// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_ #define V8_X64_MACRO_ASSEMBLER_X64_H_ #include "assembler.h" namespace v8 { namespace internal { // Flags used for the AllocateInNewSpace functions. enum AllocationFlags { // No special flags. NO_ALLOCATION_FLAGS = 0, // Return the pointer to the allocated already tagged as a heap object. TAG_OBJECT = 1 << 0, // The content of the result register already contains the allocation top in // new space. RESULT_CONTAINS_TOP = 1 << 1 }; // Default scratch register used by MacroAssembler (and other code that needs // a spare register). The register isn't callee save, and not used by the // function calling convention. static const Register kScratchRegister = { 10 }; // r10. static const Register kSmiConstantRegister = { 15 }; // r15 (callee save). static const Register kRootRegister = { 13 }; // r13 (callee save). // Value of smi in kSmiConstantRegister. static const int kSmiConstantRegisterValue = 1; // Convenience for platform-independent signatures. typedef Operand MemOperand; // Forward declaration. class JumpTarget; struct SmiIndex { SmiIndex(Register index_register, ScaleFactor scale) : reg(index_register), scale(scale) {} Register reg; ScaleFactor scale; }; // MacroAssembler implements a collection of frequently used macros. class MacroAssembler: public Assembler { public: MacroAssembler(void* buffer, int size); void LoadRoot(Register destination, Heap::RootListIndex index); void CompareRoot(Register with, Heap::RootListIndex index); void CompareRoot(Operand with, Heap::RootListIndex index); void PushRoot(Heap::RootListIndex index); void StoreRoot(Register source, Heap::RootListIndex index); // --------------------------------------------------------------------------- // GC Support // For page containing |object| mark region covering |addr| dirty. // RecordWriteHelper only works if the object is not in new // space. void RecordWriteHelper(Register object, Register addr, Register scratch); // Check if object is in new space. The condition cc can be equal or // not_equal. If it is equal a jump will be done if the object is on new // space. The register scratch can be object itself, but it will be clobbered. template void InNewSpace(Register object, Register scratch, Condition cc, LabelType* branch); // For page containing |object| mark region covering [object+offset] // dirty. |object| is the object being stored into, |value| is the // object being stored. If |offset| is zero, then the |scratch| // register contains the array index into the elements array // represented as an untagged 32-bit integer. All registers are // clobbered by the operation. RecordWrite filters out smis so it // does not update the write barrier if the value is a smi. void RecordWrite(Register object, int offset, Register value, Register scratch); // For page containing |object| mark region covering [address] // dirty. |object| is the object being stored into, |value| is the // object being stored. All registers are clobbered by the // operation. RecordWrite filters out smis so it does not update // the write barrier if the value is a smi. void RecordWrite(Register object, Register address, Register value); // For page containing |object| mark region covering [object+offset] dirty. // The value is known to not be a smi. // object is the object being stored into, value is the object being stored. // If offset is zero, then the scratch register contains the array index into // the elements array represented as an untagged 32-bit integer. // All registers are clobbered by the operation. void RecordWriteNonSmi(Register object, int offset, Register value, Register scratch); #ifdef ENABLE_DEBUGGER_SUPPORT // --------------------------------------------------------------------------- // Debugger Support void DebugBreak(); #endif // --------------------------------------------------------------------------- // Activation frames void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); } void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); } void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); } void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); } // Enter specific kind of exit frame; either in normal or // debug mode. Expects the number of arguments in register rax and // sets up the number of arguments in register rdi and the pointer // to the first argument in register rsi. // // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack // accessible via StackSpaceOperand. void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false); // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize // memory (not GCed) on the stack accessible via StackSpaceOperand. void EnterApiExitFrame(int arg_stack_space); // Leave the current exit frame. Expects/provides the return value in // register rax:rdx (untouched) and the pointer to the first // argument in register rsi. void LeaveExitFrame(bool save_doubles = false); // Leave the current exit frame. Expects/provides the return value in // register rax (untouched). void LeaveApiExitFrame(); // Push and pop the registers that can hold pointers. void PushSafepointRegisters() { Pushad(); } void PopSafepointRegisters() { Popad(); } static int SafepointRegisterStackIndex(int reg_code) { return kSafepointPushRegisterIndices[reg_code]; } // --------------------------------------------------------------------------- // JavaScript invokes // Invoke the JavaScript function code by either calling or jumping. void InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag); void InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag); // Invoke the JavaScript function in the given register. Changes the // current context to the context in the function before invoking. void InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag); void InvokeFunction(JSFunction* function, const ParameterCount& actual, InvokeFlag flag); // Invoke specified builtin JavaScript function. Adds an entry to // the unresolved list if the name does not resolve. void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag); // Store the function for the given builtin in the target register. void GetBuiltinFunction(Register target, Builtins::JavaScript id); // Store the code object for the given builtin in the target register. void GetBuiltinEntry(Register target, Builtins::JavaScript id); // --------------------------------------------------------------------------- // Smi tagging, untagging