// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. var common = require('../common'); var assert = require('assert'); var util = require('util'); try { var crypto = require('crypto'); } catch (e) { console.log('Not compiled with OPENSSL support.'); process.exit(); } crypto.DEFAULT_ENCODING = 'buffer'; var fs = require('fs'); var path = require('path'); var constants = require('constants'); // Test Certificates var caPem = fs.readFileSync(common.fixturesDir + '/test_ca.pem', 'ascii'); var certPem = fs.readFileSync(common.fixturesDir + '/test_cert.pem', 'ascii'); var certPfx = fs.readFileSync(common.fixturesDir + '/test_cert.pfx'); var keyPem = fs.readFileSync(common.fixturesDir + '/test_key.pem', 'ascii'); var rsaPubPem = fs.readFileSync(common.fixturesDir + '/test_rsa_pubkey.pem', 'ascii'); var rsaKeyPem = fs.readFileSync(common.fixturesDir + '/test_rsa_privkey.pem', 'ascii'); var rsaKeyPemEncrypted = fs.readFileSync( common.fixturesDir + '/test_rsa_privkey_encrypted.pem', 'ascii'); var dsaPubPem = fs.readFileSync(common.fixturesDir + '/test_dsa_pubkey.pem', 'ascii'); var dsaKeyPem = fs.readFileSync(common.fixturesDir + '/test_dsa_privkey.pem', 'ascii'); var dsaKeyPemEncrypted = fs.readFileSync( common.fixturesDir + '/test_dsa_privkey_encrypted.pem', 'ascii'); // TODO(indunty): move to a separate test eventually try { var context = tls.createSecureContext({ key: keyPem, cert: certPem, ca: caPem }); } catch (e) { console.log('Not compiled with OPENSSL support.'); process.exit(); } // 'this' safety // https://github.com/joyent/node/issues/6690 assert.throws(function() { var options = {key: keyPem, cert: certPem, ca: caPem}; var credentials = crypto.createCredentials(options); var context = credentials.context; var notcontext = { setOptions: context.setOptions, setKey: context.setKey }; crypto.createCredentials({ secureOptions: 1 }, notcontext); }, TypeError); // PFX tests assert.doesNotThrow(function() { crypto.createSecureContext({pfx:certPfx, passphrase:'sample'}); }); assert.throws(function() { tls.createSecureContext({pfx:certPfx}); }, 'mac verify failure'); assert.throws(function() { tls.createSecureContext({pfx:certPfx, passphrase:'test'}); }, 'mac verify failure'); assert.throws(function() { tls.createSecureContext({pfx:'sample', passphrase:'test'}); }, 'not enough data'); // Test HMAC var h1 = crypto.createHmac('sha1', 'Node') .update('some data') .update('to hmac') .digest('hex'); assert.equal(h1, '19fd6e1ba73d9ed2224dd5094a71babe85d9a892', 'test HMAC'); // Test HMAC (Wikipedia Test Cases) var wikipedia = [ { key: 'key', data: 'The quick brown fox jumps over the lazy dog', hmac: { // HMACs lifted from Wikipedia. md5: '80070713463e7749b90c2dc24911e275', sha1: 'de7c9b85b8b78aa6bc8a7a36f70a90701c9db4d9', sha256: 'f7bc83f430538424b13298e6aa6fb143ef4d59a14946175997479dbc' + '2d1a3cd8' } }, { key: 'key', data: '', hmac: { // Intermediate test to help debugging. md5: '63530468a04e386459855da0063b6596', sha1: 'f42bb0eeb018ebbd4597ae7213711ec60760843f', sha256: '5d5d139563c95b5967b9bd9a8c9b233a9dedb45072794cd232dc1b74' + '832607d0' } }, { key: '', data: 'The quick brown fox jumps over the lazy dog', hmac: { // Intermediate test to help debugging. md5: 'ad262969c53bc16032f160081c4a07a0', sha1: '2ba7f707ad5f187c412de3106583c3111d668de8', sha256: 'fb011e6154a19b9a4c767373c305275a5a69e8b68b0b4c9200c383dc' + 'ed19a416' } }, { key: '', data: '', hmac: { // HMACs lifted from Wikipedia. md5: '74e6f7298a9c2d168935f58c001bad88', sha1: 'fbdb1d1b18aa6c08324b7d64b71fb76370690e1d', sha256: 'b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c71214' + '4292c5ad' } }, ] for (var i = 0, l = wikipedia.length; i < l; i++) { for (var hash in wikipedia[i]['hmac']) { var result = crypto.createHmac(hash, wikipedia[i]['key']) .update(wikipedia[i]['data']) .digest('hex'); assert.equal(wikipedia[i]['hmac'][hash], result, 'Test HMAC-' + hash + ': Test case ' + (i + 1) + ' wikipedia'); } } // Test HMAC-SHA-* (rfc 4231 Test Cases) var rfc4231 = [ { key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'), data: new Buffer('4869205468657265', 'hex'), // 'Hi There' hmac: { sha224: '896fb1128abbdf196832107cd49df33f47b4b1169912ba4f53684b22', sha256: 