// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_IC_H_ #define V8_IC_H_ #include "macro-assembler.h" #include "type-info.h" namespace v8 { namespace internal { // IC_UTIL_LIST defines all utility functions called from generated // inline caching code. The argument for the macro, ICU, is the function name. #define IC_UTIL_LIST(ICU) \ ICU(LoadIC_Miss) \ ICU(KeyedLoadIC_Miss) \ ICU(KeyedLoadIC_MissForceGeneric) \ ICU(CallIC_Miss) \ ICU(KeyedCallIC_Miss) \ ICU(StoreIC_Miss) \ ICU(StoreIC_ArrayLength) \ ICU(SharedStoreIC_ExtendStorage) \ ICU(KeyedStoreIC_Miss) \ ICU(KeyedStoreIC_MissForceGeneric) \ ICU(KeyedStoreIC_Slow) \ /* Utilities for IC stubs. */ \ ICU(LoadCallbackProperty) \ ICU(StoreCallbackProperty) \ ICU(LoadPropertyWithInterceptorOnly) \ ICU(LoadPropertyWithInterceptorForLoad) \ ICU(LoadPropertyWithInterceptorForCall) \ ICU(KeyedLoadPropertyWithInterceptor) \ ICU(StoreInterceptorProperty) \ ICU(UnaryOp_Patch) \ ICU(BinaryOp_Patch) \ ICU(CompareIC_Miss) \ ICU(ToBoolean_Patch) // // IC is the base class for LoadIC, StoreIC, CallIC, KeyedLoadIC, // and KeyedStoreIC. // class IC { public: // The ids for utility called from the generated code. enum UtilityId { #define CONST_NAME(name) k##name, IC_UTIL_LIST(CONST_NAME) #undef CONST_NAME kUtilityCount }; // Looks up the address of the named utility. static Address AddressFromUtilityId(UtilityId id); // Alias the inline cache state type to make the IC code more readable. typedef InlineCacheState State; // The IC code is either invoked with no extra frames on the stack // or with a single extra frame for supporting calls. enum FrameDepth { NO_EXTRA_FRAME = 0, EXTRA_CALL_FRAME = 1 }; // Construct the IC structure with the given number of extra // JavaScript frames on the stack. IC(FrameDepth depth, Isolate* isolate); // Get the call-site target; used for determining the state. Code* target() { return GetTargetAtAddress(address()); } inline Address address(); // Compute the current IC state based on the target stub, receiver and name. static State StateFrom(Code* target, Object* receiver, Object* name); // Clear the inline cache to initial state. static void Clear(Address address); // Computes the reloc info for this IC. This is a fairly expensive // operation as it has to search through the heap to find the code // object that contains this IC site. RelocInfo::Mode ComputeMode(); // Returns if this IC is for contextual (no explicit receiver) // access to properties. bool IsContextual(Handle receiver) { if (receiver->IsGlobalObject()) { return SlowIsContextual(); } else { ASSERT(!SlowIsContextual()); return false; } } bool SlowIsContextual() { return ComputeMode() == RelocInfo::CODE_TARGET_CONTEXT; } // Determines which map must be used for keeping the code stub. // These methods should not be called with undefined or null. static inline InlineCacheHolderFlag GetCodeCacheForObject(Object* object, JSObject* holder); static inline InlineCacheHolderFlag GetCodeCacheForObject(JSObject* object, JSObject* holder); static inline JSObject* GetCodeCacheHolder(Object* object, InlineCacheHolderFlag holder); protected: Address fp() const { return fp_; } Address pc() const { return *pc_address_; } Isolate* isolate() const { return isolate_; } #ifdef ENABLE_DEBUGGER_SUPPORT // Computes the address in the original code when the code running is // containing break points (calls to DebugBreakXXX builtins). Address OriginalCodeAddress(); #endif // Set the call-site target. void set_target(Code* code) { SetTargetAtAddress(address(), code); } #ifdef DEBUG void TraceIC(const char* type, Handle name, State old_state, Code* new_target); #endif Failure* TypeError(const char* type, Handle object, Handle key); Failure* ReferenceError(const char* type, Handle