and operations on tagged smis. void InitializeSmiConstantRegister() { movq(kSmiConstantRegister, reinterpret_cast(Smi::FromInt(kSmiConstantRegisterValue)), RelocInfo::NONE); } // Conversions between tagged smi values and non-tagged integer values. // Tag an integer value. The result must be known to be a valid smi value. // Only uses the low 32 bits of the src register. Sets the N and Z flags // based on the value of the resulting smi. void Integer32ToSmi(Register dst, Register src); // Stores an integer32 value into a memory field that already holds a smi. void Integer32ToSmiField(const Operand& dst, Register src); // Adds constant to src and tags the result as a smi. // Result must be a valid smi. void Integer64PlusConstantToSmi(Register dst, Register src, int constant); // Convert smi to 32-bit integer. I.e., not sign extended into // high 32 bits of destination. void SmiToInteger32(Register dst, Register src); void SmiToInteger32(Register dst, const Operand& src); // Convert smi to 64-bit integer (sign extended if necessary). void SmiToInteger64(Register dst, Register src); void SmiToInteger64(Register dst, const Operand& src); // Multiply a positive smi's integer value by a power of two. // Provides result as 64-bit integer value. void PositiveSmiTimesPowerOfTwoToInteger64(Register dst, Register src, int power); // Divide a positive smi's integer value by a power of two. // Provides result as 32-bit integer value. void PositiveSmiDivPowerOfTwoToInteger32(Register dst, Register src, int power); // Simple comparison of smis. void SmiCompare(Register dst, Register src); void SmiCompare(Register dst, Smi* src); void SmiCompare(Register dst, const Operand& src); void SmiCompare(const Operand& dst, Register src); void SmiCompare(const Operand& dst, Smi* src); // Compare the int32 in src register to the value of the smi stored at dst. void SmiCompareInteger32(const Operand& dst, Register src); // Sets sign and zero flags depending on value of smi in register. void SmiTest(Register src); // Functions performing a check on a known or potential smi. Returns // a condition that is satisfied if the check is successful. // Is the value a tagged smi. Condition CheckSmi(Register src); Condition CheckSmi(const Operand& src); // Is the value a non-negative tagged smi. Condition CheckNonNegativeSmi(Register src); // Are both values tagged smis. Condition CheckBothSmi(Register first, Register second); // Are both values non-negative tagged smis. Condition CheckBothNonNegativeSmi(Register first, Register second); // Are either value a tagged smi. Condition CheckEitherSmi(Register first, Register second, Register scratch = kScratchRegister); // Is the value the minimum smi value (since we are using // two's complement numbers, negating the value is known to yield // a non-smi value). Condition CheckIsMinSmi(Register src); // Checks whether an 32-bit integer value is a valid for conversion // to a smi. Condition CheckInteger32ValidSmiValue(Register src); // Checks whether an 32-bit unsigned integer value is a valid for // conversion to a smi. Condition CheckUInteger32ValidSmiValue(Register src); // Check whether src is a Smi, and set dst to zero if it is a smi, // and to one if it isn't. void CheckSmiToIndicator(Register dst, Register src); void CheckSmiToIndicator(Register dst, const Operand& src); // Test-and-jump functions. Typically combines a check function // above with a conditional jump. // Jump if the value cannot be represented by a smi. template void JumpIfNotValidSmiValue(Register src, LabelType* on_invalid); // Jump if the unsigned integer value cannot be represented by a smi. template void JumpIfUIntNotValidSmiValue(Register src, LabelType* on_invalid); // Jump to label if the value is a tagged smi. template void JumpIfSmi(Register src, LabelType* on_smi); // Jump to label if the value is not a tagged smi. template void JumpIfNotSmi(Register src, LabelType* on_not_smi); // Jump to label if the value is not a non-negative tagged smi. template void JumpUnlessNonNegativeSmi(Register src, LabelType* on_not_smi); // Jump to label if the value, which must be a tagged smi, has value equal // to the constant. template void JumpIfSmiEqualsConstant(Register src, Smi* constant, LabelType* on_equals); // Jump if either or both register are not smi values. template void JumpIfNotBothSmi(Register src1, Register src2, LabelType* on_not_both_smi); // Jump if either or both register are not non-negative smi values. template void JumpUnlessBothNonNegativeSmi(Register src1, Register src2, LabelType* on_not_both_smi); // Operations on tagged smi values. // Smis represent a subset of integers. The subset is always equivalent to // a two's complement interpretation of a fixed number of bits. // Optimistically adds an integer constant to a supposed smi. // If the src is not a smi, or the result is not a smi, jump to // the label. template void SmiTryAddConstant(Register dst, Register src, Smi* constant, LabelType* on_not_smi_result); // Add an integer constant to a tagged smi, giving a tagged smi as result. // No overflow testing on the result is done. void SmiAddConstant(Register dst, Register src, Smi* constant); // Add an integer constant to a tagged smi, giving a tagged smi as result. // No overflow testing on the result is done. void SmiAddConstant(const Operand& dst, Smi* constant); // Add an integer constant to a tagged smi, giving a tagged smi as result, // or jumping to a label if the result cannot be represented by a smi. template void SmiAddConstant(Register dst, Register src, Smi* constant, LabelType* on_not_smi_result); // Subtract an integer constant from a tagged smi, giving a tagged smi as // result. No testing on the result is done. Sets the N and Z flags // based on the value of the resulting integer. void SmiSubConstant(Register dst, Register src, Smi* constant); // Subtract an integer constant from a tagged smi, giving a tagged smi as // result, or jumping to a label if the result cannot be represented by a smi. template void SmiSubConstant(Register dst, Register src, Smi* constant, LabelType* on_not_smi_result); // Negating a smi can give a negative zero or too large positive value. // NOTICE: This operation jumps on success, not failure! template void SmiNeg(Register dst, Register src, LabelType* on_smi_result); // Adds smi values and return the result as a smi. // If dst is src1, then src1 will be destroyed, even if // the operation