'b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c' + '2e32cff7', sha384: 'afd03944d84895626b0825f4ab46907f15f9dadbe4101ec682aa034c' + '7cebc59cfaea9ea9076ede7f4af152e8b2fa9cb6', sha512: '87aa7cdea5ef619d4ff0b4241a1d6cb02379f4e2ce4ec2787ad0b305' + '45e17cdedaa833b7d6b8a702038b274eaea3f4e4be9d914eeb61f170' + '2e696c203a126854' } }, { key: new Buffer('4a656665', 'hex'), // 'Jefe' data: new Buffer('7768617420646f2079612077616e7420666f72206e6f74686' + '96e673f', 'hex'), // 'what do ya want for nothing?' hmac: { sha224: 'a30e01098bc6dbbf45690f3a7e9e6d0f8bbea2a39e6148008fd05e44', sha256: '5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b9' + '64ec3843', sha384: 'af45d2e376484031617f78d2b58a6b1b9c7ef464f5a01b47e42ec373' + '6322445e8e2240ca5e69e2c78b3239ecfab21649', sha512: '164b7a7bfcf819e2e395fbe73b56e0a387bd64222e831fd610270cd7' + 'ea2505549758bf75c05a994a6d034f65f8f0e6fdcaeab1a34d4a6b4b' + '636e070a38bce737' } }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddddddd' + 'ddddddddddddddddddddddddddddddddddddddddddddddddddd', 'hex'), hmac: { sha224: '7fb3cb3588c6c1f6ffa9694d7d6ad2649365b0c1f65d69d1ec8333ea', sha256: '773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514' + 'ced565fe', sha384: '88062608d3e6ad8a0aa2ace014c8a86f0aa635d947ac9febe83ef4e5' + '5966144b2a5ab39dc13814b94e3ab6e101a34f27', sha512: 'fa73b0089d56a284efb0f0756c890be9b1b5dbdd8ee81a3655f83e33' + 'b2279d39bf3e848279a722c806b485a47e67c807b946a337bee89426' + '74278859e13292fb' } }, { key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819', 'hex'), data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' + 'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd', 'hex'), hmac: { sha224: '6c11506874013cac6a2abc1bb382627cec6a90d86efc012de7afec5a', sha256: '82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff4' + '6729665b', sha384: '3e8a69b7783c25851933ab6290af6ca77a9981480850009cc5577c6e' + '1f573b4e6801dd23c4a7d679ccf8a386c674cffb', sha512: 'b0ba465637458c6990e5a8c5f61d4af7e576d97ff94b872de76f8050' + '361ee3dba91ca5c11aa25eb4d679275cc5788063a5f19741120c4f2d' + 'e2adebeb10a298dd' } }, { key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'), // 'Test With Truncation' data: new Buffer('546573742057697468205472756e636174696f6e', 'hex'), hmac: { sha224: '0e2aea68a90c8d37c988bcdb9fca6fa8', sha256: 'a3b6167473100ee06e0c796c2955552b', sha384: '3abf34c3503b2a23a46efc619baef897', sha512: '415fad6271580a531d4179bc891d87a6' }, truncate: true }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaa', 'hex'), // 'Test Using Larger Than Block-Size Key - Hash Key First' data: new Buffer('54657374205573696e67204c6172676572205468616e20426' + 'c6f636b2d53697a65204b6579202d2048617368204b657920' + '4669727374', 'hex'), hmac: { sha224: '95e9a0db962095adaebe9b2d6f0dbce2d499f112f2d2b7273fa6870e', sha256: '60e431591ee0b67f0d8a26aacbf5b77f8e0bc6213728c5140546040f' + '0ee37f54', sha384: '4ece084485813e9088d2c63a041bc5b44f9ef1012a2b588f3cd11f05' + '033ac4c60c2ef6ab4030fe8296248df163f44952', sha512: '80b24263c7c1a3ebb71493c1dd7be8b49b46d1f41b4aeec1121b0137' + '83f8f3526b56d037e05f2598bd0fd2215d6a1e5295e64f73f63f0aec' + '8b915a985d786598' } }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaa', 'hex'), // 'This is a test using a larger than block-size key and a larger ' + // 'than block-size data. The key needs to be hashed before being ' + // 'used by the HMAC algorithm.' data: new Buffer('5468697320697320612074657374207573696e672061206c6' + '172676572207468616e20626c6f636b2d73697a65206b6579' + '20616e642061206c6172676572207468616e20626c6f636b2' + 'd73697a6520646174612e20546865206b6579206e65656473' + '20746f20626520686173686564206265666f7265206265696' + 'e6720757365642062792074686520484d414320616c676f72' + '6974686d2e', 'hex'), hmac: { sha224: '3a854166ac5d9f023f54d517d0b39dbd946770db9c2b95c9f6f565d1', sha256: '9b09ffa71b942fcb27635fbcd5b0e944bfdc63644f0713938a7f5153' + '5c3a35e2', sha384: '6617178e941f020d351e2f254e8fd32c602420feb0b8fb9adccebb82' + '461e99c5a678cc31e799176d3860e6110c46523e', sha512: 'e37b6a775dc87dbaa4dfa9f96e5e3ffddebd71f8867289865df5a32d' + '20cdc944b6022cac3c4982b10d5eeb55c3e4de15134676fb6de04460' + '65c97440fa8c6a58' } } ]; for (var i = 0, l = rfc4231.length; i < l; i++) { for (var hash in rfc4231[i]['hmac']) { var str = crypto.createHmac(hash, rfc4231[i].key); str.end(rfc4231[i].data); var strRes = str.read().toString('hex'); var result = crypto.createHmac(hash, rfc4231[i]['key']) .update(rfc4231[i]['data']) .digest('hex'); if (rfc4231[i]['truncate']) { result = result.substr(0, 32); // first 128 bits == 32 hex chars strRes = strRes.substr(0, 32); } assert.equal(rfc4231[i]['hmac'][hash], result, 'Test HMAC-' + hash + ': Test case ' + (i + 1) + ' rfc 4231'); assert.equal(strRes, result, 'Should get same result from stream'); } } // Test HMAC-MD5/SHA1 (rfc 2202 Test Cases) var rfc2202_md5 = [ { key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'), data: 'Hi There', hmac: '9294727a3638bb1c13f48ef8158bfc9d' }, { key: 'Jefe', data: 'what do ya want for nothing?', hmac: '750c783e6ab0b503eaa86e310a5db738' }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddddddd' + 'ddddddddddddddddddddddddddddddddddddddddddddddddddd', 'hex'), hmac: '56be34521d144c88dbb8c733f0e8b3f6' }, { key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819', 'hex'), data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' + 'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' + 'cdcdcdcdcd', 'hex'), hmac: '697eaf0aca3a3aea3a75164746ffaa79' }, { key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'), data: 'Test With Truncation', hmac: '56461ef2342edc00f9bab995690efd4c' }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: 'Test Using Larger Than Block-Size Key - Hash Key First', hmac: '6b1ab7fe4bd7bf8f0b62e6ce61b9d0cd' }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: 'Test Using Larger Than Block-Size Key and Larger Than One ' + 'Block-Size Data', hmac: '6f630fad67cda0ee1fb1f562db3aa53e' } ]; var rfc2202_sha1 = [ { key: new Buffer('0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b', 'hex'), data: 'Hi There', hmac: 'b617318655057264e28bc0b6fb378c8ef146be00' }, { key: 'Jefe', data: 'what do ya want for nothing?', hmac: 'effcdf6ae5eb2fa2d27416d5f184df9c259a7c79' }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: new Buffer('ddddddddddddddddddddddddddddddddddddddddddddd' + 'ddddddddddddddddddddddddddddddddddddddddddddd' + 'dddddddddd', 'hex'), hmac: '125d7342b9ac11cd91a39af48aa17b4f63f175d3' }, { key: new Buffer('0102030405060708090a0b0c0d0e0f10111213141516171819', 'hex'), data: new Buffer('cdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdc' + 'dcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcdcd' + 'cdcdcdcdcd', 'hex'), hmac: '4c9007f4026250c6bc8414f9bf50c86c2d7235da' }, { key: new Buffer('0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c', 'hex'), data: 'Test With Truncation', hmac: '4c1a03424b55e07fe7f27be1d58bb9324a9a5a04' }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: 'Test Using Larger Than Block-Size Key - Hash Key First', hmac: 'aa4ae5e15272d00e95705637ce8a3b55ed402112' }, { key: new Buffer('aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' + 'aaaaaaaaaaaaaaaaaaaaaa', 'hex'), data: 'Test Using Larger Than Block-Size Key and Larger Than One ' + 'Block-Size Data', hmac: 'e8e99d0f45237d786d6bbaa7965c7808bbff1a91' } ]; for (var i = 0, l = rfc2202_md5.length; i < l; i++) { assert.equal(rfc2202_md5[i]['hmac'], crypto.createHmac('md5', rfc2202_md5[i]['key']) .update(rfc2202_md5[i]['data']) .digest('hex'), 'Test HMAC-MD5 : Test case ' + (i + 1) + ' rfc 2202'); } for (var i = 0, l = rfc2202_sha1.length; i < l; i++) { assert.equal(rfc2202_sha1[i]['hmac'], crypto.createHmac('sha1', rfc2202_sha1[i]['key']) .update(rfc2202_sha1[i]['data']) .digest('hex'), 'Test HMAC-SHA1 : Test case ' + (i + 1) + ' rfc 2202'); } // Test hashing var a0 = crypto.createHash('sha1').update('Test123').digest('hex'); var a1 = crypto.createHash('md5').update('Test123').digest('binary'); var a2 = crypto.createHash('sha256').update('Test123').digest('base64'); var a3 = crypto.createHash('sha512').update('Test123').digest(); // binary var a4 = crypto.createHash('sha1').update('Test123').digest('buffer'); // stream interface var a5 = crypto.createHash('sha512'); a5.end('Test123'); a5 = a5.read(); var a6 = crypto.createHash('sha512'); a6.write('Te'); a6.write('st'); a6.write('123'); a6.end(); a6 = a6.read(); var a7 = crypto.createHash('sha512'); a7.end(); a7 = a7.read(); var a8 = crypto.createHash('sha512'); a8.write(''); a8.end(); a8 = a8.read(); assert.equal(a0, '8308651804facb7b9af8ffc53a33a22d6a1c8ac2', 'Test SHA1'); assert.equal(a1, 'h\u00ea\u00cb\u0097\u00d8o\fF!