_block()); Visit(stmt->finally_block()); } void AssignedVariablesAnalyzer::VisitDebuggerStatement( DebuggerStatement* stmt) { // Nothing to do. } void AssignedVariablesAnalyzer::VisitFunctionLiteral(FunctionLiteral* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitConditional(Conditional* expr) { ASSERT(av_.IsEmpty()); Visit(expr->condition()); BitVector result(av_); av_.Clear(); Visit(expr->then_expression()); result.Union(av_); av_.Clear(); Visit(expr->else_expression()); av_.Union(result); } void AssignedVariablesAnalyzer::VisitSlot(Slot* expr) { UNREACHABLE(); } void AssignedVariablesAnalyzer::VisitVariableProxy(VariableProxy* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitLiteral(Literal* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitRegExpLiteral(RegExpLiteral* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitObjectLiteral(ObjectLiteral* expr) { ASSERT(av_.IsEmpty()); BitVector result(av_.length()); for (int i = 0; i < expr->properties()->length(); i++) { Visit(expr->properties()->at(i)->value()); result.Union(av_); av_.Clear(); } av_ = result; } void AssignedVariablesAnalyzer::VisitArrayLiteral(ArrayLiteral* expr) { ASSERT(av_.IsEmpty()); BitVector result(av_.length()); for (int i = 0; i < expr->values()->length(); i++) { Visit(expr->values()->at(i)); result.Union(av_); av_.Clear(); } av_ = result; } void AssignedVariablesAnalyzer::VisitCatchExtensionObject( CatchExtensionObject* expr) { ASSERT(av_.IsEmpty()); Visit(expr->key()); ProcessExpression(expr->value()); } void AssignedVariablesAnalyzer::VisitAssignment(Assignment* expr) { ASSERT(av_.IsEmpty()); if (expr->target()->AsProperty() != NULL) { // Visit receiver and key of property store and rhs. Visit(expr->target()->AsProperty()->obj()); ProcessExpression(expr->target()->AsProperty()->key()); ProcessExpression(expr->value()); // If we have a variable as a receiver in a property store, check if // we can mark it as trivial. MarkIfTrivial(expr->target()->AsProperty()->obj()); } else { Visit(expr->target()); ProcessExpression(expr->value()); Variable* var = expr->target()->AsVariableProxy()->AsVariable(); if (var != NULL) RecordAssignedVar(var); } } void AssignedVariablesAnalyzer::VisitThrow(Throw* expr) { ASSERT(av_.IsEmpty()); Visit(expr->exception()); } void AssignedVariablesAnalyzer::VisitProperty(Property* expr) { ASSERT(av_.IsEmpty()); Visit(expr->obj()); ProcessExpression(expr->key()); // In case we have a variable as a receiver, check if we can mark // it as trivial. MarkIfTrivial(expr->obj()); } void AssignedVariablesAnalyzer::VisitCall(Call* expr) { ASSERT(av_.IsEmpty()); Visit(expr->expression()); BitVector result(av_); for (int i = 0; i < expr->arguments()->length(); i++) { av_.Clear(); Visit(expr->arguments()->at(i)); result.Union(av_); } av_ = result; } void AssignedVariablesAnalyzer::VisitCallNew(CallNew* expr) { ASSERT(av_.IsEmpty()); Visit(expr->expression()); BitVector result(av_); for (int i = 0; i < expr->arguments()->length(); i++) { av_.Clear(); Visit(expr->arguments()->at(i)); result.Union(av_); } av_ = result; } void AssignedVariablesAnalyzer::VisitCallRuntime(CallRuntime* expr) { ASSERT(av_.IsEmpty()); BitVector result(av_); for (int i = 0; i < expr->arguments()->length(); i++) { av_.Clear(); Visit(expr->arguments()->at(i)); result.Union(av_); } av_ = result; } void AssignedVariablesAnalyzer::VisitUnaryOperation(UnaryOperation* expr) { ASSERT(av_.IsEmpty()); Visit(expr->expression()); } void AssignedVariablesAnalyzer::VisitCountOperation(CountOperation* expr) { ASSERT(av_.IsEmpty()); Visit(expr->expression()); Variable* var = expr->expression()->AsVariableProxy()->AsVariable(); if (var != NULL) RecordAssignedVar(var); } void AssignedVariablesAnalyzer::VisitBinaryOperation(BinaryOperation* expr) { ASSERT(av_.IsEmpty()); Visit(expr->left()); ProcessExpression(expr->right()); // In case we have a variable on the left side, check if we can mark // it as trivial. MarkIfTrivial(expr->left()); } void