is unsuccessful. template void SmiAdd(Register dst, Register src1, Register src2, LabelType* on_not_smi_result); void SmiAdd(Register dst, Register src1, Register src2); // Subtracts smi values and return the result as a smi. // If dst is src1, then src1 will be destroyed, even if // the operation is unsuccessful. template void SmiSub(Register dst, Register src1, Register src2, LabelType* on_not_smi_result); void SmiSub(Register dst, Register src1, Register src2); template void SmiSub(Register dst, Register src1, const Operand& src2, LabelType* on_not_smi_result); void SmiSub(Register dst, Register src1, const Operand& src2); // Multiplies smi values and return the result as a smi, // if possible. // If dst is src1, then src1 will be destroyed, even if // the operation is unsuccessful. template void SmiMul(Register dst, Register src1, Register src2, LabelType* on_not_smi_result); // Divides one smi by another and returns the quotient. // Clobbers rax and rdx registers. template void SmiDiv(Register dst, Register src1, Register src2, LabelType* on_not_smi_result); // Divides one smi by another and returns the remainder. // Clobbers rax and rdx registers. template void SmiMod(Register dst, Register src1, Register src2, LabelType* on_not_smi_result); // Bitwise operations. void SmiNot(Register dst, Register src); void SmiAnd(Register dst, Register src1, Register src2); void SmiOr(Register dst, Register src1, Register src2); void SmiXor(Register dst, Register src1, Register src2); void SmiAndConstant(Register dst, Register src1, Smi* constant); void SmiOrConstant(Register dst, Register src1, Smi* constant); void SmiXorConstant(Register dst, Register src1, Smi* constant); void SmiShiftLeftConstant(Register dst, Register src, int shift_value); template void SmiShiftLogicalRightConstant(Register dst, Register src, int shift_value, LabelType* on_not_smi_result); void SmiShiftArithmeticRightConstant(Register dst, Register src, int shift_value); // Shifts a smi value to the left, and returns the result if that is a smi. // Uses and clobbers rcx, so dst may not be rcx. void SmiShiftLeft(Register dst, Register src1, Register src2); // Shifts a smi value to the right, shifting in zero bits at the top, and // returns the unsigned intepretation of the result if that is a smi. // Uses and clobbers rcx, so dst may not be rcx. template void SmiShiftLogicalRight(Register dst, Register src1, Register src2, LabelType* on_not_smi_result); // Shifts a smi value to the right, sign extending the top, and // returns the signed intepretation of the result. That will always // be a valid smi value, since it's numerically smaller than the // original. // Uses and clobbers rcx, so dst may not be rcx. void SmiShiftArithmeticRight(Register dst, Register src1, Register src2); // Specialized operations // Select the non-smi register of two registers where exactly one is a // smi. If neither are smis, jump to the failure label. template void SelectNonSmi(Register dst, Register src1, Register src2, LabelType* on_not_smis); // Converts, if necessary, a smi to a combination of number and // multiplier to be used as a scaled index. // The src register contains a *positive* smi value. The shift is the // power of two to multiply the index value by (e.g. // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2). // The returned index register may be either src or dst, depending // on what is most efficient. If src and dst are different registers, // src is always unchanged. SmiIndex SmiToIndex(Register dst, Register src, int shift); // Converts a positive smi to a negative index. SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift); // Basic Smi operations. void Move(Register dst, Smi* source) { LoadSmiConstant(dst, source); } void Move(const Operand& dst, Smi* source) { Register constant = GetSmiConstant(source); movq(dst, constant); } void Push(Smi* smi); void Test(const Operand& dst, Smi* source); // --------------------------------------------------------------------------- // String macros. template void JumpIfNotBothSequentialAsciiStrings(Register first_object, Register second_object, Register scratch1, Register scratch2, LabelType* on_not_both_flat_ascii); // Check whether the instance type represents a flat ascii string. Jump to the // label if not. If the instance type can be scratched specify same register // for both instance type and scratch. template void JumpIfInstanceTypeIsNotSequentialAscii( Register instance_type, Register scratch, LabelType *on_not_flat_ascii_string); template void JumpIfBothInstanceTypesAreNotSequentialAscii( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, LabelType* on_fail); // --------------------------------------------------------------------------- // Macro instructions. // Load a register with a long value as efficiently as possible. void Set(Register dst, int64_t x); void Set(const Operand& dst, int64_t x); // Move if the registers are not identical. void Move(Register target, Register source); // Handle support void Move(Register dst, Handle source); void Move(const Operand& dst, Handle source); void Cmp(Register dst, Handle source); void Cmp(const Operand& dst, Handle source); void Push(Handle source); // Emit code to discard a non-negative number of pointer-sized elements // from the stack, clobbering only the rsp register. void Drop(int stack_elements); void Call(Label* target) { call(target); } // Control Flow void Jump(Address destination, RelocInfo::Mode rmode); void Jump(ExternalReference ext); void Jump(Handle code_object, RelocInfo::Mode rmode); void Call(Address destination, RelocInfo::Mode rmode); void Call(ExternalReference ext); void Call(Handle code_object, RelocInfo::Mode rmode); // Non-x64 instructions. // Push/pop all general purpose registers. // Does not push rsp/rbp nor any of the assembler's special purpose registers // (kScratchRegister, kSmiConstantRegister, kRootRegister). void Pushad(); void Popad(); // Sets the stack as after performing Popad, without actually loading the // registers. void Dropad(); // Compare object type for heap object. // Always use unsigned comparisons: above and below, not less and greater. // Incoming register is heap_object and outgoing register is map. // They may be the same register, and may be kScratchRegister. void CmpObjectType(Register heap_object, InstanceType type, Register map); // Compare instance type for map. // Always use unsigned comparisons: above and