\u00fa+\u000e\u0017\u00ca' + '\u00bd\u008c', 'Test MD5 as binary'); assert.equal(a2, '2bX1jws4GYKTlxhloUB09Z66PoJZW+y+hq5R8dnx9l4=', 'Test SHA256 as base64'); assert.deepEqual( a3, new Buffer( '\u00c1(4\u00f1\u0003\u001fd\u0097!O\'\u00d4C/&Qz\u00d4' + '\u0094\u0015l\u00b8\u008dQ+\u00db\u001d\u00c4\u00b5}\u00b2' + '\u00d6\u0092\u00a3\u00df\u00a2i\u00a1\u009b\n\n*\u000f' + '\u00d7\u00d6\u00a2\u00a8\u0085\u00e3<\u0083\u009c\u0093' + '\u00c2\u0006\u00da0\u00a1\u00879(G\u00ed\'', 'binary'), 'Test SHA512 as assumed buffer'); assert.deepEqual(a4, new Buffer('8308651804facb7b9af8ffc53a33a22d6a1c8ac2', 'hex'), 'Test SHA1'); // stream interface should produce the same result. assert.deepEqual(a5, a3, 'stream interface is consistent'); assert.deepEqual(a6, a3, 'stream interface is consistent'); assert.notEqual(a7, undefined, 'no data should return data'); assert.notEqual(a8, undefined, 'empty string should generate data'); // Test multiple updates to same hash var h1 = crypto.createHash('sha1').update('Test123').digest('hex'); var h2 = crypto.createHash('sha1').update('Test').update('123').digest('hex'); assert.equal(h1, h2, 'multipled updates'); // Test hashing for binary files var fn = path.join(common.fixturesDir, 'sample.png'); var sha1Hash = crypto.createHash('sha1'); var fileStream = fs.createReadStream(fn); fileStream.on('data', function(data) { sha1Hash.update(data); }); fileStream.on('close', function() { assert.equal(sha1Hash.digest('hex'), '22723e553129a336ad96e10f6aecdf0f45e4149e', 'Test SHA1 of sample.png'); }); // Issue #2227: unknown digest method should throw an error. assert.throws(function() { crypto.createHash('xyzzy'); }); // Test signing and verifying var s1 = crypto.createSign('RSA-SHA1') .update('Test123') .sign(keyPem, 'base64'); var s1stream = crypto.createSign('RSA-SHA1'); s1stream.end('Test123'); s1stream = s1stream.sign(keyPem, 'base64'); assert.equal(s1, s1stream, 'Stream produces same output'); var verified = crypto.createVerify('RSA-SHA1') .update('Test') .update('123') .verify(certPem, s1, 'base64'); assert.strictEqual(verified, true, 'sign and verify (base 64)'); var s2 = crypto.createSign('RSA-SHA256') .update('Test123') .sign(keyPem, 'binary'); var s2stream = crypto.createSign('RSA-SHA256'); s2stream.end('Test123'); s2stream = s2stream.sign(keyPem, 'binary'); assert.equal(s2, s2stream, 'Stream produces same output'); var verified = crypto.createVerify('RSA-SHA256') .update('Test') .update('123') .verify(certPem, s2, 'binary'); assert.strictEqual(verified, true, 'sign and verify (binary)'); var verStream = crypto.createVerify('RSA-SHA256'); verStream.write('Tes'); verStream.write('t12'); verStream.end('3'); verified = verStream.verify(certPem, s2, 'binary'); assert.strictEqual(verified, true, 'sign and verify (stream)'); var s3 = crypto.createSign('RSA-SHA1') .update('Test123') .sign(keyPem, 'buffer'); var verified = crypto.createVerify('RSA-SHA1') .update('Test') .update('123') .verify(certPem, s3); assert.strictEqual(verified, true, 'sign and verify (buffer)'); var verStream = crypto.createVerify('RSA-SHA1'); verStream.write('Tes'); verStream.write('t12'); verStream.end('3'); verified = verStream.verify(certPem, s3); assert.strictEqual(verified, true, 'sign and verify (stream)'); function testCipher1(key) { // Test encryption and decryption var plaintext = 'Keep this a secret? No! Tell everyone about node.js!'; var cipher = crypto.createCipher('aes192', key); // encrypt plaintext which is in utf8 format // to a ciphertext which will be in hex var ciph = cipher.update(plaintext, 'utf8', 'hex'); // Only use binary or hex, not base64. ciph += cipher.final('hex'); var decipher = crypto.createDecipher('aes192', key); var txt = decipher.update(ciph, 'hex', 'utf8'); txt += decipher.final('utf8'); assert.equal(txt, plaintext, 'encryption and