name); // Access the target code for the given IC address. static inline Code* GetTargetAtAddress(Address address); static inline void SetTargetAtAddress(Address address, Code* target); private: // Frame pointer for the frame that uses (calls) the IC. Address fp_; // All access to the program counter of an IC structure is indirect // to make the code GC safe. This feature is crucial since // GetProperty and SetProperty are called and they in turn might // invoke the garbage collector. Address* pc_address_; Isolate* isolate_; DISALLOW_IMPLICIT_CONSTRUCTORS(IC); }; // An IC_Utility encapsulates IC::UtilityId. It exists mainly because you // cannot make forward declarations to an enum. class IC_Utility { public: explicit IC_Utility(IC::UtilityId id) : address_(IC::AddressFromUtilityId(id)), id_(id) {} Address address() const { return address_; } IC::UtilityId id() const { return id_; } private: Address address_; IC::UtilityId id_; }; class CallICBase: public IC { public: class Contextual: public BitField {}; class StringStubState: public BitField {}; // Returns a JSFunction or a Failure. MUST_USE_RESULT MaybeObject* LoadFunction(State state, Code::ExtraICState extra_ic_state, Handle object, Handle name); protected: CallICBase(Code::Kind kind, Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate), kind_(kind) {} bool TryUpdateExtraICState(LookupResult* lookup, Handle object, Code::ExtraICState* extra_ic_state); // Compute a monomorphic stub if possible, otherwise return a null handle. Handle ComputeMonomorphicStub(LookupResult* lookup, State state, Code::ExtraICState extra_state, Handle object, Handle name); // Update the inline cache and the global stub cache based on the lookup // result. void UpdateCaches(LookupResult* lookup, State state, Code::ExtraICState extra_ic_state, Handle object, Handle name); // Returns a JSFunction if the object can be called as a function, and // patches the stack to be ready for the call. Otherwise, it returns the // undefined value. Handle TryCallAsFunction(Handle object); void ReceiverToObjectIfRequired(Handle callee, Handle object); static void Clear(Address address, Code* target); // Platform-specific code generation functions used by both call and // keyed call. static void GenerateMiss(MacroAssembler* masm, int argc, IC::UtilityId id, Code::ExtraICState extra_state); static void GenerateNormal(MacroAssembler* masm, int argc); static void GenerateMonomorphicCacheProbe(MacroAssembler* masm, int argc, Code::Kind kind, Code::ExtraICState extra_state); Code::Kind kind_; friend class IC; }; class CallIC: public CallICBase { public: explicit CallIC(Isolate* isolate) : CallICBase(Code::CALL_IC, isolate) { ASSERT(target()->is_call_stub()); } // Code generator routines. static void GenerateInitialize(MacroAssembler* masm, int argc, Code::ExtraICState extra_state) { GenerateMiss(masm, argc, extra_state); } static void GenerateMiss(MacroAssembler* masm, int argc, Code::ExtraICState extra_state) { CallICBase::GenerateMiss(masm, argc, IC::kCallIC_Miss, extra_state); } static void GenerateMegamorphic(MacroAssembler* masm, int argc, Code::ExtraICState extra_ic_state); static void GenerateNormal(MacroAssembler* masm, int argc) { CallICBase::GenerateNormal(masm, argc); GenerateMiss(masm, argc, Code::kNoExtraICState); } }; class KeyedCallIC: public CallICBase { public: explicit KeyedCallIC(Isolate* isolate) : CallICBase(Code::KEYED_CALL_IC, isolate) { ASSERT(target()->is_keyed_call_stub()); } MUST_USE_RESULT MaybeObject* LoadFunction(State state, Handle object, Handle key); // Code generator routines. static void GenerateInitialize(MacroAssembler* masm, int argc) { GenerateMiss(masm, argc); } static void GenerateMiss(MacroAssembler* masm, int argc) { CallICBase::GenerateMiss(masm, argc, IC::kKeyedCallIC_Miss, Code::kNoExtraICState); } static void GenerateMegamorphic(MacroAssembler* masm, int argc); static void GenerateNormal(MacroAssembler* masm, int argc); static void GenerateNonStrictArguments(MacroAssembler* masm, int argc); }; class LoadIC: public IC { public: explicit LoadIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { ASSERT(target()->is_load_stub()); } MUST_USE_RESULT MaybeObject* Load(State state, Handle object, Handle name); // Code generator routines. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateMegamorphic(MacroAssembler* masm); static void GenerateNormal(MacroAssembler* masm); // Specialized code generator routines. static void GenerateArrayLength(MacroAssembler* masm); static void GenerateStringLength(MacroAssembler* masm, bool support_wrappers); static void GenerateFunctionPrototype(MacroAssembler* masm); private: // Update the inline cache and the global stub cache based on the // lookup result. void UpdateCaches(LookupResult* lookup, State state, Handle object, Handle name); // Stub accessors. Handle megamorphic_stub() { return isolate()->builtins()->LoadIC_Megamorphic(); } static Code* initialize_stub() { return Isolate::Current()->builtins()->builtin( Builtins::kLoadIC_Initialize); } Handle pre_monomorphic_stub() { return isolate()->builtins()->LoadIC_PreMonomorphic(); } static void Clear(Address address, Code* target); friend class IC; }; class KeyedIC: public IC { public: enum StubKind { LOAD, STORE_NO_TRANSITION, STORE_TRANSITION_SMI_TO_OBJECT, STORE_TRANSITION_SMI_TO_DOUBLE, STORE_TRANSITION_DOUBLE_TO_OBJECT }; explicit KeyedIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) {} virtual ~KeyedIC() {} virtual Handle GetElementStubWithoutMapCheck( bool is_js_array, ElementsKind elements_kind) = 0; protected: virtual Handle string_stub() { return Handle::null(); } virtual Code::Kind kind() const = 0; Handle ComputeStub(Handle receiver, StubKind stub_kind, StrictModeFlag strict_mode, Handle default_stub); virtual Handle ComputePolymorphicStub(MapHandleList* receiver_maps, StrictModeFlag strict_mode) = 0; Handle ComputeMonomorphicStubWithoutMapCheck( Handle receiver_map, StrictModeFlag strict_mode); private: void GetReceiverMapsForStub(Handle stub, MapHandleList* result); Handle ComputeMonomorphicStub(Handle receiver, StubKind stub_kind, StrictModeFlag strict_mode, Handle default_stub); Handle ComputeTransitionedMap(Handle receiver, StubKind stub_kind); static bool IsTransitionStubKind(StubKind stub_kind) { return stub_kind > STORE_NO_TRANSITION; } }; class KeyedLoadIC: public KeyedIC { public: explicit KeyedLoadIC(Isolate* isolate) : KeyedIC(isolate) { ASSERT(target()->is_keyed_load_stub()); } MUST_USE_RESULT MaybeObject* Load(State state, Handle object, Handle key, bool force_generic_stub); // Code generator routines. static void GenerateMiss(MacroAssembler* masm, bool force_generic); static void GenerateRuntimeGetProperty(MacroAssembler* masm); static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm, false); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm, false); } static void GenerateGeneric(MacroAssembler* masm); static void GenerateString(MacroAssembler* masm); static void GenerateIndexedInterceptor(MacroAssembler* masm); static void GenerateNonStrictArguments(MacroAssembler* masm); // Bit mask to be tested against bit field for the cases when // generic stub should go into slow case. // Access check is necessary explicitly since generic stub does not perform // map checks. static const int kSlowCaseBitFieldMask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor); virtual Handle GetElementStubWithoutMapCheck( bool is_js_array, ElementsKind elements_kind); protected: virtual Code::Kind kind() const { return