below, not less and greater. void CmpInstanceType(Register map, InstanceType type); // Check if the map of an object is equal to a specified map and // branch to label if not. Skip the smi check if not required // (object is known to be a heap object) void CheckMap(Register obj, Handle map, Label* fail, bool is_heap_object); // Check if the object in register heap_object is a string. Afterwards the // register map contains the object map and the register instance_type // contains the instance_type. The registers map and instance_type can be the // same in which case it contains the instance type afterwards. Either of the // registers map and instance_type can be the same as heap_object. Condition IsObjectStringType(Register heap_object, Register map, Register instance_type); // FCmp compares and pops the two values on top of the FPU stack. // The flag results are similar to integer cmp, but requires unsigned // jcc instructions (je, ja, jae, jb, jbe, je, and jz). void FCmp(); // Abort execution if argument is not a number. Used in debug code. void AbortIfNotNumber(Register object); // Abort execution if argument is a smi. Used in debug code. void AbortIfSmi(Register object); // Abort execution if argument is not a smi. Used in debug code. void AbortIfNotSmi(Register object); // Abort execution if argument is not the root value with the given index. void AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message); // --------------------------------------------------------------------------- // Exception handling // Push a new try handler and link into try handler chain. The return // address must be pushed before calling this helper. void PushTryHandler(CodeLocation try_location, HandlerType type); // Unlink the stack handler on top of the stack from the try handler chain. void PopTryHandler(); // --------------------------------------------------------------------------- // Inline caching support // Generate code for checking access rights - used for security checks // on access to global objects across environments. The holder register // is left untouched, but the scratch register and kScratchRegister, // which must be different, are clobbered. void CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss); // --------------------------------------------------------------------------- // Allocation support // Allocate an object in new space. If the new space is exhausted control // continues at the gc_required label. The allocated object is returned in // result and end of the new object is returned in result_end. The register // scratch can be passed as no_reg in which case an additional object // reference will be added to the reloc info. The returned pointers in result // and result_end have not yet been tagged as heap objects. If // result_contains_top_on_entry is true the content of result is known to be // the allocation top on entry (could be result_end from a previous call to // AllocateInNewSpace). If result_contains_top_on_entry is true scratch // should be no_reg as it is never used. void AllocateInNewSpace(int object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void AllocateInNewSpace(int header_size, ScaleFactor element_size, Register element_count, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); void AllocateInNewSpace(Register object_size, Register result, Register result_end, Register scratch, Label* gc_required, AllocationFlags flags); // Undo allocation in new space. The object passed and objects allocated after // it will no longer be allocated. Make sure that no pointers are left to the // object(s) no longer allocated as they would be invalid when allocation is // un-done. void UndoAllocationInNewSpace(Register object); // Allocate a heap number in new space with undefined value. Returns // tagged pointer in result register, or jumps to gc_required if new // space is full. void AllocateHeapNumber(Register result, Register scratch, Label* gc_required); // Allocate a sequential string. All the header fields of the string object // are initialized. void AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); void AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required); // Allocate a raw cons string object. Only the map field of the result is // initialized. void AllocateConsString(Register result, Register scratch1, Register scratch2, Label* gc_required); void AllocateAsciiConsString(Register result, Register scratch1, Register scratch2, Label* gc_required); // --------------------------------------------------------------------------- // Support functions. // Check if result is zero and op is negative. void NegativeZeroTest(Register result, Register op, Label* then_label); // Check if result is zero and op is negative in code using jump targets. void NegativeZeroTest(CodeGenerator* cgen, Register result, Register op, JumpTarget* then_target); // Check if result is zero and any of op1 and op2 are negative. // Register scratch is destroyed, and it must be different from op2. void NegativeZeroTest(Register result, Register op1, Register op2, Register scratch, Label* then_label); // Try to get function prototype of a function and puts the value in // the result register. Checks that the function really is a // function and jumps to the miss label if the fast checks fail. The // function register will be untouched; the other register may be // clobbered. void TryGetFunctionPrototype(Register function, Register result, Label* miss); // Generates code for reporting that an illegal operation has // occurred. void IllegalOperation(int num_arguments); // Picks out an array index from the hash field. // Register use: // hash - holds the index's hash. Clobbered. // index - holds the overwritten index on exit. void IndexFromHash(Register hash, Register index); // Find the function context up the context chain. void LoadContext(Register dst, int context_chain_length); // Load the global function with the given index. void LoadGlobalFunction(int index, Register function); // Load the initial map from the global function. The registers // function and map can be the same. void LoadGlobalFunctionInitialMap(Register function, Register map); // --------------------------------------------------------------------------- // Runtime calls // Call a code stub. void CallStub(CodeStub* stub); // Call a code stub and return the code object called. Try to generate // the code if necessary. Do not perform a GC but instead