// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "deoptimizer.h" #include "frames-inl.h" #include "full-codegen.h" #include "mark-compact.h" #include "safepoint-table.h" #include "scopeinfo.h" #include "string-stream.h" #include "top.h" namespace v8 { namespace internal { PcToCodeCache::PcToCodeCacheEntry PcToCodeCache::cache_[PcToCodeCache::kPcToCodeCacheSize]; int SafeStackFrameIterator::active_count_ = 0; // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator BASE_EMBEDDED { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { // Make sure the handler has already been unwound to this frame. ASSERT(frame->sp() <= handler->address()); } StackHandler* handler() const { return handler_; } bool done() { return handler_ == NULL || handler_->address() > limit_; } void Advance() { ASSERT(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIterator::StackFrameIterator() : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(Top::GetCurrentThread()), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(ThreadLocalTop* t) : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(t), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(bool use_top, Address fp, Address sp) : STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(use_top ? Top::GetCurrentThread() : NULL), fp_(use_top ? NULL : fp), sp_(sp), advance_(use_top ? &StackFrameIterator::AdvanceWithHandler : &StackFrameIterator::AdvanceWithoutHandler) { if (use_top || fp != NULL) { Reset(); } } #undef INITIALIZE_SINGLETON void StackFrameIterator::AdvanceWithHandler() { ASSERT(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. ASSERT(!done() || handler_ == NULL); } void StackFrameIterator::AdvanceWithoutHandler() { // A simpler version of Advance which doesn't care about handler. ASSERT(!done()); StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); } void StackFrameIterator::Reset() { StackFrame::State state; StackFrame::Type type; if (thread_ != NULL) { type = ExitFrame::GetStateForFramePointer(Top::c_entry_fp(thread_), &state); handler_ = StackHandler::FromAddress(Top::handler(thread_)); } else { ASSERT(fp_ != NULL); state.fp = fp_; state.sp = sp_; state.pc_address = reinterpret_cast
(StandardFrame::ComputePCAddress(fp_)); type = StackFrame::ComputeType(&state); } if (SingletonFor(type) == NULL) return; frame_ = SingletonFor(type, &state); } StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type, StackFrame::State* state) { if (type == StackFrame::NONE) return NULL; StackFrame* result = SingletonFor(type); ASSERT(result != NULL); result->state_ = *state; return result; } StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: result = &field##_; break; StackFrame* result = NULL; switch (type) { case StackFrame::NONE: return NULL; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return result; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator() { if (!done() && !IsValidFrame()) Advance(); } void StackTraceFrameIterator::Advance() { while (true) { JavaScriptFrameIterator::Advance(); if (done()) return; if (IsValidFrame()) return; } } bool StackTraceFrameIterator::IsValidFrame() { if (!frame()->function()->IsJSFunction()) return false; Object* script = JSFunction::cast(frame()->function())->shared()->script(); // Don't show functions from native scripts to user. return (script->IsScript() && Script::TYPE_NATIVE != Script::cast(script)->type()->value()); } // ------------------------------------------------------------------------- bool SafeStackFrameIterator::ExitFrameValidator::IsValidFP(Address fp) { if (!validator_.IsValid(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!validator_.IsValid(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); if (!validator_.IsValid(reinterpret_cast(state.pc_address))) { return false; } return *state.pc_address != NULL; } SafeStackFrameIterator::SafeStackFrameIterator( Address fp, Address sp, Address low_bound, Address high_bound) : maintainer_(), stack_validator_(low_bound, high_bound), is_valid_top_(IsValidTop(low_bound, high_bound)), is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)), is_working_iterator_(is_valid_top_ || is_valid_fp_), iteration_done_(!is_working_iterator_), iterator_(is_valid_top_, is_valid_fp_ ? fp : NULL, sp) { } bool SafeStackFrameIterator::IsValidTop(Address low_bound, Address high_bound) { Address fp = Top::c_entry_fp(Top::GetCurrentThread()); ExitFrameValidator validator(low_bound, high_bound); if (!validator.IsValidFP(fp)) return false; return Top::handler(Top::GetCurrentThread()) != NULL; } void SafeStackFrameIterator::Advance() { ASSERT(is_working_iterator_); ASSERT(!done()); StackFrame* last_frame = iterator_.frame(); Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests iteration_done_ = !IsValidFrame(last_frame) || !CanIterateHandles(last_frame, iterator_.handler()) || !IsValidCaller(last_frame); if (iteration_done_) return; iterator_.Advance(); if (iterator_.done()) return; // Check that we have actually moved to the previous frame in the stack StackFrame* prev_frame = iterator_.frame(); iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp; } bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame, StackHandler* handler) { // If StackIterator iterates over StackHandles, verify that // StackHandlerIterator can be instantiated (see StackHandlerIterator // constructor.) return !is_valid_top_ || (frame->sp() <= handler->address()); } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_entry_construct()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory::Address_at( frame->fp() + EntryFrameConstants::kCallerFPOffset); ExitFrameValidator validator(stack_validator_); if (!validator.IsValidFP(caller_fp)) return false; } else if (frame->is_arguments_adaptor()) { // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that // the number of arguments is stored on stack as Smi. We need to check // that it really an Smi. Object* number_of_args = reinterpret_cast(code);
pc = holder->instruction_start() + pc_offset;
*pc_address = pc;
}
}
StackFrame::Type StackFrame::ComputeType(State* state) {
ASSERT(state->fp != NULL);
if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) {
return ARGUMENTS_ADAPTOR;
}
// The marker and function offsets overlap. If the marker isn't a
// smi then the frame is a JavaScript frame -- and the marker is
// really the function.