decryption'); // streaming cipher interface // NB: In real life, it's not guaranteed that you can get all of it // in a single read() like this. But in this case, we know it's // quite small, so there's no harm. var cStream = crypto.createCipher('aes192', key); cStream.end(plaintext); ciph = cStream.read(); var dStream = crypto.createDecipher('aes192', key); dStream.end(ciph); txt = dStream.read().toString('utf8'); assert.equal(txt, plaintext, 'encryption and decryption with streams'); } function testCipher2(key) { // encryption and decryption with Base64 // reported in https://github.com/joyent/node/issues/738 var plaintext = '32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' + 'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' + 'jAfaFg**'; var cipher = crypto.createCipher('aes256', key); // encrypt plaintext which is in utf8 format // to a ciphertext which will be in Base64 var ciph = cipher.update(plaintext, 'utf8', 'base64'); ciph += cipher.final('base64'); var decipher = crypto.createDecipher('aes256', key); var txt = decipher.update(ciph, 'base64', 'utf8'); txt += decipher.final('utf8'); assert.equal(txt, plaintext, 'encryption and decryption with Base64'); } function testCipher3(key, iv) { // Test encyrption and decryption with explicit key and iv var plaintext = '32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' + 'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' + 'jAfaFg**'; var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv); var ciph = cipher.update(plaintext, 'utf8', 'hex'); ciph += cipher.final('hex'); var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv); var txt = decipher.update(ciph, 'hex', 'utf8'); txt += decipher.final('utf8'); assert.equal(txt, plaintext, 'encryption and decryption with key and iv'); // streaming cipher interface // NB: In real life, it's not guaranteed that you can get all of it // in a single read() like this. But in this case, we know it's // quite small, so there's no harm. var cStream = crypto.createCipheriv('des-ede3-cbc', key, iv); cStream.end(plaintext); ciph = cStream.read(); var dStream = crypto.createDecipheriv('des-ede3-cbc', key, iv); dStream.end(ciph); txt = dStream.read().toString('utf8'); assert.equal(txt, plaintext, 'streaming cipher iv'); } function testCipher4(key, iv) { // Test encyrption and decryption with explicit key and iv var plaintext = '32|RmVZZkFUVmpRRkp0TmJaUm56ZU9qcnJkaXNNWVNpTTU*|iXmckfRWZBGWWELw' + 'eCBsThSsfUHLeRe0KCsK8ooHgxie0zOINpXxfZi/oNG7uq9JWFVCk70gfzQH8ZUJ' + 'jAfaFg**'; var cipher = crypto.createCipheriv('des-ede3-cbc', key, iv); var ciph = cipher.update(plaintext, 'utf8', 'buffer'); ciph = Buffer.concat([ciph, cipher.final('buffer')]); var decipher = crypto.createDecipheriv('des-ede3-cbc', key, iv); var txt = decipher.update(ciph, 'buffer', 'utf8'); txt += decipher.final('utf8'); assert.equal(txt, plaintext, 'encryption and decryption with key and iv'); } testCipher1('MySecretKey123'); testCipher1(new Buffer('MySecretKey123')); testCipher2('0123456789abcdef'); testCipher2(new Buffer('0123456789abcdef')); testCipher3('0123456789abcd0123456789', '12345678'); testCipher3('0123456789abcd0123456789', new Buffer('12345678')); testCipher3(new Buffer('0123456789abcd0123456789'), '12345678'); testCipher3(new Buffer('0123456789abcd0123456789'), new Buffer('12345678')); testCipher4(new Buffer('0123456789abcd0123456789'), new Buffer('12345678')); // update() should only take buffers / strings assert.throws(function() { crypto.createHash('sha1').update({foo: 'bar'}); }, /buffer/); // Test Diffie-Hellman with two parties sharing a secret, // using various encodings as we go along var dh1 = crypto.createDiffieHellman(256); var p1 = dh1.getPrime('buffer'); var dh2 = crypto.createDiffieHellman(p1, 'buffer'); var key1 = dh1.generateKeys(); var key2 = dh2.generateKeys('hex'); var secret1 = dh1.computeSecret(key2, 'hex', 'base64'); var secret2 = dh2.computeSecret(key1, 'binary', 'buffer'); assert.equal(secret1, secret2.toString('base64')); assert.equal(dh1.verifyError, 0); assert.equal(dh2.verifyError, 0); // Create "another dh1" using generated keys from dh1, // and compute secret again var dh3 = crypto.createDiffieHellman(p1, 