return a retry // after GC failure. MUST_USE_RESULT MaybeObject* TryCallStub(CodeStub* stub); // Tail call a code stub (jump). void TailCallStub(CodeStub* stub); // Tail call a code stub (jump) and return the code object called. Try to // generate the code if necessary. Do not perform a GC but instead return // a retry after GC failure. MUST_USE_RESULT MaybeObject* TryTailCallStub(CodeStub* stub); // Return from a code stub after popping its arguments. void StubReturn(int argc); // Call a runtime routine. void CallRuntime(Runtime::Function* f, int num_arguments); // Call a runtime function and save the value of XMM registers. void CallRuntimeSaveDoubles(Runtime::FunctionId id); // Call a runtime function, returning the CodeStub object called. // Try to generate the stub code if necessary. Do not perform a GC // but instead return a retry after GC failure. MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::Function* f, int num_arguments); // Convenience function: Same as above, but takes the fid instead. void CallRuntime(Runtime::FunctionId id, int num_arguments); // Convenience function: Same as above, but takes the fid instead. MUST_USE_RESULT MaybeObject* TryCallRuntime(Runtime::FunctionId id, int num_arguments); // Convenience function: call an external reference. void CallExternalReference(const ExternalReference& ext, int num_arguments); // Tail call of a runtime routine (jump). // Like JumpToExternalReference, but also takes care of passing the number // of parameters. void TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size); MUST_USE_RESULT MaybeObject* TryTailCallExternalReference( const ExternalReference& ext, int num_arguments, int result_size); // Convenience function: tail call a runtime routine (jump). void TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size); MUST_USE_RESULT MaybeObject* TryTailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size); // Jump to a runtime routine. void JumpToExternalReference(const ExternalReference& ext, int result_size); // Jump to a runtime routine. MaybeObject* TryJumpToExternalReference(const ExternalReference& ext, int result_size); // Prepares stack to put arguments (aligns and so on). // WIN64 calling convention requires to put the pointer to the return value // slot into rcx (rcx must be preserverd until TryCallApiFunctionAndReturn). // Saves context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize // inside the exit frame (not GCed) accessible via StackSpaceOperand. void PrepareCallApiFunction(int arg_stack_space); // Calls an API function. Allocates HandleScope, extracts // returned value from handle and propagates exceptions. // Clobbers r12, r14, rbx and caller-save registers. Restores context. // On return removes stack_space * kPointerSize (GCed). MUST_USE_RESULT MaybeObject* TryCallApiFunctionAndReturn( ApiFunction* function, int stack_space); // Before calling a C-function from generated code, align arguments on stack. // After aligning the frame, arguments must be stored in esp[0], esp[4], // etc., not pushed. The argument count assumes all arguments are word sized. // The number of slots reserved for arguments depends on platform. On Windows // stack slots are reserved for the arguments passed in registers. On other // platforms stack slots are only reserved for the arguments actually passed // on the stack. void PrepareCallCFunction(int num_arguments); // Calls a C function and cleans up the space for arguments allocated // by PrepareCallCFunction. The called function is not allowed to trigger a // garbage collection, since that might move the code and invalidate the // return address (unless this is somehow accounted for by the called // function). void CallCFunction(ExternalReference function, int num_arguments); void CallCFunction(Register function, int num_arguments); // Calculate the number of stack slots to reserve for arguments when calling a // C function. int ArgumentStackSlotsForCFunctionCall(int num_arguments); // --------------------------------------------------------------------------- // Utilities void Ret(); Handle CodeObject() { return code_object_; } // --------------------------------------------------------------------------- // StatsCounter support void SetCounter(StatsCounter* counter, int value); void IncrementCounter(StatsCounter* counter, int value); void DecrementCounter(StatsCounter* counter, int value); // --------------------------------------------------------------------------- // Debugging // Calls Abort(msg) if the condition cc is not satisfied. // Use --debug_code to enable. void Assert(Condition cc, const char* msg); void AssertFastElements(Register elements); // Like Assert(), but always enabled. void Check(Condition cc, const char* msg); // Print a message to stdout and abort execution. void Abort(const char* msg); // Check that the stack is aligned. void CheckStackAlignment(); // Verify restrictions about code generated in stubs. void set_generating_stub(bool value) { generating_stub_ = value; } bool generating_stub() { return generating_stub_; } void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } bool allow_stub_calls() { return allow_stub_calls_; } private: // Order general registers are pushed by Pushad. // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14. static int kSafepointPushRegisterIndices[Register::kNumRegisters]; bool generating_stub_; bool allow_stub_calls_; // Returns a register holding the smi value. The register MUST NOT be // modified. It may be the "smi 1 constant" register. Register GetSmiConstant(Smi* value); // Moves the smi value to the destination register. void LoadSmiConstant(Register dst, Smi* value); // This handle will be patched with the code object on installation. Handle code_object_; // Helper functions for generating invokes. template void InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, LabelType* done, InvokeFlag flag); // Activation support. void EnterFrame(StackFrame::Type type); void LeaveFrame(StackFrame::Type type); void EnterExitFramePrologue(bool save_rax); // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack // accessible via StackSpaceOperand. void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles); void LeaveExitFrameEpilogue(); // Allocation support helpers. // Loads the top of new-space into the result register. // Otherwise the address of the new-space top is loaded into scratch (if // scratch is valid), and the new-space