Code::KEYED_LOAD_IC; } virtual Handle ComputePolymorphicStub(MapHandleList* receiver_maps, StrictModeFlag strict_mode); virtual Handle string_stub() { return isolate()->builtins()->KeyedLoadIC_String(); } private: // Update the inline cache. void UpdateCaches(LookupResult* lookup, State state, Handle object, Handle name); // Stub accessors. static Code* initialize_stub() { return Isolate::Current()->builtins()->builtin( Builtins::kKeyedLoadIC_Initialize); } Handle megamorphic_stub() { return isolate()->builtins()->KeyedLoadIC_Generic(); } Handle generic_stub() { return isolate()->builtins()->KeyedLoadIC_Generic(); } Handle pre_monomorphic_stub() { return isolate()->builtins()->KeyedLoadIC_PreMonomorphic(); } Handle indexed_interceptor_stub() { return isolate()->builtins()->KeyedLoadIC_IndexedInterceptor(); } Handle non_strict_arguments_stub() { return isolate()->builtins()->KeyedLoadIC_NonStrictArguments(); } static void Clear(Address address, Code* target); friend class IC; }; class StoreIC: public IC { public: explicit StoreIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { ASSERT(target()->is_store_stub()); } MUST_USE_RESULT MaybeObject* Store(State state, StrictModeFlag strict_mode, Handle object, Handle name, Handle value); // Code generators for stub routines. Only called once at startup. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateMegamorphic(MacroAssembler* masm, StrictModeFlag strict_mode); static void GenerateArrayLength(MacroAssembler* masm); static void GenerateNormal(MacroAssembler* masm); static void GenerateGlobalProxy(MacroAssembler* masm, StrictModeFlag strict_mode); private: // Update the inline cache and the global stub cache based on the // lookup result. void UpdateCaches(LookupResult* lookup, State state, StrictModeFlag strict_mode, Handle receiver, Handle name, Handle value); void set_target(Code* code) { // Strict mode must be preserved across IC patching. ASSERT((code->extra_ic_state() & kStrictMode) == (target()->extra_ic_state() & kStrictMode)); IC::set_target(code); } // Stub accessors. Code* megamorphic_stub() { return isolate()->builtins()->builtin( Builtins::kStoreIC_Megamorphic); } Code* megamorphic_stub_strict() { return isolate()->builtins()->builtin( Builtins::kStoreIC_Megamorphic_Strict); } static Code* initialize_stub() { return Isolate::Current()->builtins()->builtin( Builtins::kStoreIC_Initialize); } static Code* initialize_stub_strict() { return Isolate::Current()->builtins()->builtin( Builtins::kStoreIC_Initialize_Strict); } Handle global_proxy_stub() { return isolate()->builtins()->StoreIC_GlobalProxy(); } Handle global_proxy_stub_strict() { return isolate()->builtins()->StoreIC_GlobalProxy_Strict(); } static void Clear(Address address, Code* target); friend class IC; }; class KeyedStoreIC: public KeyedIC { public: explicit KeyedStoreIC(Isolate* isolate) : KeyedIC(isolate) { ASSERT(target()->is_keyed_store_stub()); } MUST_USE_RESULT MaybeObject* Store(State state, StrictModeFlag strict_mode, Handle object, Handle name, Handle value, bool force_generic); // Code generators for stub routines. Only called once at startup. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm, false); } static void GenerateMiss(MacroAssembler* masm, bool force_generic); static void GenerateSlow(MacroAssembler* masm); static void GenerateRuntimeSetProperty(MacroAssembler* masm, StrictModeFlag strict_mode); static void GenerateGeneric(MacroAssembler* masm, StrictModeFlag strict_mode); static void GenerateNonStrictArguments(MacroAssembler* masm); static void GenerateTransitionElementsSmiToDouble(MacroAssembler* masm); static void GenerateTransitionElementsDoubleToObject(MacroAssembler* masm); virtual Handle GetElementStubWithoutMapCheck( bool is_js_array, ElementsKind