'buffer'); var privkey1 = dh1.getPrivateKey(); dh3.setPublicKey(key1); dh3.setPrivateKey(privkey1); assert.deepEqual(dh1.getPrime(), dh3.getPrime()); assert.deepEqual(dh1.getGenerator(), dh3.getGenerator()); assert.deepEqual(dh1.getPublicKey(), dh3.getPublicKey()); assert.deepEqual(dh1.getPrivateKey(), dh3.getPrivateKey()); assert.equal(dh3.verifyError, 0); var secret3 = dh3.computeSecret(key2, 'hex', 'base64'); assert.equal(secret1, secret3); // Run this one twice to make sure that the dh3 clears its error properly (function() { var c = crypto.createDecipher('aes-128-ecb', ''); assert.throws(function() { c.final('utf8') }, /wrong final block length/); })(); assert.throws(function() { dh3.computeSecret(''); }, /key is too small/i); (function() { var c = crypto.createDecipher('aes-128-ecb', ''); assert.throws(function() { c.final('utf8') }, /wrong final block length/); })(); // Create a shared using a DH group. var alice = crypto.createDiffieHellmanGroup('modp5'); var bob = crypto.createDiffieHellmanGroup('modp5'); alice.generateKeys(); bob.generateKeys(); var aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex'); var bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex'); assert.equal(aSecret, bSecret); assert.equal(alice.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); assert.equal(bob.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (buffer) works as expected. var modp1 = crypto.createDiffieHellmanGroup('modp1'); var modp1buf = new Buffer([ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, 0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x3a, 0x36, 0x20, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff ]); var exmodp1 = crypto.createDiffieHellman(modp1buf, new Buffer([2])); modp1.generateKeys(); exmodp1.generateKeys(); var modp1Secret = modp1.computeSecret(exmodp1.getPublicKey()).toString('hex'); var exmodp1Secret = exmodp1.computeSecret(modp1.getPublicKey()).toString('hex'); assert.equal(modp1Secret, exmodp1Secret); assert.equal(modp1.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); assert.equal(exmodp1.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (string with encoding) works as expected. var exmodp1_2 = crypto.createDiffieHellman(modp1buf, '02', 'hex'); exmodp1_2.generateKeys(); modp1Secret = modp1.computeSecret(exmodp1_2.getPublicKey()).toString('hex'); var exmodp1_2Secret = exmodp1_2.computeSecret(modp1.getPublicKey()) .toString('hex'); assert.equal(modp1Secret, exmodp1_2Secret); assert.equal(exmodp1_2.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (string without encoding) works as expected. var exmodp1_3 = crypto.createDiffieHellman(modp1buf, '\x02'); exmodp1_3.generateKeys(); modp1Secret = modp1.computeSecret(exmodp1_3.getPublicKey()).toString('hex'); var exmodp1_3Secret = exmodp1_3.computeSecret(modp1.getPublicKey()) .toString('hex'); assert.equal(modp1Secret, exmodp1_3Secret); assert.equal(exmodp1_3.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); // Ensure specific generator (numeric) works as expected. var exmodp1_4 = crypto.createDiffieHellman(modp1buf, 2); exmodp1_4.generateKeys(); modp1Secret = modp1.computeSecret(exmodp1_4.getPublicKey()).toString('hex'); var exmodp1_4Secret = exmodp1_4.computeSecret(modp1.getPublicKey()) .toString('hex'); assert.equal(modp1Secret, exmodp1_4Secret); assert.equal(exmodp1_4.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' + '020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' + '4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF'; var bad_dh = crypto.createDiffieHellman(p, 'hex'); assert.equal(bad_dh.