top is loaded into result. void LoadAllocationTopHelper(Register result, Register scratch, AllocationFlags flags); // Update allocation top with value in result_end register. // If scratch is valid, it contains the address of the allocation top. void UpdateAllocationTopHelper(Register result_end, Register scratch); // Helper for PopHandleScope. Allowed to perform a GC and returns // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and // possibly returns a failure object indicating an allocation failure. Object* PopHandleScopeHelper(Register saved, Register scratch, bool gc_allowed); }; // The code patcher is used to patch (typically) small parts of code e.g. for // debugging and other types of instrumentation. When using the code patcher // the exact number of bytes specified must be emitted. Is not legal to emit // relocation information. If any of these constraints are violated it causes // an assertion. class CodePatcher { public: CodePatcher(byte* address, int size); virtual ~CodePatcher(); // Macro assembler to emit code. MacroAssembler* masm() { return &masm_; } private: byte* address_; // The address of the code being patched. int size_; // Number of bytes of the expected patch size. MacroAssembler masm_; // Macro assembler used to generate the code. }; // ----------------------------------------------------------------------------- // Static helper functions. // Generate an Operand for loading a field from an object. static inline Operand FieldOperand(Register object, int offset) { return Operand(object, offset - kHeapObjectTag); } // Generate an Operand for loading an indexed field from an object. static inline Operand FieldOperand(Register object, Register index, ScaleFactor scale, int offset) { return Operand(object, index, scale, offset - kHeapObjectTag); } static inline Operand ContextOperand(Register context, int index) { return Operand(context, Context::SlotOffset(index)); } static inline Operand GlobalObjectOperand() { return ContextOperand(rsi, Context::GLOBAL_INDEX); } // Provides access to exit frame stack space (not GCed). static inline Operand StackSpaceOperand(int index) { #ifdef _WIN64 const int kShaddowSpace = 4; return Operand(rsp, (index + kShaddowSpace) * kPointerSize); #else return Operand(rsp, index * kPointerSize); #endif } #ifdef GENERATED_CODE_COVERAGE extern void LogGeneratedCodeCoverage(const char* file_line); #define CODE_COVERAGE_STRINGIFY(x) #x #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) #define ACCESS_MASM(masm) { \ byte* x64_coverage_function = \ reinterpret_cast(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ masm->pushfd(); \ masm->pushad(); \ masm->push(Immediate(reinterpret_cast(&__FILE_LINE__))); \ masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \ masm->pop(rax); \ masm->popad(); \ masm->popfd(); \ } \ masm-> #else #define ACCESS_MASM(masm) masm-> #endif // ----------------------------------------------------------------------------- // Template implementations. static int kSmiShift = kSmiTagSize + kSmiShiftSize; template void MacroAssembler::SmiNeg(Register dst, Register src, LabelType* on_smi_result) { if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); movq(kScratchRegister, src); neg(dst); // Low 32 bits are retained as zero by negation. // Test if result is zero or Smi::kMinValue. cmpq(dst, kScratchRegister); j(not_equal, on_smi_result); movq(src, kScratchRegister); } else { movq(dst, src); neg(dst); cmpq(dst, src); // If the result is zero or Smi::kMinValue, negation failed to create a smi. j(not_equal, on_smi_result); } } template void MacroAssembler::SmiAdd(Register dst, Register src1, Register src2, LabelType* on_not_smi_result) { ASSERT_NOT_NULL(on_not_smi_result); ASSERT(!dst.is(src2)); if (dst.is(src1)) { movq(kScratchRegister, src1); addq(kScratchRegister, src2); j(overflow, on_not_smi_result); movq(dst, kScratchRegister); } else { movq(dst, src1); addq(dst, src2); j(overflow, on_not_smi_result); } } template void MacroAssembler::SmiSub(Register dst, Register src1, Register src2, LabelType* on_not_smi_result) { ASSERT_NOT_NULL(on_not_smi_result); ASSERT(!dst.is(src2)); if (dst.is(src1)) { cmpq(dst, src2); j(overflow, on_not_smi_result); subq(dst, src2); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result); } } template void MacroAssembler::SmiSub(Register dst, Register src1, const Operand& src2, LabelType* on_not_smi_result) { ASSERT_NOT_NULL(on_not_smi_result); if (dst.is(src1)) { movq(kScratchRegister, src2); cmpq(src1, kScratchRegister); j(overflow, on_not_smi_result); subq(src1, kScratchRegister); } else { movq(dst, src1); subq(dst, src2); j(overflow, on_not_smi_result); } } template void MacroAssembler::SmiMul(Register dst, Register src1, Register src2, LabelType* on_not_smi_result) { ASSERT(!dst.is(src2)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); if (dst.is(src1)) { NearLabel failure, zero_correct_result; movq(kScratchRegister, src1); // Create backup for later testing. SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, &failure); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. NearLabel correct_result; testq(dst, dst); j(not_zero, &correct_result); movq(dst, kScratchRegister); xor_(dst, src2); j(positive, &zero_correct_result); // Result was positive zero. bind(&failure); // Reused failure exit, restores src1. movq(src1, kScratchRegister); jmp(on_not_smi_result); bind(&zero_correct_result); Set(dst, 0); bind(&correct_result); } else { SmiToInteger64(dst, src1); imul(dst, src2); j(overflow, on_not_smi_result); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. NearLabel correct_result; testq(dst, dst); j(not_zero, &correct_result); // One of src1 and src2 is zero, the check whether the other is // negative. movq(kScratchRegister, src1); xor_(kScratchRegister, src2); j(negative, on_not_smi_result); bind(&correct_result); } } template void MacroAssembler::SmiTryAddConstant(Register dst, Register src, Smi* constant, LabelType* on_not_smi_result) { // Does not assume that src is a smi. ASSERT_EQ(static_cast(1), static_cast(kSmiTagMask)); ASSERT_EQ(0, kSmiTag); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src.is(kScratchRegister)); JumpIfNotSmi(src, on_not_smi_result); Register tmp = (dst.is(src) ? kScratchRegister : dst); LoadSmiConstant(tmp, constant); addq(tmp, src); j(overflow, on_not_smi_result); if (dst.is(src)) { movq(dst, tmp); } } template void MacroAssembler::SmiAddConstant(Register dst, Register