const int offset = StandardFrameConstants::kMarkerOffset;
Object* marker = Memory::Object_at(state->fp + offset);
if (!marker->IsSmi()) {
// If we're using a "safe" stack iterator, we treat optimized
// frames as normal JavaScript frames to avoid having to look
// into the heap to determine the state. This is safe as long
// as nobody tries to GC...
if (SafeStackFrameIterator::is_active()) return JAVA_SCRIPT;
Code::Kind kind = GetContainingCode(*(state->pc_address))->kind();
ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION);
return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT;
}
return static_cast(Smi::cast(marker)->value());
}
StackFrame::Type StackFrame::GetCallerState(State* state) const {
ComputeCallerState(state);
return ComputeType(state);
}
Code* EntryFrame::unchecked_code() const {
return Heap::raw_unchecked_js_entry_code();
}
void EntryFrame::ComputeCallerState(State* state) const {
GetCallerState(state);
}
void EntryFrame::SetCallerFp(Address caller_fp) {
const int offset = EntryFrameConstants::kCallerFPOffset;
Memory::Address_at(this->fp() + offset) = caller_fp;
}
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
const int offset = EntryFrameConstants::kCallerFPOffset;
Address fp = Memory::Address_at(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
Code* EntryConstructFrame::unchecked_code() const {
return Heap::raw_unchecked_js_construct_entry_code();
}
Object*& ExitFrame::code_slot() const {
const int offset = ExitFrameConstants::kCodeOffset;
return Memory::Object_at(fp() + offset);
}
Code* ExitFrame::unchecked_code() const {
return reinterpret_cast(code_slot());
}
void ExitFrame::ComputeCallerState(State* state) const {
// Setup the caller state.
state->sp = caller_sp();
state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
state->pc_address
= reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset);
}
void ExitFrame::SetCallerFp(Address caller_fp) {
Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp;
}
void ExitFrame::Iterate(ObjectVisitor* v) const {
// The arguments are traversed as part of the expression stack of
// the calling frame.
IteratePc(v, pc_address(), code());
v->VisitPointer(&code_slot());
}
Address ExitFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPDisplacement;
}
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
if (fp == 0) return NONE;
Address sp = ComputeStackPointer(fp);
FillState(fp, sp, state);
ASSERT(*state->pc_address != NULL);
return EXIT;
}
void ExitFrame::FillState(Address fp, Address sp, State* state) {
state->sp = sp;
state->fp = fp;
state->pc_address = reinterpret_cast(sp - 1 * kPointerSize);
}
Address StandardFrame::GetExpressionAddress(int n) const {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
int StandardFrame::ComputeExpressionsCount() const {
const int offset =
StandardFrameConstants::kExpressionsOffset + kPointerSize;
Address base = fp() + offset;
Address limit = sp();
ASSERT(base >= limit); // stack grows downwards
// Include register-allocated locals in number of expressions.
return static_cast((base - limit) / kPointerSize);
}
void StandardFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = caller_fp();
state->pc_address = reinterpret_cast(ComputePCAddress(fp()));
}
void StandardFrame::SetCallerFp(Address caller_fp) {
Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) =
caller_fp;
}
bool StandardFrame::IsExpressionInsideHandler(int n) const {
Address address = GetExpressionAddress(n);
for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) {
if (it.handler()->includes(address)) return true;
}
return false;
}
void OptimizedFrame::Iterate(ObjectVisitor* v) const {
#ifdef DEBUG
// Make sure that optimized frames do not contain any stack handlers.
StackHandlerIterator it(this, top_handler());
ASSERT(it.done());
#endif
// Make sure that we're not doing "safe" stack frame iteration. We cannot
// possibly find pointers in optimized frames in that state.
ASSERT(!SafeStackFrameIterator::is_active());
// Compute the safepoint information.
unsigned stack_slots = 0;
SafepointEntry safepoint_entry;
Code* code = StackFrame::GetSafepointData(
pc(), &safepoint_entry, &stack_slots);
unsigned slot_space = stack_slots * kPointerSize;
// Visit the outgoing parameters. This is usually dealt with by the
// callee, but while GC'ing we artificially lower the number of
// arguments to zero and let the caller deal with it.