AssignedVariablesAnalyzer::VisitCompareOperation(CompareOperation* expr) { ASSERT(av_.IsEmpty()); Visit(expr->left()); ProcessExpression(expr->right()); // In case we have a variable on the left side, check if we can mark // it as trivial. MarkIfTrivial(expr->left()); } void AssignedVariablesAnalyzer::VisitThisFunction(ThisFunction* expr) { // Nothing to do. ASSERT(av_.IsEmpty()); } void AssignedVariablesAnalyzer::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } #ifdef DEBUG // Print a textual representation of an instruction in a flow graph. Using // the AstVisitor is overkill because there is no recursion here. It is // only used for printing in debug mode. class TextInstructionPrinter: public AstVisitor { public: TextInstructionPrinter() : number_(0) {} int NextNumber() { return number_; } void AssignNumber(AstNode* node) { node->set_num(number_++); } private: // AST node visit functions. #define DECLARE_VISIT(type) virtual void Visit##type(type* node); AST_NODE_LIST(DECLARE_VISIT) #undef DECLARE_VISIT int number_; DISALLOW_COPY_AND_ASSIGN(TextInstructionPrinter); }; void TextInstructionPrinter::VisitDeclaration(Declaration* decl) { UNREACHABLE(); } void TextInstructionPrinter::VisitBlock(Block* stmt) { PrintF("Block"); } void TextInstructionPrinter::VisitExpressionStatement( ExpressionStatement* stmt) { PrintF("ExpressionStatement"); } void TextInstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) { PrintF("EmptyStatement"); } void TextInstructionPrinter::VisitIfStatement(IfStatement* stmt) { PrintF("IfStatement"); } void TextInstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitBreakStatement(BreakStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) { PrintF("return @%d", stmt->expression()->num()); } void TextInstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) { PrintF("WithEnterStatement"); } void TextInstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) { PrintF("WithExitStatement"); } void TextInstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) { PrintF("DoWhileStatement"); } void TextInstructionPrinter::VisitWhileStatement(WhileStatement* stmt) { PrintF("WhileStatement"); } void TextInstructionPrinter::VisitForStatement(ForStatement* stmt) { PrintF("ForStatement"); } void TextInstructionPrinter::VisitForInStatement(ForInStatement* stmt) { PrintF("ForInStatement"); } void TextInstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitTryFinallyStatement( TryFinallyStatement* stmt) { UNREACHABLE(); } void TextInstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) { PrintF("DebuggerStatement"); } void TextInstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) { PrintF("FunctionLiteral"); } void TextInstructionPrinter::VisitSharedFunctionInfoLiteral( SharedFunctionInfoLiteral* expr) { PrintF("SharedFunctionInfoLiteral"); } void TextInstructionPrinter::VisitConditional(Conditional* expr) { PrintF("Conditional"); } void TextInstructionPrinter::VisitSlot(Slot* expr) { UNREACHABLE(); } void TextInstructionPrinter::VisitVariableProxy(VariableProxy* expr) { Variable* var = expr->AsVariable(); if (var != NULL) { PrintF("%s", *var->name()->ToCString()); if (var->IsStackAllocated() && expr->reaching_definitions() != NULL) { expr->reaching_definitions()->Print(); } } else { ASSERT(expr->AsProperty() != NULL); VisitProperty(expr->AsProperty()); } } void TextInstructionPrinter::VisitLiteral(Literal* expr) { expr->handle()->ShortPrint(); } void TextInstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) { PrintF("RegExpLiteral"); } void TextInstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) { PrintF("ObjectLiteral"); } void TextInstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) { PrintF("ArrayLiteral"); } void TextInstructionPrinter::VisitCatchExtensionObject( CatchExtensionObject* expr) { PrintF("CatchExtensionObject"); } void TextInstructionPrinter::VisitAssignment(Assignment* expr) { Variable* var = expr->target()->AsVariableProxy()->AsVariable(); Property* prop = expr->target()->AsProperty(); if (var == NULL && prop == NULL) { // Throw reference error. Visit(expr->target()); return; } // Print the left-hand side. if (var != NULL) { PrintF("%s", *var->name()->ToCString()); } else if (prop != NULL) { PrintF("@%d", prop->obj()->num()); if (prop->key()->IsPropertyName()) { PrintF("."); ASSERT(prop->key()->AsLiteral() != NULL); prop->key()->AsLiteral()->handle()->Print(); } else { PrintF("[@%d]", prop->key()->num()); } } // Print the operation. if (expr->is_compound()) { PrintF(" = "); // Print the left-hand side again when compound. if (var != NULL) { PrintF("@%d", expr->target()->num()); } else { PrintF("@%d", prop->obj()->num()); if (prop->key()->IsPropertyName()) { PrintF("."); ASSERT(prop->key()->AsLiteral() != NULL); prop->key()->AsLiteral()->handle()->Print(); } else { PrintF("[@%d]", prop->key()->num()); } } // Print the corresponding binary operator. PrintF(" %s ", Token::String(expr->binary_op())); } else { PrintF(" %s ", Token::String(expr->op())); } // Print the right-hand side. PrintF("@%d", expr->value()->num()); if (expr->num() != AstNode::kNoNumber) { PrintF(" ;; D%d", expr->num()); } } void TextInstructionPrinter::VisitThrow(Throw* expr) { PrintF("throw @%d", expr->exception()->num()); } void TextInstructionPrinter::VisitProperty(Property* expr) { if (expr->key()->IsPropertyName()) { PrintF("@%d.", expr->obj()->num()); ASSERT(expr->key()->AsLiteral() != NULL); expr->key()->AsLiteral()->handle()->Print(); } else { PrintF("@%d[@%d]", expr->obj()->num(), expr->key()->num()); } } void TextInstructionPrinter::VisitCall(Call* expr) { PrintF("@%d(", expr->expression()->num()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("@%d", arguments->at(i)->num()); } PrintF(")"); } void TextInstructionPrinter::VisitCallNew(CallNew* expr) { PrintF("new @%d(", expr->expression()->num()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("@%d", arguments->at(i)->num()); } PrintF(")"); } void TextInstructionPrinter::VisitCallRuntime(CallRuntime* expr) { PrintF("%s(", *expr->name()->ToCString()); ZoneList* arguments = expr->arguments(); for (int i = 0, len = arguments->length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("@%d", arguments->at(i)->num()); } PrintF(")"); } void TextInstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) { PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num()); } void TextInstructionPrinter::VisitCountOperation(CountOperation* expr) { if (expr->is_prefix()) { PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num()); } else { PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op())); } if (expr->num() != AstNode::kNoNumber) { PrintF(" ;; D%d", expr->num()); } } void TextInstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) { ASSERT(expr->op() != Token::COMMA); ASSERT(expr->op() != Token::OR); ASSERT(expr->op() != Token::AND); PrintF("@%d %s @%d", expr->left()->num(), Token::String(expr->op()), expr->right()->num()); } void TextInstructionPrinter::VisitCompareOperation(CompareOperation* expr) { PrintF("@%d %s @%d", expr->left()->num(), Token::String(expr->op()), expr->right()->num()); } void TextInstructionPrinter::VisitThisFunction(ThisFunction* expr) { PrintF("ThisFunction"); } static int node_count = 0; static int instruction_count = 0; void Node::AssignNodeNumber() { set_number(node_count++); } void Node::PrintReachingDefinitions() { if (rd_.rd_in() != NULL) { ASSERT(rd_.kill() != NULL && rd_.gen() != NULL); PrintF("RD_in = "); rd_.rd_in()->Print(); PrintF("\n"); PrintF("RD_kill = "); rd_.kill()->Print(); PrintF("\n"); PrintF("RD_gen = "); rd_.gen()->Print(); PrintF("\n"); } } void ExitNode::PrintText() { PrintReachingDefinitions(); PrintF("L%d: Exit\n\n", number()); } void BlockNode::PrintText() { PrintReachingDefinitions(); // Print the instructions in the block. PrintF("L%d: Block\n", number()); TextInstructionPrinter printer; for (int i = 0, len = instructions_.length(); i < len; i++) { AstNode* instr = instructions_[i]; // Print a star next to dead instructions. if (instr->AsExpression() != NULL && instr->AsExpression()->is_live()) { PrintF(" "); } else { PrintF("* "); } PrintF("%d ", printer.NextNumber()); printer.Visit(instr); printer.AssignNumber(instr); PrintF("\n"); } PrintF("goto L%d\n\n", successor_->number()); } void BranchNode::PrintText() { PrintReachingDefinitions(); PrintF("L%d: Branch\n", number()); PrintF("goto (L%d, L%d)\n\n", successor0_->number(), successor1_->number()); } void JoinNode::PrintText() { PrintReachingDefinitions(); PrintF("L%d: Join(", number()); for (int i = 0, len = predecessors_.length(); i < len; i++) { if (i != 0) PrintF(", "); PrintF("L%d", predecessors_[i]->number()); } PrintF(")\ngoto L%d\n\n", successor_->number()); } void FlowGraph::PrintText(FunctionLiteral* fun, ZoneList* postorder) { PrintF("\n========\n"); PrintF("name = %s\n", *fun->name()->ToCString()); // Number nodes and instructions in reverse postorder. node_count = 0; instruction_count = 0; for (int i = postorder->length() - 1; i >= 0; i--) { postorder->at(i)->AssignNodeNumber(); } // Print basic blocks in reverse postorder. for (int i = postorder->length() - 1; i >= 0; i--) { postorder->at(i)->PrintText(); } } #endif // defined(DEBUG) int ReachingDefinitions::IndexFor(Variable* var, int variable_count) { // Parameters are numbered left-to-right from the beginning of the bit // set. Stack-allocated locals are allocated right-to-left from the end. ASSERT(var != NULL && var->IsStackAllocated()); Slot* slot = var->slot(); if (slot->type() == Slot::PARAMETER) { return slot->index(); } else { return (variable_count - 1) - slot->index(); } } void Node::InitializeReachingDefinitions(int definition_count, List* variables, WorkList* worklist, bool mark) { ASSERT(!IsMarkedWith(mark)); rd_.Initialize(definition_count); MarkWith(mark); worklist->Insert(this); } void BlockNode::InitializeReachingDefinitions(int definition_count, List* variables, WorkList* worklist, bool mark) { ASSERT(!IsMarkedWith(mark)); int instruction_count = instructions_.length(); int variable_count = variables->length(); rd_.Initialize(definition_count); // The RD_in set for the entry node has a definition for each parameter // and local. if (predecessor_ == NULL) { for (int i = 0; i < variable_count; i++) rd_.rd_in()->Add(i); } for (int i = 0; i < instruction_count; i++) { Expression* expr = instructions_[i]->AsExpression(); if (expr == NULL) continue; Variable* var = expr->AssignedVariable(); if (var == NULL || !var->IsStackAllocated()) continue; // All definitions of this variable are killed. BitVector* def_set = variables->at(ReachingDefinitions::IndexFor(var, variable_count)); rd_.kill()->Union(*def_set); // All previously generated definitions are not generated. rd_.gen()->Subtract(*def_set); // This one is generated. rd_.gen()->Add(expr->num()); } // Add all blocks except the entry node to the worklist. if (predecessor_ != NULL) { MarkWith(mark); worklist->Insert(this); } } void ExitNode::ComputeRDOut(BitVector* result) { // Should not be the predecessor of any node. UNREACHABLE(); } void BlockNode::ComputeRDOut(BitVector* result) { // All definitions reaching this block ... *result = *rd_.rd_in(); // ... except those killed by the block ... result->Subtract(*rd_.kill()); // ... but including those generated by the block. result->Union(*rd_.gen()); } void BranchNode::ComputeRDOut(BitVector* result) { // Branch nodes don't kill or generate definitions. *result = *rd_.rd_in(); } void JoinNode::ComputeRDOut(BitVector* result) { // Join nodes don't kill or generate definitions. *result = *rd_.rd_in(); } void ExitNode::UpdateRDIn(WorkList* worklist, bool mark) { // The exit node has no successors so we can just update in place. New // RD_in is the union over all predecessors. int definition_count = rd_.rd_in()->length(); rd_.rd_in()->Clear(); BitVector temp(definition_count); for (int i = 0, len = predecessors_.length(); i < len; i++) { // Because ComputeRDOut always overwrites temp and its value is // always read out