src, Smi* constant, LabelType* on_not_smi_result) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); LoadSmiConstant(kScratchRegister, constant); addq(kScratchRegister, src); j(overflow, on_not_smi_result); movq(dst, kScratchRegister); } else { LoadSmiConstant(dst, constant); addq(dst, src); j(overflow, on_not_smi_result); } } template void MacroAssembler::SmiSubConstant(Register dst, Register src, Smi* constant, LabelType* on_not_smi_result) { if (constant->value() == 0) { if (!dst.is(src)) { movq(dst, src); } } else if (dst.is(src)) { ASSERT(!dst.is(kScratchRegister)); if (constant->value() == Smi::kMinValue) { // Subtracting min-value from any non-negative value will overflow. // We test the non-negativeness before doing the subtraction. testq(src, src); j(not_sign, on_not_smi_result); LoadSmiConstant(kScratchRegister, constant); subq(dst, kScratchRegister); } else { // Subtract by adding the negation. LoadSmiConstant(kScratchRegister, Smi::FromInt(-constant->value())); addq(kScratchRegister, dst); j(overflow, on_not_smi_result); movq(dst, kScratchRegister); } } else { if (constant->value() == Smi::kMinValue) { // Subtracting min-value from any non-negative value will overflow. // We test the non-negativeness before doing the subtraction. testq(src, src); j(not_sign, on_not_smi_result); LoadSmiConstant(dst, constant); // Adding and subtracting the min-value gives the same result, it only // differs on the overflow bit, which we don't check here. addq(dst, src); } else { // Subtract by adding the negation. LoadSmiConstant(dst, Smi::FromInt(-(constant->value()))); addq(dst, src); j(overflow, on_not_smi_result); } } } template void MacroAssembler::SmiDiv(Register dst, Register src1, Register src2, LabelType* on_not_smi_result) { ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); // Check for 0 divisor (result is +/-Infinity). NearLabel positive_divisor; testq(src2, src2); j(zero, on_not_smi_result); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); // We need to rule out dividing Smi::kMinValue by -1, since that would // overflow in idiv and raise an exception. // We combine this with negative zero test (negative zero only happens // when dividing zero by a negative number). // We overshoot a little and go to slow case if we divide min-value // by any negative value, not just -1. NearLabel safe_div; testl(rax, Immediate(0x7fffffff)); j(not_zero, &safe_div); testq(src2, src2); if (src1.is(rax)) { j(positive, &safe_div); movq(src1, kScratchRegister); jmp(on_not_smi_result); } else { j(negative, on_not_smi_result); } bind(&safe_div); SmiToInteger32(src2, src2); // Sign extend src1 into edx:eax. cdq(); idivl(src2); Integer32ToSmi(src2, src2); // Check that the remainder is zero. testl(rdx, rdx); if (src1.is(rax)) { NearLabel smi_result; j(zero, &smi_result); movq(src1, kScratchRegister); jmp(on_not_smi_result); bind(&smi_result); } else { j(not_zero, on_not_smi_result); } if (!dst.is(src1) && src1.is(rax)) { movq(src1, kScratchRegister); } Integer32ToSmi(dst, rax); } template void MacroAssembler::SmiMod(Register dst, Register src1, Register src2, LabelType* on_not_smi_result) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!src2.is(rax)); ASSERT(!src2.is(rdx)); ASSERT(!src1.is(rdx)); ASSERT(!src1.is(src2)); testq(src2, src2); j(zero, on_not_smi_result); if (src1.is(rax)) { movq(kScratchRegister, src1); } SmiToInteger32(rax, src1); SmiToInteger32(src2, src2); // Test for the edge case of dividing Smi::kMinValue by -1 (will overflow). NearLabel safe_div; cmpl(rax, Immediate(Smi::kMinValue)); j(not_equal, &safe_div); cmpl(src2, Immediate(-1)); j(not_equal, &safe_div); // Retag inputs and go slow case. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } jmp(on_not_smi_result); bind(&safe_div); // Sign extend eax into edx:eax. cdq(); idivl(src2); // Restore smi tags on inputs. Integer32ToSmi(src2, src2); if (src1.is(rax)) { movq(src1, kScratchRegister); } // Check for a negative zero result. If the result is zero, and the // dividend is negative, go slow to return a floating point negative zero. NearLabel smi_result; testl(rdx, rdx); j(not_zero, &smi_result); testq(src1, src1); j(negative, on_not_smi_result); bind(&smi_result); Integer32ToSmi(dst, rdx); } template void MacroAssembler::SmiShiftLogicalRightConstant( Register dst, Register src, int shift_value, LabelType* on_not_smi_result) { // Logic right shift interprets its result as an *unsigned* number. if (dst.is(src)) { UNIMPLEMENTED(); // Not used. } else { movq(dst, src); if (shift_value == 0) { testq(dst, dst); j(negative, on_not_smi_result); } shr(dst, Immediate(shift_value + kSmiShift)); shl(dst, Immediate(kSmiShift)); } } template void MacroAssembler::SmiShiftLogicalRight(Register dst, Register src1, Register src2, LabelType* on_not_smi_result) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(rcx)); NearLabel result_ok; if (src1.is(rcx) || src2.is(rcx)) { movq(kScratchRegister, rcx); } if (!dst.is(src1)) { movq(dst, src1); } SmiToInteger32(rcx, src2); orl(rcx, Immediate(kSmiShift)); shr_cl(dst); // Shift is rcx modulo 0x1f + 32. shl(dst, Immediate(kSmiShift)); testq(dst, dst); if (src1.is(rcx) || src2.is(rcx)) { NearLabel positive_result; j(positive, &positive_result); if (src1.is(rcx)) { movq(src1, kScratchRegister); } else { movq(src2, kScratchRegister); } jmp(on_not_smi_result); bind(&positive_result); } else { j(negative, on_not_smi_result); // src2 was zero and src1 negative. } } template void MacroAssembler::SelectNonSmi(Register dst, Register src1, Register src2, LabelType* on_not_smis) { ASSERT(!dst.is(kScratchRegister)); ASSERT(!src1.is(kScratchRegister)); ASSERT(!src2.is(kScratchRegister)); ASSERT(!dst.is(src1)); ASSERT(!dst.is(src2)); // Both operands must not be smis. #ifdef DEBUG if (allow_stub_calls()) { // Check contains a stub call. Condition not_both_smis = NegateCondition(CheckBothSmi(src1, src2)); Check(not_both_smis, "Both registers were smis in SelectNonSmi."); } #endif ASSERT_EQ(0, kSmiTag); ASSERT_EQ(0, Smi::FromInt(0)); movl(kScratchRegister, Immediate(kSmiTagMask)); and_(kScratchRegister, src1); testl(kScratchRegister, src2); // If non-zero then both are smis. j(not_zero, on_not_smis); // Exactly one operand is a smi. ASSERT_EQ(1, static_cast(kSmiTagMask)); // kScratchRegister still holds src1 & kSmiTag, which is either zero or one. subq(kScratchRegister, Immediate(1)); // If src1 is a smi, then scratch register all 1s, else it is all 