// The following is adapted from fdlibm (http://www.netlib.org/fdlibm), // // ==================================================== // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. // // Developed at SunSoft, a Sun Microsystems, Inc. business. // Permission to use, copy, modify, and distribute this // software is freely granted, provided that this notice // is preserved. // ==================================================== // // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2014 the V8 project authors. All rights reserved. // // The following is a straightforward translation of fdlibm routines for // sin, cos, and tan, by Raymond Toy (rtoy@google.com). var kTrig; // Initialized to a Float64Array during genesis and is not writable. const INVPIO2 = kTrig[0]; const PIO2_1 = kTrig[1]; const PIO2_1T = kTrig[2]; const PIO2_2 = kTrig[3]; const PIO2_2T = kTrig[4]; const PIO2_3 = kTrig[5]; const PIO2_3T = kTrig[6]; const PIO4 = kTrig[32]; const PIO4LO = kTrig[33]; // Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For // precision, r is returned as two values y0 and y1 such that r = y0 + y1 // to more than double precision. macro REMPIO2(X) var n, y0, y1; var hx = %_DoubleHi(X); var ix = hx & 0x7fffffff; if (ix < 0x4002d97c) { // |X| ~< 3*pi/4, special case with n = +/- 1 if (hx > 0) { var z = X - PIO2_1; if (ix != 0x3ff921fb) { // 33+53 bit pi is good enough y0 = z - PIO2_1T; y1 = (z - y0) - PIO2_1T; } else { // near pi/2, use 33+33+53 bit pi z -= PIO2_2; y0 = z - PIO2_2T; y1 = (z - y0) - PIO2_2T; } n = 1; } else { // Negative X var z = X + PIO2_1; if (ix != 0x3ff921fb) { // 33+53 bit pi is good enough y0 = z + PIO2_1T; y1 = (z - y0) + PIO2_1T; } else { // near pi/2, use 33+33+53 bit pi z += PIO2_2; y0 = z + PIO2_2T; y1 = (z - y0) + PIO2_2T; } n = -1; } } else if (ix <= 0x413921fb) { // |X| ~<= 2^19*(pi/2), medium size var t = MathAbs(X); n = (t * INVPIO2 + 0.5) | 0; var r = t - n * PIO2_1; var w = n * PIO2_1T; // First round good to 85 bit y0 = r - w; if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) { // 2nd iteration needed, good to 118 t = r; w = n * PIO2_2; r = t - w; w = n * PIO2_2T - ((t - r) - w); y0 = r - w; if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) { // 3rd iteration needed. 151 bits accuracy t = r; w = n * PIO2_3; r = t - w; w = n * PIO2_3T - ((t - r) - w); y0 = r - w; } } y1 = (r - y0) - w; if (hx < 0) { n = -n; y0 = -y0; y1 = -y1; } } else { // Need to do full Payne-Hanek reduction here. var r = %RemPiO2(X); n = r[0]; y0 = r[1]; y1 = r[2]; } endmacro // __kernel_sin(X, Y, IY) // kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 // Input X is assumed to be bounded by ~pi/4 in magnitude. // Input Y is the tail of X so that x = X + Y. // // Algorithm // 1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x. // 2. ieee_sin(x) is approximated by a polynomial of degree 13 on // [0,pi/4] // 3 13 // sin(x) ~ x + S1*x + ... + S6*x // where // // |ieee_sin(x) 2 4 6 8 10 12 | -58 // |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 // | x | // // 3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y // ~ ieee_sin(X) + (1-X*X/2)*Y // For better accuracy, let // 3 2 2 2 2 // r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6)))) // then 3 2 // sin(x) = X + (S1*X + (X *(r-Y/2)+Y)) // macro KSIN(x) kTrig[7+x] endmacro macro RETURN_KERNELSIN(X, Y, SIGN) var z = X * X; var v = z * X; var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) + z * (KSIN(4) + z * KSIN(5)))); return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN; endmacro // __kernel_cos(X, Y) // kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 // Input X is assumed to be bounded by ~pi/4 in magnitude. // Input Y is the tail of X so that x = X + Y. // // Algorithm // 1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x. // 2. ieee_cos(x) is approximated by a polynomial of degree 14 on // [0,pi/4] // 4 14 // cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x // where the remez error is // // | 2 4 6 8 10 12 14 | -58 // |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 // | | // // 4 6 8 10 12 14 // 3. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then // ieee_cos(x) = 1 - x*x/2 + r // since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y // ~ ieee_cos(X) - X*Y, // a correction term is necessary in ieee_cos(x) and hence // cos(X+Y) = 1 - (X*X/2 - (r - X*Y)) // For better accuracy when x > 0.3, let qx = |x|/4 with // the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. // Then // cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)). // Note that 1-qx and (X*X/2-qx) is EXACT here, and the // magnitude of the latter is at least a quarter of X*X/2, // thus, reducing the rounding error in the subtraction. // macro KCOS(x) kTrig[13+x] endmacro macro RETURN_KERNELCOS(X, Y, SIGN) var ix = %_DoubleHi(X) & 0x7fffffff; var z = X * X; var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+ z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5)))))); if (ix < 0x3fd33333) { // |x| ~< 0.3 return (1 - (0.5 * z - (z * r - X * Y))) SIGN; } else { var qx; if (ix > 0x3fe90000) { // |x| > 0.78125 qx = 0.28125; } else { qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0); } var hz = 0.5 * z - qx; return (1 - qx - (hz - (z * r - X * Y))) SIGN; } endmacro // kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 // Input x is assumed to be bounded by ~pi/4 in magnitude. // Input y is the tail of x. // Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1) // is returned. // // Algorithm // 1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x. // 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. // 3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on // [0,0.67434] // 3 27 // tan(x) ~ x + T1*x + ... + T13*x // where // // |ieee_tan(x) 2 4 26 | -59.2 // |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 // | x | // // Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y // ~ ieee_tan(x) + (1+x*x)*y // Therefore, for better accuracy in computing ieee_tan(x+y), let // 3 2 2 2 2 // r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) // then // 3 2 // tan(x+y) = x + (T1*x + (x *(r+y)+y)) // // 4. For x in [0.67434,pi/4], let y = pi/4 - x, then // tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y)) // = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y))) // // Set returnTan to 1 for tan; -1 for cot. Anything else is illegal // and will cause incorrect results. // macro KTAN(x) kTrig[19+x] endmacro function KernelTan(x, y, returnTan) { var z; var w; var hx = %_DoubleHi(x); var ix = hx & 0x7fffffff; if (ix < 0x3e300000) { // |x| < 2^-28 if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) { // x == 0 && returnTan = -1 return 1 / MathAbs(x); } else { if (returnTan == 1) { return x; } else { // Compute -1/(x + y) carefully var w = x + y; var z = %_ConstructDouble(%_DoubleHi(w), 0); var v = y - (z - x); var a = -1 / w; var t = %_ConstructDouble(%_DoubleHi(a), 0); var s = 1 + t * z; return t + a * (s + t * v); } } } if (ix >= 0x3fe59429) { // |x| > .6744 if (x < 0) { x = -x; y = -y; } z = PIO4 - x; w = PIO4LO - y; x = z + w; y = 0; } z = x * x; w = z * z; // Break x^5 * (T1 + x^2*T2 + ...) into // x^5 * (T1 + x^4*T3 + ... + x^20*T11) + // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12)) var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) + w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11))))); var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) + w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12)))))); var s = z * x; r = y + z * (s * (r + v) + y); r = r + KTAN(0) * s; w = x + r; if (ix >= 0x3fe59428) { return (1 - ((hx >> 30) & 2)) * (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r))); } if (returnTan == 1) { return w; } else { z = %_ConstructDouble(%_DoubleHi(w), 0); v = r - (z - x); var a = -1 / w; var t = %_ConstructDouble(%_DoubleHi(a), 0); s = 1 + t * z; return t + a * (s + t * v); } } function MathSinSlow(x) { REMPIO2(x); var sign = 1 - (n & 2); if (n & 1) { RETURN_KERNELCOS(y0, y1, * sign); } else { RETURN_KERNELSIN(y0, y1, * sign); } } function MathCosSlow(x) { REMPIO2(x); if (n & 1) { var sign = (n & 2) - 1; RETURN_KERNELSIN(y0, y1, * sign); } else { var sign = 1 - (n & 2); RETURN_KERNELCOS(y0, y1, * sign); } } // ECMA 262 - 15.8.2.16 function MathSin(x) { x = x * 1; // Convert to number. if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { // |x| < pi/4, approximately. No reduction needed. RETURN_KERNELSIN(x, 0, /* empty */); } return MathSinSlow(x); } // ECMA 262 - 15.8.2.7 function MathCos(x) { x = x * 1; // Convert to number. if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { // |x| < pi/4, approximately. No reduction needed. RETURN_KERNELCOS(x, 0, /* empty */); } return MathCosSlow(x); } // ECMA 262 - 15.8.2.18 function MathTan(x) { x = x * 1; // Convert to number. if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) { // |x| < pi/4, approximately. No reduction needed. return KernelTan(x, 0, 1); } REMPIO2(x); return KernelTan(y0, y1, (n & 1) ? -1 : 1); }