elements_kind); protected: virtual Code::Kind kind() const { return Code::KEYED_STORE_IC; } virtual Handle ComputePolymorphicStub(MapHandleList* receiver_maps, StrictModeFlag strict_mode); private: // Update the inline cache. void UpdateCaches(LookupResult* lookup, State state, StrictModeFlag strict_mode, Handle receiver, Handle name, Handle value); void set_target(Code* code) { // Strict mode must be preserved across IC patching. ASSERT((code->extra_ic_state() & kStrictMode) == (target()->extra_ic_state() & kStrictMode)); IC::set_target(code); } // Stub accessors. static Code* initialize_stub() { return Isolate::Current()->builtins()->builtin( Builtins::kKeyedStoreIC_Initialize); } static Code* initialize_stub_strict() { return Isolate::Current()->builtins()->builtin( Builtins::kKeyedStoreIC_Initialize_Strict); } Handle megamorphic_stub() { return isolate()->builtins()->KeyedStoreIC_Generic(); } Handle megamorphic_stub_strict() { return isolate()->builtins()->KeyedStoreIC_Generic_Strict(); } Handle generic_stub() { return isolate()->builtins()->KeyedStoreIC_Generic(); } Handle generic_stub_strict() { return isolate()->builtins()->KeyedStoreIC_Generic_Strict(); } Handle non_strict_arguments_stub() { return isolate()->builtins()->KeyedStoreIC_NonStrictArguments(); } static void Clear(Address address, Code* target); friend class IC; }; class UnaryOpIC: public IC { public: // sorted: increasingly more unspecific (ignoring UNINITIALIZED) // TODO(svenpanne) Using enums+switch is an antipattern, use a class instead. enum TypeInfo { UNINITIALIZED, SMI, HEAP_NUMBER, GENERIC }; explicit UnaryOpIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { } void patch(Code* code); static const char* GetName(TypeInfo type_info); static State ToState(TypeInfo type_info); static TypeInfo GetTypeInfo(Handle operand); static TypeInfo ComputeNewType(TypeInfo type, TypeInfo previous); }; // Type Recording BinaryOpIC, that records the types of the inputs and outputs. class BinaryOpIC: public IC { public: enum TypeInfo { UNINITIALIZED, SMI, INT32, HEAP_NUMBER, ODDBALL, BOTH_STRING, // Only used for addition operation. STRING, // Only used for addition operation. At least one string operand. GENERIC }; explicit BinaryOpIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { } void patch(Code* code); static const char* GetName(TypeInfo type_info); static State ToState(TypeInfo type_info); static TypeInfo GetTypeInfo(Handle left, Handle right); static TypeInfo JoinTypes(TypeInfo x, TypeInfo y); }; class CompareIC: public IC { public: enum State { UNINITIALIZED, SMIS, HEAP_NUMBERS, SYMBOLS, STRINGS, OBJECTS, GENERIC }; CompareIC(Isolate* isolate, Token::Value op) : IC(EXTRA_CALL_FRAME, isolate), op_(op) { } // Update the inline cache for the given operands. void UpdateCaches(Handle x, Handle y); // Factory method for getting an uninitialized compare stub. static Handle GetUninitialized(Token::Value op); // Helper function for computing the condition for a compare operation. static Condition ComputeCondition(Token::Value op); // Helper function for determining the state of a compare IC. static State ComputeState(Code* target); static const char* GetStateName(State state); private: State TargetState(State state, bool has_inlined_smi_code, Handle x, Handle y); bool strict() const { return op_ == Token::EQ_STRICT; } Condition GetCondition() const { return ComputeCondition(op_); } State GetState() { return ComputeState(target()); } Token::Value op_; }; class ToBooleanIC: public IC { public: explicit ToBooleanIC(Isolate* isolate) : IC(NO_EXTRA_FRAME, isolate) { } void patch(Code* code); }; // Helper for BinaryOpIC and CompareIC. void PatchInlinedSmiCode(Address address); } } // namespace v8::internal #endif // V8_IC_H_