0s. movq(dst, src1); xor_(dst, src2); and_(dst, kScratchRegister); // If src1 is a smi, dst holds src1 ^ src2, else it is zero. xor_(dst, src1); // If src1 is a smi, dst is src2, else it is src1, i.e., the non-smi. } template void MacroAssembler::JumpIfSmi(Register src, LabelType* on_smi) { ASSERT_EQ(0, kSmiTag); Condition smi = CheckSmi(src); j(smi, on_smi); } template void MacroAssembler::JumpIfNotSmi(Register src, LabelType* on_not_smi) { Condition smi = CheckSmi(src); j(NegateCondition(smi), on_not_smi); } template void MacroAssembler::JumpUnlessNonNegativeSmi( Register src, LabelType* on_not_smi_or_negative) { Condition non_negative_smi = CheckNonNegativeSmi(src); j(NegateCondition(non_negative_smi), on_not_smi_or_negative); } template void MacroAssembler::JumpIfSmiEqualsConstant(Register src, Smi* constant, LabelType* on_equals) { SmiCompare(src, constant); j(equal, on_equals); } template void MacroAssembler::JumpIfNotValidSmiValue(Register src, LabelType* on_invalid) { Condition is_valid = CheckInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid); } template void MacroAssembler::JumpIfUIntNotValidSmiValue(Register src, LabelType* on_invalid) { Condition is_valid = CheckUInteger32ValidSmiValue(src); j(NegateCondition(is_valid), on_invalid); } template void MacroAssembler::JumpIfNotBothSmi(Register src1, Register src2, LabelType* on_not_both_smi) { Condition both_smi = CheckBothSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi); } template void MacroAssembler::JumpUnlessBothNonNegativeSmi(Register src1, Register src2, LabelType* on_not_both_smi) { Condition both_smi = CheckBothNonNegativeSmi(src1, src2); j(NegateCondition(both_smi), on_not_both_smi); } template void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first_object, Register second_object, Register scratch1, Register scratch2, LabelType* on_fail) { // Check that both objects are not smis. Condition either_smi = CheckEitherSmi(first_object, second_object); j(either_smi, on_fail); // Load instance type for both strings. movq(scratch1, FieldOperand(first_object, HeapObject::kMapOffset)); movq(scratch2, FieldOperand(second_object, HeapObject::kMapOffset)); movzxbl(scratch1, FieldOperand(scratch1, Map::kInstanceTypeOffset)); movzxbl(scratch2, FieldOperand(scratch2, Map::kInstanceTypeOffset)); // Check that both are flat ascii strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail); } template void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii( Register instance_type, Register scratch, LabelType *failure) { if (!scratch.is(instance_type)) { movl(scratch, instance_type); } const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; andl(scratch, Immediate(kFlatAsciiStringMask)); cmpl(scratch, Immediate(kStringTag | kSeqStringTag | kAsciiStringTag)); j(not_equal, failure); } template void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( Register first_object_instance_type, Register second_object_instance_type, Register scratch1, Register scratch2, LabelType* on_fail) { // Load instance type for both strings. movq(scratch1, first_object_instance_type); movq(scratch2, second_object_instance_type); // Check that both are flat ascii strings. ASSERT(kNotStringTag != 0); const int kFlatAsciiStringMask = kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask; const int kFlatAsciiStringTag = ASCII_STRING_TYPE; andl(scratch1, Immediate(kFlatAsciiStringMask)); andl(scratch2, Immediate(kFlatAsciiStringMask)); // Interleave the bits to check both scratch1 and scratch2 in one test. ASSERT_EQ(0, kFlatAsciiStringMask & (kFlatAsciiStringMask << 3)); lea(scratch1, Operand(scratch1, scratch2, times_8, 0)); cmpl(scratch1, Immediate(kFlatAsciiStringTag + (kFlatAsciiStringTag << 3))); j(not_equal, on_fail); } template void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cc, LabelType* branch) { if (Serializer::enabled()) { // Can't do arithmetic on external references if it might get serialized. // The mask isn't really an address. We load it as an external reference in // case the size of the new space is different between the snapshot maker // and the running system. if (scratch.is(object)) { movq(kScratchRegister, ExternalReference::new_space_mask()); and_(scratch, kScratchRegister); } else { movq(scratch, ExternalReference::new_space_mask()); and_(scratch, object); } movq(kScratchRegister, ExternalReference::new_space_start()); cmpq(scratch, kScratchRegister); j(cc, branch); } else { ASSERT(is_int32(static_cast(Heap::NewSpaceMask()))); intptr_t new_space_start = reinterpret_cast(Heap::NewSpaceStart()); movq(kScratchRegister, -new_space_start, RelocInfo::NONE); if (scratch.is(object)) { addq(scratch, kScratchRegister); } else { lea(scratch, Operand(object, kScratchRegister, times_1, 0)); } and_(scratch, Immediate(static_cast(Heap::NewSpaceMask()))); j(cc, branch); } } template void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_register, LabelType* done, InvokeFlag flag) { bool definitely_matches = false; NearLabel invoke; if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { Set(rax, actual.immediate()); if (expected.immediate() == SharedFunctionInfo::kDontAdaptArgumentsSentinel) { // Don't worry about adapting arguments for built-ins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { Set(rbx, expected.immediate()); } } } else { if (actual.is_immediate()) { // Expected is in register, actual is immediate. This is the // case when we invoke function values without going through the // IC mechanism. cmpq(expected.reg(), Immediate(actual.immediate())); j(equal, &invoke); ASSERT(expected.reg().is(rbx)); Set(rax, actual.immediate()); } else if (!expected.reg().is(actual.reg())) { // Both expected and actual are in (different) registers. This // is the case when we invoke functions using call and apply. cmpq(expected.reg(), actual.reg()); j(equal, &invoke); ASSERT(actual.reg().is(rax)); ASSERT(expected.reg().is(rbx)); } } if (!definitely_matches) { Handle adaptor = Handle(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); if (!code_constant.is_null()) { movq(rdx, code_constant, RelocInfo::EMBEDDED_OBJECT); addq(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); } else if (!code_register.is(rdx)) { movq(rdx, code_register); } if (flag == CALL_FUNCTION) { Call(adaptor, RelocInfo::CODE_TARGET); jmp(done); } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(&invoke); } } } } // namespace v8::internal #endif // V8_X64_MACRO_ASSEMBLER_X64_H_