Object** parameters_base = &Memory::Object_at(sp());
Object** parameters_limit = &Memory::Object_at(
fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space);
// Visit the parameters that may be on top of the saved registers.
if (safepoint_entry.argument_count() > 0) {
v->VisitPointers(parameters_base,
parameters_base + safepoint_entry.argument_count());
parameters_base += safepoint_entry.argument_count();
}
if (safepoint_entry.has_doubles()) {
parameters_base += DoubleRegister::kNumAllocatableRegisters *
kDoubleSize / kPointerSize;
}
// Visit the registers that contain pointers if any.
if (safepoint_entry.HasRegisters()) {
for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
if (safepoint_entry.HasRegisterAt(i)) {
int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
v->VisitPointer(parameters_base + reg_stack_index);
}
}
// Skip the words containing the register values.
parameters_base += kNumSafepointRegisters;
}
// We're done dealing with the register bits.
uint8_t* safepoint_bits = safepoint_entry.bits();
safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
// Visit the rest of the parameters.
v->VisitPointers(parameters_base, parameters_limit);
// Visit pointer spill slots and locals.
for (unsigned index = 0; index < stack_slots; index++) {
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
v->VisitPointer(parameters_limit + index);
}
}
// Visit the context and the function.
Object** fixed_base = &Memory::Object_at(
fp() + JavaScriptFrameConstants::kFunctionOffset);
Object** fixed_limit = &Memory::Object_at(fp());
v->VisitPointers(fixed_base, fixed_limit);
// Visit the return address in the callee and incoming arguments.
IteratePc(v, pc_address(), code);
IterateArguments(v);
}
Object* JavaScriptFrame::GetParameter(int index) const {
ASSERT(index >= 0 && index < ComputeParametersCount());
const int offset = JavaScriptFrameConstants::kParam0Offset;
return Memory::Object_at(caller_sp() + offset - (index * kPointerSize));
}
int JavaScriptFrame::ComputeParametersCount() const {
Address base = caller_sp() + JavaScriptFrameConstants::kReceiverOffset;
Address limit = fp() + JavaScriptFrameConstants::kSavedRegistersOffset;
return static_cast((base - limit) / kPointerSize);
}
bool JavaScriptFrame::IsConstructor() const {
Address fp = caller_fp();
if (has_adapted_arguments()) {
// Skip the arguments adaptor frame and look at the real caller.
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
return IsConstructFrame(fp);
}
Code* JavaScriptFrame::unchecked_code() const {
JSFunction* function = JSFunction::cast(this->function());
return function->unchecked_code();
}
int JavaScriptFrame::GetProvidedParametersCount() const {
return ComputeParametersCount();
}
Address JavaScriptFrame::GetCallerStackPointer() const {
int arguments;
if (Heap::gc_state() != Heap::NOT_IN_GC ||
SafeStackFrameIterator::is_active()) {
// If the we are currently iterating the safe stack the
// arguments for frames are traversed as if they were
// expression stack elements of the calling frame. The reason for
// this rather strange decision is that we cannot access the
// function during mark-compact GCs when objects may have been marked.
// In fact accessing heap objects (like function->shared() below)
// at all during GC is problematic.
arguments = 0;
} else {
// Compute the number of arguments by getting the number of formal
// parameters of the function. We must remember to take the
// receiver into account (+1).
JSFunction* function = JSFunction::cast(this->function());
arguments = function->shared()->formal_parameter_count() + 1;
}
const int offset = StandardFrameConstants::kCallerSPOffset;
return fp() + offset + (arguments * kPointerSize);
}
void JavaScriptFrame::GetFunctions(List* functions) {
ASSERT(functions->length() == 0);
functions->Add(JSFunction::cast(function()));
}
void JavaScriptFrame::Summarize(List* functions) {
ASSERT(functions->length() == 0);
Code* code_pointer = code();
int offset = static_cast(pc() - code_pointer->address());
FrameSummary summary(receiver(),
JSFunction::cast(function()),
code_pointer,
offset,
IsConstructor());
functions->Add(summary);
}
void FrameSummary::Print() {
PrintF("receiver: ");
receiver_->ShortPrint();
PrintF("\nfunction: ");
function_->shared()->DebugName()->ShortPrint();
PrintF("\ncode: ");
code_->ShortPrint();
if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT");
if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT");
PrintF("\npc: %d\n", offset_);
}
void OptimizedFrame::Summarize(List* frames) {
ASSERT(frames->length() == 0);
ASSERT(is_optimized());
int deopt_index = AstNode::kNoNumber;
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
// BUG(3243555): Since we don't have a lazy-deopt registered at
// throw-statements, we can't use the translation at the call-site of
// throw. An entry with no deoptimization index indicates a call-site
// without a lazy-deopt. As a consequence we are not allowed to inline
// functions containing throw.
