// Copyright 2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // This benchmark is based on a JavaScript log processing module used // by the V8 profiler to generate execution time profiles for runs of // JavaScript applications, and it effectively measures how fast the // JavaScript engine is at allocating nodes and reclaiming the memory // used for old nodes. Because of the way splay trees work, the engine // also has to deal with a lot of changes to the large tree object // graph. var Splay = new BenchmarkSuite('Splay', 21915, [ new Benchmark("Splay", SplayRun, SplaySetup, SplayTearDown) ]); // Configuration. var kSplayTreeSize = 8000; var kSplayTreeModifications = 80; var kSplayTreePayloadDepth = 5; var splayTree = null; function GeneratePayloadTree(depth, tag) { if (depth == 0) { return { array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], string : 'String for key ' + tag + ' in leaf node' }; } else { return { left: GeneratePayloadTree(depth - 1, tag), right: GeneratePayloadTree(depth - 1, tag) }; } } function GenerateKey() { // The benchmark framework guarantees that Math.random is // deterministic; see base.js. return Math.random(); } function InsertNewNode() { // Insert new node with a unique key. var key; do { key = GenerateKey(); } while (splayTree.find(key) != null); var payload = GeneratePayloadTree(kSplayTreePayloadDepth, String(key)); splayTree.insert(key, payload); return key; } function SplaySetup() { splayTree = new SplayTree(); for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode(); } function SplayTearDown() { // Allow the garbage collector to reclaim the memory // used by the splay tree no matter how we exit the // tear down function. var keys = splayTree.exportKeys(); splayTree = null; // Verify that the splay tree has the right size. var length = keys.length; if (length != kSplayTreeSize) { throw new Error("Splay tree has wrong size"); } // Verify that the splay tree has sorted, unique keys. for (var i = 0; i < length - 1; i++) { if (keys[i] >= keys[i + 1]) { throw new Error("Splay tree not sorted"); } } } function SplayRun() { // Replace a few nodes in the splay tree. for (var i = 0; i < kSplayTreeModifications; i++) { var key = InsertNewNode(); var greatest = splayTree.findGreatestLessThan(key); if (greatest == null) splayTree.remove(key); else splayTree.remove(greatest.key); } } /** * Constructs a Splay tree. A splay tree is a self-balancing binary * search tree with the additional property that recently accessed * elements are quick to access again. It performs basic operations * such as insertion, look-up and removal in O(log(n)) amortized time. * * @constructor */ function SplayTree() { }; /** * Pointer to the root node of the tree. * * @type {SplayTree.Node} * @private */ SplayTree.prototype.root_ = null; /** * @return {boolean} Whether the tree is empty. */ SplayTree.prototype.isEmpty = function() { return !this.root_; }; /** * Inserts a node into the tree with the specified key and value if * the tree does not already contain a node with the specified key. If * the value is inserted, it becomes the root of the tree. * * @param {number} key Key to insert into the tree. * @param {*} value Value to insert into the tree. */ SplayTree.prototype.insert = function(key, value) { if (this.isEmpty()) { this.root_ = new SplayTree.Node(key, value); return; } // Splay on the key to move the last node on the search path for // the key to the root of the tree. this.splay_(key); if (this.root_.key == key) { return; } var node = new SplayTree.Node(key, value); if (key > this.root_.key) { node.left = this.root_; node.right = this.root_.right; this.root_.right = null; } else { node.right = this.root_; node.left = this.root_.left; this.root_.left = null; } this.root_ = node; }; /** * Removes a node with the specified key from the tree if the tree * contains a node with this key. The removed node is returned. If the * key is not found, an exception is thrown. * * @param {number} key Key to find and remove from the tree. * @return {SplayTree.Node} The removed node. */ SplayTree.prototype.remove = function(key) { if (this.isEmpty()) { throw Error('Key not found: ' + key); } this.splay_(key); if (this.root_.key != key) { throw Error('Key not found: ' + key); } var removed = this.root_; if (!this.root_.left) { this.root_ = this.root_.right; } else { var right = this.root_.right; this.root_ = this.root_.left; // Splay to make sure that the new root has an empty right child. this.splay_(key); // Insert the original right child as the right child of the new // root. this.root_.right = right; } return removed; }; /** * Returns the node having the specified key or null if the tree doesn't contain * a node with the specified key. * * @param {number} key Key to find in the tree. * @return {SplayTree.Node} Node having the specified key. */ SplayTree.prototype.find = function(key) { if (this.isEmpty()) { return null; } this.splay_(key); return this.root_.key == key ? this.root_ : null; }; /** * @return {SplayTree.Node} Node having the maximum key value. */ SplayTree.prototype.findMax = function(opt_startNode) { if (this.isEmpty()) { return null; } var current = opt_startNode || this.root_; while (current.right) { current = current.right; } return current; }; /** * @return {SplayTree.Node} Node having the maximum key value that * is less than the specified key value. */ SplayTree.prototype.findGreatestLessThan = function(key) { if (this.isEmpty()) { return null; } // Splay on the key to move the node with the given key or the last // node on the search path to the top of the tree. this.splay_(key); // Now the result is either the root node or the greatest node in // the left subtree. if (this.root_.key < key) { return this.root_; } else if (this.root_.left) { return this.findMax(this.root_.left); } else { return null; } }; /** * @return {Array<*>} An array containing all the keys of tree's nodes. */ SplayTree.prototype.exportKeys = function() { var result = []; if (!this.isEmpty()) { this.root_.traverse_(function(node) { result.push(node.key); }); } return result; }; /** * Perform the splay operation for the given key. Moves the node with * the given key to the top of the tree. If no node has the given * key, the last node on the search path is moved to the top of the * tree. This is the simplified top-down splaying algorithm from: * "Self-adjusting Binary Search Trees" by Sleator and Tarjan * * @param {number} key Key to splay the tree on. * @private */ SplayTree.prototype.splay_ = function(key) { if (this.isEmpty()) { return; } // Create a dummy node. The use of the dummy node is a bit // counter-intuitive: The right child of the dummy node will hold // the L tree of the algorithm. The left child of the dummy node // will hold the R tree of the algorithm. Using a dummy node, left // and right will always be nodes and we avoid special cases. var dummy, left, right; dummy = left = right = new SplayTree.Node(null, null); var current = this.root_; while (true) { if (key < current.key) { if (!current.left) { break; } if (key < current.left.key) { // Rotate right. var tmp = current.left; current.left = tmp.right; tmp.right = current; current = tmp; if (!current.left) { break; } } // Link right. right.left = current; right = current; current = current.left; } else if (key > current.key) { if (!current.right) { break; } if (key > current.right.key) { // Rotate left. var tmp = current.right; current.right = tmp.left; tmp.left = current; current = tmp; if (!current.right) { break; } } // Link left. left.right = current; left = current; current = current.right; } else { break; } } // Assemble. left.right = current.left; right.left = current.right; current.left = dummy.right; current.right = dummy.left; this.root_ = current; }; /** * Constructs a Splay tree node. * * @param {number} key Key. * @param {*} value Value. */ SplayTree.Node = function(key, value) { this.key = key; this.value = value; }; /** * @type {SplayTree.Node} */ SplayTree.Node.prototype.left = null; /** * @type {SplayTree.Node} */ SplayTree.Node.prototype.right = null; /** * Performs an ordered traversal of the subtree starting at * this SplayTree.Node. * * @param {function(SplayTree.Node)} f Visitor function. * @private */ SplayTree.Node.prototype.traverse_ = function(f) { var current = this; while (current) { var left = current.left; if (left) left.traverse_(f); f(current); current = current.right; } };