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); // Test RSA key signing/verification var rsaSign = crypto.createSign('RSA-SHA1'); var rsaVerify = crypto.createVerify('RSA-SHA1'); assert.ok(rsaSign); assert.ok(rsaVerify); rsaSign.update(rsaPubPem); var rsaSignature = rsaSign.sign(rsaKeyPem, 'hex'); assert.equal(rsaSignature, '5c50e3145c4e2497aadb0eabc83b342d0b0021ece0d4c4a064b7c' + '8f020d7e2688b122bfb54c724ac9ee169f83f66d2fe90abeb95e8' + 'e1290e7e177152a4de3d944cf7d4883114a20ed0f78e70e25ef0f' + '60f06b858e6af42a2f276ede95bbc6bc9a9bbdda15bd663186a6f' + '40819a7af19e577bb2efa5e579a1f5ce8a0d4ca8b8f6'); rsaVerify.update(rsaPubPem); assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true); // Test RSA key signing/verification with encrypted key rsaSign = crypto.createSign('RSA-SHA1'); rsaSign.update(rsaPubPem); assert.doesNotThrow(function() { var signOptions = { key: rsaKeyPemEncrypted, passphrase: 'password' }; rsaSignature = rsaSign.sign(signOptions, 'hex'); }); assert.equal(rsaSignature, '5c50e3145c4e2497aadb0eabc83b342d0b0021ece0d4c4a064b7c' + '8f020d7e2688b122bfb54c724ac9ee169f83f66d2fe90abeb95e8' + 'e1290e7e177152a4de3d944cf7d4883114a20ed0f78e70e25ef0f' + '60f06b858e6af42a2f276ede95bbc6bc9a9bbdda15bd663186a6f' + '40819a7af19e577bb2efa5e579a1f5ce8a0d4ca8b8f6'); rsaVerify = crypto.createVerify('RSA-SHA1'); rsaVerify.update(rsaPubPem); assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true); rsaSign = crypto.createSign('RSA-SHA1'); rsaSign.update(rsaPubPem); assert.throws(function() { var signOptions = { key: rsaKeyPemEncrypted, passphrase: 'wrong' }; rsaSign.sign(signOptions, 'hex'); }); // // Test RSA signing and verification // (function() { var privateKey = fs.readFileSync( common.fixturesDir + '/test_rsa_privkey_2.pem'); var publicKey = fs.readFileSync( common.fixturesDir + '/test_rsa_pubkey_2.pem'); var input = 'I AM THE WALRUS'; var signature = '79d59d34f56d0e94aa6a3e306882b52ed4191f07521f25f505a078dc2f89' + '396e0c8ac89e996fde5717f4cb89199d8fec249961fcb07b74cd3d2a4ffa' + '235417b69618e4bcd76b97e29975b7ce862299410e1b522a328e44ac9bb2' + '8195e0268da7eda23d9825ac43c724e86ceeee0d0d4465678652ccaf6501' + '0ddfb299bedeb1ad'; var sign = crypto.createSign('RSA-SHA256'); sign.update(input); var output = sign.sign(privateKey, 'hex'); assert.equal(output, signature); var verify = crypto.createVerify('RSA-SHA256'); verify.update(input); assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true); })(); // // Test DSA signing and verification // (function() { var input = 'I AM THE WALRUS'; // DSA signatures vary across runs so there is no static string to verify // against var sign = crypto.createSign('DSS1'); sign.update(input); var signature = sign.sign(dsaKeyPem, 'hex'); var verify = crypto.createVerify('DSS1'); verify.update(input); assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true); })(); // // Test DSA signing and verification with encrypted key // (function() { var input = 'I AM THE WALRUS'; var sign = crypto.createSign('DSS1'); sign.update(input); assert.throws(function() { sign.sign({ key: dsaKeyPemEncrypted, passphrase: 'wrong' }, 'hex'); }); // DSA signatures vary across runs so there is no static string to verify // against var sign = crypto.createSign('DSS1'); sign.update(input); var signature; assert.doesNotThrow(function() { var signOptions = { key: dsaKeyPemEncrypted, passphrase: 'password' }; signature = sign.sign(signOptions, 'hex'); }); var verify = crypto.createVerify('DSS1'); verify.update(input); assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true); })(); // // Test PBKDF2 with RFC 6070 test vectors (except #4) // function testPBKDF2(password, salt, iterations, keylen, expected) { var actual = crypto.pbkdf2Sync(password, salt, iterations, keylen); assert.equal(actual.toString('binary'), expected); crypto.pbkdf2(password, salt, iterations, keylen, function(err, actual) { assert.equal(actual.toString('binary'), expected); }); } testPBKDF2('password', 'salt', 1, 20, '\x0c\x60\xc8\x0f\x96\x1f\x0e\x71\xf3\xa9\xb5\x24' + '\xaf\x60\x12\x06\x2f\xe0\x37\xa6'); testPBKDF2('password', 'salt', 2, 20, '\xea\x6c\x01\x4d\xc7\x2d\x6f\x8c\xcd\x1e\xd9\x2a' + '\xce\x1d\x41\xf0\xd8\xde\x89\x57'); testPBKDF2('password', 'salt', 4096, 20, '\x4b\x00\x79\x01\xb7\x65\x48\x9a\xbe\xad\x49\xd9\x26' + '\xf7\x21\xd0\x65\xa4\x29\xc1'); testPBKDF2('passwordPASSWORDpassword', 'saltSALTsaltSALTsaltSALTsaltSALTsalt', 4096, 25, '\x3d\x2e\xec\x4f\xe4\x1c\x84\x9b\x80\xc8\xd8\x36\x62' + '\xc0\xe4\x4a\x8b\x29\x1a\x96\x4c\xf2\xf0\x70\x38'); testPBKDF2('pass\0word', 'sa\0lt', 4096, 16, '\x56\xfa\x6a\xa7\x55\x48\x09\x9d\xcc\x37\xd7\xf0\x34' + '\x25\xe0\xc3'); (function() { var expected = '64c486c55d30d4c5a079b8823b7d7cb37ff0556f537da8410233bcec330ed956'; var key = crypto.pbkdf2Sync('password', 'salt', 32, 32, 'sha256'); assert.equal(key.toString('hex'), expected); crypto.pbkdf2('password', 'salt', 32, 32, 'sha256', common.mustCall(ondone)); function ondone(err, key) { if (err) throw err; assert.equal(key.toString('hex'), expected); } })(); function assertSorted(list) { // Array#sort() modifies the list in place so make a copy. var sorted = util._extend([], list).sort(); assert.deepEqual(list, sorted); } // Assume that we have at least AES-128-CBC. assert.notEqual(0, crypto.getCiphers().length); assert.notEqual(-1, crypto.getCiphers().indexOf('aes-128-cbc')); assert.equal(-1, crypto.getCiphers().indexOf('AES-128-CBC')); assertSorted(crypto.getCiphers()); // Assume that we have at least AES256-SHA. var tls = require('tls'); assert.notEqual(0, tls.getCiphers().length); assert.notEqual(-1, tls.getCiphers().indexOf('aes256-sha')); assert.equal(-1, tls.getCiphers().indexOf('AES256-SHA')); assertSorted(tls.getCiphers()); // Assert that we have sha and sha1 but not SHA and SHA1. assert.notEqual(0, crypto.getHashes().length); assert.notEqual(-1, crypto.getHashes().indexOf('sha1')); assert.notEqual(-1, crypto.getHashes().indexOf('sha')); assert.equal(-1, crypto.getHashes().indexOf('SHA1')); assert.equal(-1, crypto.getHashes().indexOf('SHA')); assert.notEqual(-1, crypto.getHashes().indexOf('RSA-SHA1')); assert.equal(-1, crypto.getHashes().indexOf('rsa-sha1')); assertSorted(crypto.getHashes()); // Base64 padding regression test, see #4837. (function() { var c = crypto.createCipher('aes-256-cbc', 'secret'); var s = c.update('test', 'utf8', 'base64') + c.final('base64'); assert.equal(s, '375oxUQCIocvxmC5At+rvA=='); })(); // Error path should not leak memory (check with valgrind). assert.throws(function() { crypto.pbkdf2('password', 'salt', 1, 20, null); }); // Calling Cipher.final() or Decipher.final() twice should error but // not assert. See #4886. (function() { var c = crypto.createCipher('aes-256-cbc', 'secret'); try { c.final('xxx') } catch (e) { /* Ignore. */ } try { c.final('xxx') } catch (e) { /* Ignore. */ } try { c.final('xxx') } catch (e) { /* Ignore. */ } var d = crypto.createDecipher('aes-256-cbc', 'secret'); try { d.final('xxx') } catch (e) { /* Ignore. */ } try { d.final('xxx') } catch (e) { /* Ignore. */ } try { d.final('xxx') } catch (e) { /* Ignore. */ } })(); // Regression test for #5482: string to Cipher#update() should not assert. (function() { var c = crypto.createCipher('aes192', '0123456789abcdef'); c.update('update'); c.final(); })(); // #5655 regression tests, 'utf-8' and 'utf8' are identical. (function() { var c = crypto.createCipher('aes192', '0123456789abcdef'); c.update('update', ''); // Defaults to "utf8". c.final('utf-8'); // Should not throw. c = crypto.createCipher('aes192', '0123456789abcdef'); c.update('update', 'utf8'); c.final('utf-8'); // Should not throw. c = crypto.createCipher('aes192', '0123456789abcdef'); c.update('update', 'utf-8'); c.final('utf8'); // Should not throw. })(); // Regression tests for #5725: hex input that's not a power of two should // throw, not assert in C++ land. assert.throws(function() { crypto.createCipher('aes192', 'test').update('0', 'hex'); }, /Bad input string/); assert.throws(function() { crypto.createDecipher('aes192', 'test').update('0', 'hex'); }, /Bad input string/); assert.throws(function() { crypto.createHash('sha1').update('0', 'hex'); }, /Bad input string/); assert.throws(function() { crypto.createSign('RSA-SHA1').update('0', 'hex'); }, /Bad input string/); assert.throws(function() { crypto.createVerify('RSA-SHA1').update('0', 'hex'); }, /Bad input string/); assert.throws(function() { var private = [ '-----BEGIN RSA PRIVATE KEY-----', 'MIGrAgEAAiEA+3z+1QNF2/unumadiwEr+C5vfhezsb3hp4jAnCNRpPcCAwEAAQIgQNriSQK4', 'EFwczDhMZp2dvbcz7OUUyt36z3S4usFPHSECEQD/41K7SujrstBfoCPzwC1xAhEA+5kt4BJy', 'eKN7LggbF3Dk5wIQN6SL+fQ5H/+7NgARsVBp0QIRANxYRukavs4QvuyNhMx+vrkCEQCbf6j/', 'Ig6/HueCK/0Jkmp+', '-----END RSA PRIVATE KEY-----', '' ].join('\n'); crypto.createSign('RSA-SHA256').update('test').sign(private); }, /RSA_sign:digest too big for rsa key/); // Make sure memory isn't released before being returned console.log(crypto.randomBytes(16));