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
JavaScriptFrame::Summarize(frames);
return;
}
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast(it.Next());
ASSERT(opcode == Translation::BEGIN);
int frame_count = it.Next();
// We create the summary in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
int i = frame_count;
while (i > 0) {
opcode = static_cast(it.Next());
if (opcode == Translation::FRAME) {
// We don't inline constructor calls, so only the first, outermost
// frame can be a constructor frame in case of inlining.
bool is_constructor = (i == frame_count) && IsConstructor();
i--;
int ast_id = it.Next();
int function_id = it.Next();
it.Next(); // Skip height.
JSFunction* function =
JSFunction::cast(data->LiteralArray()->get(function_id));
// The translation commands are ordered and the receiver is always
// at the first position. Since we are always at a call when we need
// to construct a stack trace, the receiver is always in a stack slot.
opcode = static_cast(it.Next());
ASSERT(opcode == Translation::STACK_SLOT);
int input_slot_index = it.Next();
// Get the correct receiver in the optimized frame.
Object* receiver = NULL;
// Positive index means the value is spilled to the locals area. Negative
// means it is stored in the incoming parameter area.
if (input_slot_index >= 0) {
receiver = GetExpression(input_slot_index);
} else {
// Index -1 overlaps with last parameter, -n with the first parameter,
// (-n - 1) with the receiver with n being the number of parameters
// of the outermost, optimized frame.
int parameter_count = ComputeParametersCount();
int parameter_index = input_slot_index + parameter_count;
receiver = (parameter_index == -1)
? this->receiver()
: this->GetParameter(parameter_index);
}
Code* code = function->shared()->code();
DeoptimizationOutputData* output_data =
DeoptimizationOutputData::cast(code->deoptimization_data());
unsigned entry = Deoptimizer::GetOutputInfo(output_data,
ast_id,
function->shared());
unsigned pc_offset =
FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize;
ASSERT(pc_offset > 0);
FrameSummary summary(receiver, function, code, pc_offset, is_constructor);
frames->Add(summary);
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
}
DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData(
int* deopt_index) {
ASSERT(is_optimized());
JSFunction* opt_function = JSFunction::cast(function());
Code* code = opt_function->code();
// The code object may have been replaced by lazy deoptimization. Fall
// back to a slow search in this case to find the original optimized
// code object.
if (!code->contains(pc())) {
code = PcToCodeCache::GcSafeFindCodeForPc(pc());
}
ASSERT(code != NULL);
ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION);
SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
*deopt_index = safepoint_entry.deoptimization_index();
ASSERT(*deopt_index != AstNode::kNoNumber);
return DeoptimizationInputData::cast(code->deoptimization_data());
}
void OptimizedFrame::GetFunctions(List* functions) {
ASSERT(functions->length() == 0);
ASSERT(is_optimized());
int deopt_index = AstNode::kNoNumber;
DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index);
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast(it.Next());
ASSERT(opcode == Translation::BEGIN);
int frame_count = it.Next();
// We insert the frames in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
while (frame_count > 0) {
opcode = static_cast(it.Next());
if (opcode == Translation::FRAME) {
frame_count--;
it.Next(); // Skip ast id.
int function_id = it.Next();
it.Next(); // Skip height.
JSFunction* function =
JSFunction::cast(data->LiteralArray()->get(function_id));
functions->Add(function);
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
}
Address ArgumentsAdaptorFrame::GetCallerStackPointer() const {
const int arguments = Smi::cast(GetExpression(0))->value();
const int offset = StandardFrameConstants::kCallerSPOffset;
return fp() + offset + (arguments + 1) * kPointerSize;
}
Address InternalFrame::GetCallerStackPointer() const {
// Internal frames have no arguments. The stack pointer of the
// caller is at a fixed offset from the frame pointer.
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Code* ArgumentsAdaptorFrame::unchecked_code() const {
return Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline);
}
Code* InternalFrame::unchecked_code() const {
const int offset = InternalFrameConstants::kCodeOffset;
Object* code = Memory::Object_at(fp() + offset);
ASSERT(code != NULL);
return reinterpret_cast(code);
}
void StackFrame::PrintIndex(StringStream* accumulator,
PrintMode mode,
int index) {
accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
void JavaScriptFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
HandleScope scope;
Object* receiver = this->receiver();
Object* function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
Code* code = NULL;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
Handle scope_info(SerializedScopeInfo::Empty());
if (function->IsJSFunction()) {
Handle shared(JSFunction::cast(function)->shared());
scope_info = Handle(shared->scope_info());
Object* script_obj = shared->script();
if (script_obj->IsScript()) {
Handle