before calling ComputeRDOut again, we do not // have to clear it on each iteration of the loop. predecessors_[i]->ComputeRDOut(&temp); rd_.rd_in()->Union(temp); } } void BlockNode::UpdateRDIn(WorkList* worklist, bool mark) { // The entry block has no predecessor. Its RD_in does not change. if (predecessor_ == NULL) return; BitVector new_rd_in(rd_.rd_in()->length()); predecessor_->ComputeRDOut(&new_rd_in); if (rd_.rd_in()->Equals(new_rd_in)) return; // Update RD_in. *rd_.rd_in() = new_rd_in; // Add the successor to the worklist if not already present. if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); worklist->Insert(successor_); } } void BranchNode::UpdateRDIn(WorkList* worklist, bool mark) { BitVector new_rd_in(rd_.rd_in()->length()); predecessor_->ComputeRDOut(&new_rd_in); if (rd_.rd_in()->Equals(new_rd_in)) return; // Update RD_in. *rd_.rd_in() = new_rd_in; // Add the successors to the worklist if not already present. if (!successor0_->IsMarkedWith(mark)) { successor0_->MarkWith(mark); worklist->Insert(successor0_); } if (!successor1_->IsMarkedWith(mark)) { successor1_->MarkWith(mark); worklist->Insert(successor1_); } } void JoinNode::UpdateRDIn(WorkList* worklist, bool mark) { int definition_count = rd_.rd_in()->length(); BitVector new_rd_in(definition_count); // New RD_in is the union over all predecessors. BitVector temp(definition_count); for (int i = 0, len = predecessors_.length(); i < len; i++) { predecessors_[i]->ComputeRDOut(&temp); new_rd_in.Union(temp); } if (rd_.rd_in()->Equals(new_rd_in)) return; // Update RD_in. *rd_.rd_in() = new_rd_in; // Add the successor to the worklist if not already present. if (!successor_->IsMarkedWith(mark)) { successor_->MarkWith(mark); worklist->Insert(successor_); } } void Node::PropagateReachingDefinitions(List* variables) { // Nothing to do. } void BlockNode::PropagateReachingDefinitions(List* variables) { // Propagate RD_in from the start of the block to all the variable // references. int variable_count = variables->length(); BitVector rd = *rd_.rd_in(); for (int i = 0, len = instructions_.length(); i < len; i++) { Expression* expr = instructions_[i]->AsExpression(); if (expr == NULL) continue; // Look for a variable reference to record its reaching definitions. VariableProxy* proxy = expr->AsVariableProxy(); if (proxy == NULL) { // Not a VariableProxy? Maybe it's a count operation. CountOperation* count_operation = expr->AsCountOperation(); if (count_operation != NULL) { proxy = count_operation->expression()->AsVariableProxy(); } } if (proxy == NULL) { // OK, Maybe it's a compound assignment. Assignment* assignment = expr->AsAssignment(); if (assignment != NULL && assignment->is_compound()) { proxy = assignment->target()->AsVariableProxy(); } } if (proxy != NULL && proxy->var()->IsStackAllocated() && !proxy->var()->is_this()) { // All definitions for this variable. BitVector* definitions = variables->at(ReachingDefinitions::IndexFor(proxy->var(), variable_count)); BitVector* reaching_definitions = new BitVector(*definitions); // Intersected with all definitions (of any variable) reaching this // instruction. reaching_definitions->Intersect(rd); proxy->set_reaching_definitions(reaching_definitions); } // It may instead (or also) be a definition. If so update the running // value of reaching definitions for the block. Variable* var = expr->AssignedVariable(); if (var == NULL || !var->IsStackAllocated()) continue; // All definitions of this variable are killed. BitVector* def_set = variables->at(ReachingDefinitions::IndexFor(var, variable_count)); rd.Subtract(*def_set); // This definition is generated. rd.Add(expr->num()); } } void ReachingDefinitions::Compute() { // The definitions in the body plus an implicit definition for each // variable at function entry. int definition_count = body_definitions_->length() + variable_count_; int node_count = postorder_->length(); // Step 1: For each stack-allocated variable, identify the set of all its // definitions. List variables; for (int i = 0; i < variable_count_; i++) { // Add the initial definition for each variable. BitVector* initial = new BitVector(definition_count); initial->Add(i); variables.Add(initial); } for (int i = 0, len = body_definitions_->length(); i < len; i++) { // Account for each definition in the body as a definition of the // defined variable. Variable* var = body_definitions_->at(i)->AssignedVariable(); variables[IndexFor(var, variable_count_)]->Add(i + variable_count_); } // Step 2: Compute KILL and GEN for each block node, initialize RD_in for // all nodes, and mark and add all nodes to the worklist in reverse // postorder. All nodes should currently have the same mark. bool mark = postorder_->at(0)->IsMarkedWith(false); // Negation of current. WorkList worklist(node_count); for (int i = node_count - 1; i >= 0; i--) { postorder_->at(i)->InitializeReachingDefinitions(definition_count, &variables, &worklist, mark); } // Step 3: Until the worklist is empty, remove an item compute and update // its rd_in based on its predecessor's rd_out. If rd_in has changed, add // all necessary successors to the worklist. while (!worklist.is_empty()) { Node* node = worklist.Remove(); node->MarkWith(!mark); node->UpdateRDIn(&worklist, mark); } // Step 4: Based on RD_in for block nodes, propagate reaching definitions // to all variable uses in the block. for (int i = 0; i < node_count; i++) { postorder_->at(i)->PropagateReachingDefinitions(&variables); } } bool TypeAnalyzer::IsPrimitiveDef(int def_num) { if (def_num < param_count_) return false; if (def_num < variable_count_) return true; return body_definitions_->at(def_num - variable_count_)->IsPrimitive(); } void TypeAnalyzer::Compute() { bool changed; int count = 0; do { changed = false; if (FLAG_print_graph_text) { PrintF("TypeAnalyzer::Compute - iteration %d\n", count++); } for (int i = postorder_->length() - 1; i >= 0; --i) { Node* node = postorder_->at(i); if (node->IsBlockNode()) { BlockNode* block = BlockNode::cast(node); for (int j = 0; j < block->instructions()->length(); j++) { Expression* expr = block->instructions()->at(j)->AsExpression(); if (expr != NULL) { // For variable uses: Compute new type from reaching definitions. VariableProxy* proxy = expr->AsVariableProxy(); if (proxy != NULL && proxy->reaching_definitions() != NULL) { BitVector* rd = proxy->reaching_definitions(); bool prim_type = true; // TODO(fsc): A sparse set representation of reaching // definitions would speed up iterating here. for (int k = 0; k < rd->length(); k++) { if (rd->Contains(k) && !IsPrimitiveDef(k)) { prim_type = false; break; } } // Reset changed flag if new type information was computed. if (prim_type != proxy->IsPrimitive()) { changed = true; proxy->SetIsPrimitive(prim_type); } } } } } } } while (changed); } void Node::MarkCriticalInstructions( List* stack, ZoneList* body_definitions, int variable_count) { } void BlockNode::MarkCriticalInstructions( List* stack, ZoneList* body_definitions, int variable_count) { for (int i = instructions_.length() - 1; i >= 0; i--) { // Only expressions can appear in the flow graph for now. Expression* expr = instructions_[i]->AsExpression(); if (expr != NULL && !expr->is_live() && (expr->is_loop_condition() || expr->IsCritical())) { expr->mark_as_live(); expr->ProcessNonLiveChildren(stack, body_definitions, variable_count); } } } void MarkLiveCode(ZoneList* nodes, ZoneList* body_definitions, int variable_count) { List stack(20); // Mark the critical AST nodes as live; mark their dependencies and // add them to the marking stack. for (int i = nodes->length() - 1; i >= 0; i--) { nodes->at(i)->MarkCriticalInstructions(&stack, body_definitions, variable_count); } // Continue marking dependencies until no more. while (!stack.is_empty()) { // Only expressions can appear in the flow graph for now. Expression* expr = stack.RemoveLast()->AsExpression(); if (expr != NULL) { expr->ProcessNonLiveChildren(&stack, body_definitions, variable_count); } } } } } // namespace v8::internal